人教版初中一年级数学下册知识点大全
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中一年级数学下册知识点大全
相交线与平行线
5.1.1相交线
1、如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。
2、如果两个角有一个公共边,并且它们的另一边互为反向延长线,那么这两个角互为邻补角。性质:邻补角互补。(两条直线相交有4对邻补角。)
3、如果两个角的顶点相同,并且两边互为反向延长线,那么这两个角互为对顶角。性质:对顶角相等。(两条直线相交,有2对对顶角。)
5.1.2垂线
4、当两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
5、由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。
(要找垂线段,先把点来看。过点画垂线,点足垂线段。)
6、垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足。
7、垂线画法:①放:放直尺,直尺的一边要与已知直线重合;
②靠:靠三角板,把三角板的一直角边靠在直尺上;
③移:移动三角板到已知点;
④画线:沿着三角板的另一直角边画出垂线.
8、垂线性质1:过一点有且只有一条直线与已知直线垂直。
9、过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.
10、连接直线外一点与直线上各点的所有线段中,垂线段最短。(垂线段最短.)
11、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
5.1.3同位角、同旁内角、内错角
12、同位角:如果两个角都在被截的两条直线的同方向,并且都在截线的同侧,即它们的位置相同,这样的一对角叫做同位角。形如字母“F”。
13、内错角:如果两个角分别在被截的两条直线之间(内),并且分别在截线的两侧(错),这样的一对角叫做内错角。形如字母“Z”。
14、同旁内角:如果两个角都在被截直线之间(内),并且都在截线的同侧(同旁),这样的一对角叫做同旁内角。形如字母“U”。
5.2.1平行线
15、在同一平面内,不相交的两条直线叫做平行线,记作:a∥b。
16、平行线画法:①落;②靠;③移;④画。(工具:三角板、直尺。)
17、在同一平面内,两条直线的位置关系:
①相交(垂直是相交的一种特殊情形);②平行。
18、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
19、推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。5.2.2平行线的判定
20、判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。
21、判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。
22、判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。
23、在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
5.3.1平行线的性质
24、性质 1 两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
25、性质 2 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
26、性质 3 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
27、平行线的性质与平行线的判定有什么区别?
判定:已知角的关系得平行的关系。(证平行,用判定。)
性质:已知平行的关系得角的关系。(知平行,用性质。)
28、同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离。
5.3.2命题、定理
29、判断一件事情的语句叫做命题。命题由题设和结论两部分组成。题设是已知事项,结论是由已知事项推出的事项。
30、命题常写成“如果……,那么……”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
31、如果命题中题设成立,那么结论一定成立的命题叫做真命题。(正确的命题)
32、命题中题设成立时,结论不一定成立的命题叫做假命题。(错误的命题)
33、经过推理证实的真命题叫做定理。
5.4平移
34、在同一平面内,将一个图形沿某一直线方向移动一定距离,这样的图形变换叫做平移。
35、平移的特征(性质):
①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。
平面直角坐标系
6.1.1有序数对
36、有顺序的两个数a与b组成的数对,叫做有序数对。
37、数轴有水平的(左负右正)和垂直的(上正下负)。
38、有序数对一般看数:先看上下后看左右。
6.1.2平面直角坐标系
39、平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
40、平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。
41、原点的坐标是(0,0);
纵坐标相同的点的连线平行于x轴;
横坐标相同的点的连线平行于y轴;
x轴上的点的纵坐标为0,表示为(x,0);
y轴上的点的横坐标为0,表示为(0,y)。
42、建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。
43、几个象限内点的特点:
第一象限(+,+);第二象限(—,+);第三象限(—,—);第四象限(+,—)。
44、(x,y)关于原点对称的点是(—x,—y);
(x,y)关于x轴对称的点是(x,—y);
(x,y)关于y轴对称的点是(—x,y)。
45、点到两轴的距离:点P(x,y)到x轴的距离是︱y︳;
点P(x,y)到y轴的距离是︱x︳。
46、在第一、三象限角平分线上的点的坐标是(m,m);
在第二、四象限叫平分线上的点的坐标是(m,—m)。
6.2.1用坐标表示地理位置
47、利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:
⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
6.2.2用坐标表示平移
48、在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。
(左右平移,纵不变,横左减右加;上下平移,横不变,纵上加下减。)
49、在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。