3.3高阶系统的时域分析
自动控制理论稳态误差
![自动控制理论稳态误差](https://img.taocdn.com/s3/m/2aa8e0a61eb91a37f0115cb0.png)
3
3.5 线性系统的稳定性分析
线性定常系统稳定的充分必要条件
jω
s平面
稳定区域 稳定区域
不稳定区域
σ
不稳定区域
临界稳定 /临界不稳定 不稳定
根在复平面的位置
4
上节课要点复习
3.5 线性系统的稳定性分析
劳斯(Routh)稳定判据
S控制系统稳定的必要条件是:控制系统特征方程式的 所有系数符号相同且不为零(不缺项)。
K
−
K
+1 t
(1 − e T )
K +1
ess
=1−
K K +1
=
1 K +1
开环、闭环传递函数?!! 17
3.3 二阶系统的时域分析(例子)
二阶系统的单位阶跃响应
R(s)
E(s)
ω
2 n
Y (s)
R(s)
ω
2 n
Y (s)
s(s + 2ζωn )
s2
+
2ζω n s
+
ω
2 n
a)
b)
G(s)H (s) =
E(s)
K
Ts
Y (s)
R(s)
K Y(s)
Ts + K
a)
b)
Ⅰ型系统 K p = ∞
−Kt
y(t) = 1− e T
R(s)
E(s)
K
Y (s)
R(s)
K
Y (s)
Ts +1
Ts + K +1
K P = limG(s)H (s) s→0
ess
=1 1+ Kp
第三章时域分析法.ppt
![第三章时域分析法.ppt](https://img.taocdn.com/s3/m/313151150722192e4536f65c.png)
ts
ln ln
n
1 2
求极 小值
0.707
0.02 0.05
ts
ln
n
简化
3 ln 4
0 0.7
0 ln 1 2 0.34
第3章 时域分析法
3.3 二阶系统时间响应
振荡次数
N ts Td
ts n
i1
zi
r
d n
1 2 tan
第3章 时域分析法
3.3 二阶系统时间响应
dtp k , k 0, 1, 2, …
tp
d
n
1 2
k 1
tp
Td 2
Td
2 d
n
2 1 2
tp
n
tp
第3章 时域分析法
3.3 二阶系统时间响应
M e 1 2 p
超调量只与系统的阻
尼比有关,而与固有
频率无关
Mp
第3章 时域分析法
3.3 二阶系统时间响应
Mp
1
0.8
0.6
0.4
0.2
0
0
0.2
0.4
0.6
0.8
1
damping ratio
第3章 时域分析法 调整时间
第3章 时域分析法
1 ents 1
1 2
tp
d
n
2s 1 2
m K 77.3kg
2 n
B 2nm 181.8 N s m
0.6 n 1.96 rad s
自动控制原理 第三章 时域分析法
![自动控制原理 第三章 时域分析法](https://img.taocdn.com/s3/m/0fde41dffe4733687f21aa57.png)
二阶欠阻尼系统的输出
拉氏逆变换得:
二阶欠阻尼系统输出分析
二阶欠阻尼系统的单位阶跃响应由稳态分量和 暂态分量组成。稳态分量值等于1,暂态分 量为衰减过程,振荡频率为ωd。
下图为二阶系统单位阶跃响应的通用曲线。
下面根据上图来分析系统的结构参数 、 n 对阶
跃响应的影响。
• 平稳性(%)
结论: 越大,ωd越小,幅值也越小,响应的振荡 倾向越弱,超调越小,平稳性越好。反之, 越小,
三、稳定性判据
本节主要讲下代数判据,代数判据的形式很 多,有劳斯判据(Routh),赫尔维茨 (Hurwitz)稳定判据,林纳德 奇帕特 (Lienard-Chipard)判据,劳斯-侯维智稳 定判据等。
由前面的讲述可知,判定系统稳定的最直接 方法是求出系统的闭环特征根,根据特征根 的位置判断,但有时候这种计算不方便。代 数判据的目的是不直接求特征根,通过间接 的方法判断系统稳定性。
二阶系统单位阶跃响应
过阻尼系统分析
• 衰减项的幂指数的绝对值一个大,一个小。绝对值大
的离虚轴远,衰减速度快,绝对值小的离虚轴近,衰 减速度慢
• 衰减项前的系数一个大,一个小 • 二阶过阻尼系统的动态响应呈非周期性,没有振荡和
超调,但又不同于一阶系统
• 离虚轴近的极点所决定的分量对响应产生的影响大,
• 快速性
从图中看出,对于5%误
差带,当 0.707时,调
节时间最短,即快速性最 好。同时,其超调量<5 %,平稳性也较好,故称
0.707为最佳阻尼比。
总结: n
越短;当
越大,调节时间 t
一定时, n
s
越大,快速性越好。
• 稳态精度
h(t)11 12entsin(dtarccos)
线性系统的时域分析法和误差计算
![线性系统的时域分析法和误差计算](https://img.taocdn.com/s3/m/7e5af0ac6294dd88d0d26bd5.png)
单位脉冲响应 [R(s)=1]
C(s) 1 Ts1
h(t) 1/T
它恰是系统的闭环传函,这
0.368/T
时输出称为脉冲(冲激)响应 函数,以h(t)标志。
h(t)C脉冲 (t)T1eTt
0.135/T
0.05/T
0 T 2T 3T
t
求系统闭环传函提供了实验方法,以单位脉冲输入信号作用于
系统,测定出系统的单位脉冲响应,可以得到闭环传函。
时域分析法, 根轨迹法, 频率法 非线性系统:描述函数法,相平面法
采样系统: Z 变换法
多输入多输出系统: 状态空间法
§3-1 线性系统时间响应的性能指标
动态性能,静态性能。 动态性能需要通过其对输入信号的响应过程来评价。因此在分 析和设计控制系统时,需要一个对系统的性能进行比较的基准--典型输入信号。条件:1 能反映实际输入;2 在形式上尽可能简 单,便于分析;3 使系统运行在最不利的工作状态。
0T
0.95 0.982
响应曲线在[0,) 的时间区间中始终不会
超过其稳态值,把这样
2T 3T 4T
的响应称为非周期响应。 t 无振荡
c(t)
1.0 0.865
t
c( t)1eT
0t
0.95 0.982
一阶系统响应具备两个 重要的特点: ①可以用时间常数T去度量
0.632
系统输出量的数值。
②响应曲线的初始斜率等于
c(t) 1.0
c(t) T
0
t
0
T
t
在阶跃响应中,输出量与输入量之间的位置误差随时间而减小,
最终趋于0,而在初始状态下,位置误差最大,响应曲线的斜率也
最大;无差跟踪
3-4高阶系统的时域分析
![3-4高阶系统的时域分析](https://img.taocdn.com/s3/m/bdfb596831126edb6e1a1048.png)
h(t ) = 1 -
1
e - sot
bz 2(b - 2) + 1
-
e - zwn t
[bz 2(b -
bz 2(b - 2) + 1
2) cos wn
1- z 2t
bz (z 2(b - 2) + 1)
+
1- z2
sin wn
1- z2t]
由于
b 2 ( b 2 ) 1 2 ( b 1 ) 2 ( 1 2 ) 0 , b S 0 /w n
2、 超调量的计算
n
m
si
s% i3 n
s1 zi
i1
estp 10% 0
m
s1 si
zi
i3
i1
结论: (1)闭环零点会减小系统阻尼。 (2)闭环非主导极点会增大系统阻尼。 (3)若系统不存在闭环零点和非主导极点,则
s%e/ 12 10% 0
3、 调节时间的计算
s i为 D ( s ) 0 的 根 , 称 为 闭 环 极 点 。
当输入为单位阶跃函数时,
m
K (szi)
C (s)q
i 1 r
(ssj) (s22k
ksk 2)1 sA s0jq 1s A jsjkr 1s2 B 2 ksk k C skk 2
ts 1n ln2
n
si
i2 n
s1 si
m
s1 zi
i1 m
zi
i2
i1
结论:
(1)闭环零点越接近虚轴,峰值时间越小,超调量 和调节时间越大;
自动控制原理3.3~3.4 二阶系统时域分析
![自动控制原理3.3~3.4 二阶系统时域分析](https://img.taocdn.com/s3/m/d89db36d27d3240c8447eff4.png)
闭环特征方程: D( s ) s 2 2 s 2 0 n n 闭环特征根: s1, 2 n n
2
1
二、二阶系统单位阶跃响应
单位阶跃输入r(t)=1(t)时,其二阶系统的输出的拉氏变换为
2 2 n n 1 C ( s ) ( s ) R( s ) 2 2 s 2 n s n s s( s s1 )(s s2 )
e
(ζ ζ 2 1 ) n t
ζ 2 1 ) n t
c(t ) 1
1
2 ζ 2 1 (ζ ζ 2 1) 1 (ζ e 2 ζ 2 1 (ζ ζ 2 1)
e
(ζ ζ 2 1 ) n t
ζ 2 1 ) n t
c(t)
1
0 t
单调上升过程
2.0 1.8 1.6 1.4 1.2 c(t) 1.0 0.8 0.6 0.4 0.2 0
=0
0.4 0.5 0.6 0.7 0.8
0.1 0.2 0.3
1.0 2.0
1
2
3
4
5
• 在0<<1, 越小,超调量越大,平稳性越差,调节时间ts长; • =0.7,调节时间短,而超调量%<5%,平稳性也好,故称 ζ=0.7为最佳阻尼比。工程希望=0.4~0.8为宜; •在≥1 , 越大,系统响应速度慢,调节时间ts也长。
例题:设角度随动系统如图所示,T=0.1为伺服电机时间常数, 若要求系统的单位阶跃响应无超调,且调节时间ts≤1s,问K应 取多大?此时上升时间等于多少?
Θi(s)
_
K s(Ts 1)
Θo(s)
解:闭环传递函数为
K K K /T s (Ts 1) (s) 2 2 K Ts s K s s / T K / T 1 s (Ts 1)
自动控制原理-第3章
![自动控制原理-第3章](https://img.taocdn.com/s3/m/0a7a62496d85ec3a87c24028915f804d2b1687c1.png)
响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法
第3章-时域分析法lj
![第3章-时域分析法lj](https://img.taocdn.com/s3/m/ccd351be846a561252d380eb6294dd88d1d23d1d.png)
④假如高阶系统中距虚轴最近的极点的实部绝对值仅为其他极 点的1/5或更小,并且附近又没有闭环零点,则可以认为系统的 响应主要由该极点(或共轭复数极点)来决定。
3.5 系统的稳定性分析
3.5.1 系统稳定性的概念和稳定的充分必要条件
所谓稳定性,是指系统受到扰动作用后偏离原来的平衡状态, 在扰动作用消失后,经过一段过度时间能否恢复到原来的平衡 状态或足够准确地回到原来的平衡状态的性能。
特征方程式的根为
要使系统稳定,特征方程式的根必须有负实部。因此二阶系 统稳定的充分必要条件是:
(3.26)
3.5.2 劳斯判据
(1)首先列出系统特征方程式
(2)根据特征方程式列出劳斯数组表 (3)根据劳斯表中第一列各元素的符号,用劳斯判据来判 断系统的稳定性。劳斯判据的内容如下:
①如果劳斯表中第一列的系数均为正值,则其特征 方程式的根都在S的左半平面,相应的系统是稳定
暂态性能
在本章中,时域中评价系统的暂态性能,通常以系 统对单位阶跃输入信号的暂态响应为依据。
图3.5 单位阶跃输入信号下的暂态响应
暂态性能指标(1) 1)延迟时间td :响应曲线第一次达到稳态值的一半所需的时间。 2)上升时间tr :响应曲线从稳态值的10%上升到90%,所需的时间。上升时间越短, 响应速度越快。对于有振荡的系统,单位阶跃响应曲线从零第一次上升到稳态值所 需的时间为上升时间。 3)峰值时间tp :阶跃响应曲线从t=0开始上升到第一个峰值所需要的时间。
(3.6)
图3.5 单位阶跃输入信号下的暂态响应
稳态性能
稳态误差ess :
在图3.5所示单位阶跃响应曲线中,对单位阶跃响应的稳态误差可以用ess来表示。
定义:当时间t趋于无穷时,系统输出响应的期望值与实际值之差,即
线性系统的时域分析法(1)
![线性系统的时域分析法(1)](https://img.taocdn.com/s3/m/014c2b6987c24028905fc318.png)
第三章线性系统的时域分析法●时域分析法在经典控制理论中的地位和作用时域分析法是三大分析方法之一,在时域中研究问题,重点讨论过渡过程的响应形式。
时域分析法的特点:1).直观、精确。
2).比较烦琐。
§3.1 系统时间响应的性能指标1. 典型输入2. 性能指标•稳→基本要求 •准→稳态要求↓ss e :•快→过渡过程要求⎪⎩⎪⎨⎧↓↓⨯∞∞-=sp t h h t h %)()()(%σ§3.2 一阶系统的时域分析设系统结构图如右所示 开环传递函数sK s G =)( 闭环传递函数)1(11111)(T Ts Ts T K s K s K s K s -=+=+=+=+=Φλ :)(1)(时t t r =Ts sTs s T s R s s C 111)1(1)()()(+-=+=Φ=1)(,0)0( 1)(1=∞=-=∴-c c e t c t TTc e T t c t T 1)0( 1)(1='='-依)(t h 特点及s t 定义有:95.01)(1=-=-s t Ts et h05.095.011=-=-s t Te305.0ln 1-==-s t TT t s 3=∴一阶系统特征根1s T=-分布与时域响应的关系:21110 ()().(). ()s C s s R s h t t s s s •==Φ===时11() ()1()at a s a C s h t e s s a s s a•===-+=-+--时例1已知系统结构图如右其中:12.010)(+=s s G 加上H K K ,0环节,使s t 减小为原来的0.1倍,且总放大倍数不变,求H K K ,0解:依题意,要使闭环系统02.00.21.0*=⨯=s t ,且闭环增益=10。
11012.0)101(10 1012.01012.010112.010.)(1)(.(s)0000+++=++=+++=+=Φs K K K K s K s K s K s G K s G K HH H H H令 101011002.01012.00⎪⎪⎩⎪⎪⎨⎧=+==+=H H K K K K T 联立解出⎩⎨⎧==109.00K K H 例2已知某单位反馈系统的单位阶跃响应为at e t h --=1)(求(1).闭环传递函数)(s Φ;(2).单位脉冲响应;(3).开环传递函数。
高阶系统的时域分析
![高阶系统的时域分析](https://img.taocdn.com/s3/m/cfafb8cae009581b6ad9eb0c.png)
5n
n
c( t ) 1 Ai e
i 1
q
si t
Dk e si nk t cos( nk t 1 k2 k )
k 1
rn i 1
m
j
) ( s si ) s s
i
s ( s s i )
二.高阶系统单位阶跃响应的近似分析
C (s) ( s s i ) ( s 2 2 nk s nk )
2 j 1 k 1 q
1 s
r Bk ( s k nk ) C k nk 1 2 k 1 q Ai 2 s i 1 s s i k 1 s 2 2 k nk nk
§3-4 高阶系统的时域分析
一.闭环主导极点的概念
在高阶系统的诸多闭环极点中,把无闭环零点靠近,且其它闭环极点与虚轴的 距离都在该复数极点与虚轴距离的五倍以上,则称其为闭环主导极点。
| ReS3 | 5 S1,2 j d
K (s - z j )
j 1 m
n
s3 s1 s2 Im Re
k
k
由此可见高阶系统的暂态响应是一阶和二阶系统。
暂态响应分量的合成则有如下结论:
(1)各分量衰减的快慢由指数衰减系数 S i 及 k nk 决定。系统的极点在s平面左半部距虚轴愈远,相应的 暂态分量衰减愈快。 (2)系数 Ai 和 Dk 不仅与s平面中的极点位置有关, 并且与零点有关。
Ai 越小,对 c( t ) a.零极点相互靠近,且离虚轴较远, 影响越小;
b.零极点很靠近,对c(t ) 几乎没影响;
c.零极点重合(偶极子), 对 c(t ) 无任何影响;
时域分析法
![时域分析法](https://img.taocdn.com/s3/m/d1747828bcd126fff6050b00.png)
C(t)
(a)外加扰动
C(t) C(t)
(b)稳定
(c)不稳定 注意:仅适用于线性定常系统
3.1.2线性系统稳定的充要条件
稳定的条件
系统初始条件为零时,受到δ( t)的作用,输出 c(t ) 为 单位脉冲响应,这相当于系统在扰动作用下,输出信号偏 离平衡点的问题,当t→∞时,
若 若 若
1 2 1 ε 0
5 6 7 7
7
(6-14)/1= (6-4)/2=1-8 (10-6)/2=2
劳斯表特点
1 右移一位降两阶
2 行列式第一列不动第二列右移
2
3 次对角线减主对角线
4 分母总是上一行第一个元素 5 第一列出现零元素时,用正无 穷小量ε代替。 6 一行可同乘以或同除以某正数
劳斯阵列
设系统的特征方程为 D(s) a0 sn a1sn1 a2 s n2 ... an1s an 0 第一列符号改变的次数等于特征方程正实部根的个数
1 2
sin 2t )
e 2t 2e t sin(2t 45)
设n阶系统表达式为
若全部特征根有负实部,则 b C ( s) b sm +
s m-1 + ...+ b1 s + b0 m-1 Φ( s )lim c (t ) 0m n = = (渐近)稳定 an s + an-1 s n-1 + ...+ a1 s + a0 t R( s )
s5
劳 斯 表
1
2 >0 8
0
0 0 -2
-1
-2
(6-4)/2=1 4-2=0 2s
s4
自动控制原理 第三章 时域分析c1
![自动控制原理 第三章 时域分析c1](https://img.taocdn.com/s3/m/d7c920b4e53a580217fcfe0f.png)
2时 5时
h(t)
其他动态性能指标:
td 0.69T
tr 2.20T
ts 3T (5%误差带)
16 t
3-2 一阶系统的时域分析
自控原理
3.一阶系统单位脉冲响应
当输入信号为理想单位脉冲函数δ (t)时,R(S)=1,输出量的拉氏
变换与传递函数相同,即 C(s) 1 TS 1
t
eT
)
t0
2
S3
2
上述几种典型响应有如下关系:
积分
积分
积分
单位脉冲
单位阶跃
单位斜坡
函数响应
函数响应
函数响应
微分
微分
微分
单位抛物线 函数响应
20
3-2 一阶系统的时域分析
自控原理
例: 设某高阶系统可用下列一阶微分方程近似描述:
T ct ct rt rt
其中, 1 (T ) 0
结论:一阶系统无法跟踪加速度形式的输入信号
19
3-2 一阶系统的时域分析
自控原理
输入信号 输入信号
时域
频域
输出响应
传递函数
(t)
1
1
t
eT
T
(t 0)
1
1(t)
S
t
1e T t 0
1
t
1
t
TS 1
S2
t T Te T t 0
1 t2
1
1
t2
Tt
T
2 (1
2.能熟练运用劳斯稳定性判据判断系统的稳定性
3.正确理解对控制信号和干扰作用的稳态误差定义, 能熟练应用静态误差系数法计算稳态误差。
自动控制原理 第3章时域分析
![自动控制原理 第3章时域分析](https://img.taocdn.com/s3/m/5822e391c281e53a5902ff05.png)
16
1)暂态性能指标 tr=2.2T (按第二种定义) ts=4T (Δ=±2%) 2)稳态性能指标
ess
lim[r(t)
t
c(t)]
0
17
3.2.3 单位脉冲响应
对于单位脉冲输入r(t)=δ(t),R(s)=1,于是
C(s)
1 Ts 1
1 T
s
1 1
T
因此
(3-7)
g(t)
c(t)
1
t
eT
(t 0)
(3-8)
T
18
响应曲线如图3-5所示。该曲线在t=0时等于1/T,正好 与单位阶跃响应在t=0时的变化率相等,这表明单位脉冲响 应是单位阶跃响应的导数,而单位阶跃响应是单位脉冲响
3
3.1 控制系统的时域性能指标
评价一个系统的优劣,总是用一定的性能指标来衡量。
系统的时域性能指标是根据系统的时间响应来定义的。
控制系统的时间响应通常分为两部分:稳态响应和暂
态响应。如果以c(t)表示时间响应,那么其一般形式可写为
c(t)=css(t)+ct(t)
式中:css(t)为稳态响应;ct(t)为暂态响应。
(3-1)
4
稳态响应由稳态性能描述,而暂态响应由暂态性能描 述。因此,系统的性能指标由稳态性能指标和暂态性能指 标两部分组成。
5
3.1.1 暂态性能指标
控制系统常用的输入信号有脉冲函数、阶跃函数、斜 坡函数、抛物线函数以及正弦函数等。通常,系统的暂态 性能指标是根据阶跃响应曲线来定义的,如图3-1所示。
(完整版)《机械工程控制基础》课程教学大纲-2012版
![(完整版)《机械工程控制基础》课程教学大纲-2012版](https://img.taocdn.com/s3/m/77184ccb69eae009581beca4.png)
《机械工程控制基础》课程教学大纲课程名称:机械工程控制基础英文名称:Control Fundamental of Mechanical Engineering课程编码:51510502学时/学分:36/2课程性质:必修课适用专业:机械类各专业先修课程:高等数学,理论力学,电工与电子技术,复变函数与积分变换(可选)一、课程的目的与任务《机械工程控制基础》是机械设计制造及其自动化专业的机械电子工程及相近专业方向的一门技术基础课。
本课程是在高等数学和工程数学(复变函数与积分变换)的知识基础上,结合力学、电学等相关知识,介绍机械工程类专业的重要理论基础之一——工程控制论。
这门学科既是一门广义的系统动力学,又是一种合乎唯物辩证法的思想论和方法论,对启迪与发展人们的思维与智力有很大的作用。
本课程的基本任务是将自动控制理论应用于机械工程实际,基本要求是在阐明机械工程控制论的基本概念、基本知识与基本方法的基础上,使学生学会建立和变换系统的数学模型,掌握控制系统的时间响应分析和频率特性分析方法,并在此基础上具备讨论控制系统的稳定性,以及系统分析和校正、系统辨识等问题的能力。
使学生以辩证方法冲破形而上学的思想方法,推动这一领域的生产与学科向前发展。
在学习本课程之前,学生应当从先修课程中获得动力学分析、电路分析的能力,了解微分方程求解知识和复变函数的概念,初步掌握积分变换及其逆变换的基本方法。
学习本课程之后,学生还应当注意结合其它机械工程学的知识,将控制理论应用到工程实践中去。
二、教学内容及基本要求第一章绪论教学目的和要求:本章首先阐述了机械工程控制基础这门课程的重要意义,然后介绍控制工程的基本思想、基本概念、控制系统的分类和基本要求,使学生了解机械工程控制论的研究对象与任务和系统、模型等知识,深刻理解反馈和反馈控制,接下来对控制理论的发展进行简单介绍。
教学重点和难点:1.系统及其模型2.反馈和反馈控制3.系统的基本要求教学方法与手段:以课堂讲授为主,注意举例和采用启发式教学,配合适当的课堂练习和课外作业。
自动控制原理(第二版)(赵四化)章 (3)
![自动控制原理(第二版)(赵四化)章 (3)](https://img.taocdn.com/s3/m/80dddfa002768e9950e738a6.png)
(s) C(s) 1
R(s) Ts 1
(3-13)
第3章 时域分析法 图3-5 一阶系统的动态结构图
第3章 时域分析法
3.2.1 一阶系统的单位阶跃响应
设输入
R(s) 1 s
则输出量的拉氏变换为
C(s) (s) 1 1 1 1 1
s Ts 1 s s s 1/T
单位阶跃响应为
1t
C(s)
(s)R(s)
s2
n2 2ns
n2
1 s
其中, 由
s2 2 ns n2 0
可求得两个特征根
s1,2 n n 2 1
(3-22)
第3章 时域分析法
1) ξ>1, 过阻尼
ξ>1
时
, 2 1 s1,2=-ξωn±ωn
为两个不相等的负实数根, 即有
C(s)
n2
A1 A2 A3
(s)
C(s) R(s)
s2
n2 2ns
n2
(3-21)
其中, ξ为阻尼比, ωn为无阻尼自然振荡频率, 它们 均为系统参数。
第3章 时域分析法
由式(3-21)可以看出, 二阶系统的动态特性 可以用ξ和ωn这两个参数的形式加以描述。 如果0<ξ<1, 则闭环极点为共轭复数, 并且位于左半s平面, 这时系统 叫做欠阻尼系统, 其瞬态响应是振荡的。 如果ξ=1, 那 么就叫做临界阻尼系统。 而当ξ>1时, 就叫做过阻尼系 统。 临界阻尼系统和过阻尼系统的瞬态响应都不振荡。 如果ξ=0, 那么瞬态响应变为等幅振荡。
此时系统输出响应的拉氏变换为
C(s)
1 Ts 1
1 s2
1 s2
T s
T2 Ts 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j 1
k 1
式中,q+2r=n, q为实数极点的个数;r为共轭复数极点的对数。
部分分式展开,并设0<ζk<1,取拉氏反变换,并整理
q
r
h(t) A0
Ajesjt
B e kkt k
c os ( k
1
2 k
)t
j 1
k 1
r k 1
Ck
k
Bk kk
3、 调节时间的计算
ts
1
n
ln
2
n
si
m s1 zi
i2 n
i1 m
s1 si
zi
i2
i 1
结论:
(1)闭环零点越接近虚轴,峰值时间越小,超调量 和调节时间越大;
(2)闭环非主导极点的作用是增大峰值时间,但可 减小系统的超调量和调节时间。
高阶系统的增益常常调整到使系统具有一对闭环共轭 主导极点,这时可以用二阶系统的动态性能指标来估 算高阶系统的动态性能。
设单位反馈高阶系统具有一对共轭复数闭环主导极点: 系统单位阶跃响应的近似表达式:
s1,2 s jd , 0 1
C(s) M (s) 1 N(s) s
1
2 k
e kk t
s in( k
表明
1
2 k
)t,
t
0
(1)响应由一阶系统和二阶系统的时间响应函数项组成。当所 有闭环极点都位于左半s开平面时,系统是稳定的。
(2)零极点对系统性能的影响。
三、闭环主导极点
闭环主导极点:在所有的闭环极点中,距虚轴最近、 周围没有闭环零点、而又远离其它闭环极点的极点。 它所对应的响应分量在系统的响应过程中起主导作用。
四、高阶系统的动态性能估算
(非主导极点实部的模比主导极点实部的模大三倍以上) 1、 峰值时间的计算
令 h´(t)=0,得
t p
1
d
m
(s1
i 1
zi )
n
(s1
i3
si )
结论:
(1)闭环零点越接近虚轴,峰值时间越小,系统响应速度越快; (2)闭环非主导极点的作用是增大峰值时间,使系统响应速度变缓; (3)若闭环零、极点彼此接近,则它们对系统响应速度的影响相互削弱; (4)若系统不存在闭环零点和非主导极点,则tp=π/ωd。
2、 超调量的计算
n
m
si
s1 zi
s % i3 n
i1 m
e stp 100%
s1 si
zi
i3
i 1
结论: (1)闭环零点会减小系统阻尼。 (2)闭环非主导极点会增大系统阻尼。 (3)若系统不存在闭环零点和非主导极点,则
s % e / 1 2 100%
1 M (s) 1 1 M (s) 1 1
s
D(s)
s
s
s1
s s1 来自D(s)s
s
s2
s s2
c(t)
1
2
M (s1 ) s1D(s1 )
e st
c os d
t
M (s1 ) s1D(s1 )
, t
0
上式中的振幅与相位已经考虑了闭环零点与非主导极点对 响应过程的影响
(s si )
i 1
式中,K b0 / a0;zi为M (s) 0的根,称为闭环零点。
si为D(s) 0的根,称为闭环极点。
当输入为单位阶跃函数时,
m
C(s)
q
K (s zi )
i 1
1 A0 q
Aj
r
Bk s Ck
(s s j ) r (s2 2 kk s k2 ) s s j1 s s j k1 s2 2 kk s k2
二、高阶系统的单位阶跃响应
其闭环传递函数
(s) C(s)
G(s)
R(s) 1 G(s)H (s)
M (s) D(s)
b0s m b1s m1 a0s n a1s n1
bm1s bm an1s an
m
K (s zi )
i 1 n
3-4 高阶系统的时域分析
工程上的大部分系统是高阶系统,他们的动态性能 指标很难解析确定(但数值确定并不难),因此,在经 典控制理论的发展阶段,通过引入闭环主导极点的概念, 导出若干工程实用的动态性能指标估算公式。
一、三阶系统的单位阶跃响应
二、高阶系统的单位阶跃响应
三、闭环主导极点
四、高阶系统的动态性能估算
取拉氏反变换,(且令b= s0/ζωn,)并整理得
h(t ) = 1 -
1
e- sot
bz 2(b - 2) + 1
-
e- zwnt bz 2(b - 2)
+
1
轾 犏 犏 犏 臌bz 2(b
-
2) cos wn
1-
z 2t +
bz(z 2(b 1-
2) + 1)
z2
sin wn
1- z 2t
(s)
1- z2t]
由于
b 2 (b 2) 1 2 (b 1)2 (1 2 ) 0, b S0 / wn
表明
(1)实数极点ss0 可使单位阶跃响应的超调量下降,并使调节时间增加。
(2)当系统阻尼比ζ不变时,随着b 值的下降,超调量不断下降、而峰值时间、 上升时间、和调节时间则不断加长。在b<1时,三阶系统将表现出明显的过阻 尼特性。
一、三阶系统的单位阶跃响应
三阶系统包括一对共扼极点和一个实极点
设闭环传递函数
(s) C(s)
2 n
s0
R(s)
(s
s0 )(s2
2 n s
2 n
)
当输入为单位阶跃函数时,
式中,s0>0,ζ<1
C (s) = 1 + A +
B
+
C
s s + s0 s + xwn - j wn 1 - x2 s + xwn + j wn 1 - x2
C(s) R(s)
(s
n2s0 s0 )(s2 2ns
n2 )
h(t ) = 1 -
1
e- sot
bz 2(b - 2) + 1
-
e- zwnt
[bz 2(b -
bz 2(b - 2) + 1
2) cos wn
1- z2t
bz(z 2(b - 2) + 1)
+
1- z2
sin wn