乘波体气动外形设计与计算_杨海江
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中图分类号 V211.3 论文编号 1028701 08-0061 学科分类号 080103
硕士学位论文 乘波体气动外形设计与计算
研究生姓名杨海江
学科、专业流体力学
研究方向计算流体力学
指导教师王同光教授
南京航空航天大学
研究生院 航空宇航学院
二ОО八年三月
Nanjing University of Aeronautics and Astronautics
The Graduate School
College of Aerospace Engineering Waverider Aerodynamic Configuration Design and Aerodynamic Performance Calculation
A Thesis in
Mechanics
by
Yang Haijiang
Advised by
Professor Wang Tongguang
Submitted in Partial Fulfillment
of the Requirements
for the Degree of
Master of Engineering
March , 2008
承诺书
本人郑重声明:所呈交的学位论文,是本人在导师指导下,独立进行研究工作所取得的成果。尽我所知,除文中已经注明引用的内容外,本学位论文的研究成果不包含任何他人享有著作权的内容。对本论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确方式标明。
本人授权南京航空航天大学可以有权保留送交论文的复印件,允许论文被查阅和借阅,可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或其他复制手段保存论文。
(保密的学位论文在解密后适用本承诺书)
作者签名:
日 期:
摘 要
乘波体是一种前缘都具有附体激波的超音速或高超音速飞行器。由于激波附着于乘波体的前缘,所以可以防止下表面的高压气流“漏到”上表面,因此与传统的超音速或高超音速飞行器相比,这个特点使乘波体飞行器具有很高的升阻比。
本文主要介绍了根据锥形流场生成乘波体的方法,并由此方法生成乘波体外形,研究了锥导乘波体的气动特性。并且把粘性优化引入到乘波体的优化工作中,应用单纯型优化方法,以最大升阻比为优化目标,同时加入了合适的约束条件,开展优化工作。得到了不同马赫数下激波角变化时的最大升阻比的乘波外形。对优化的结果进行了分析,讨论了影响乘波体升阻比的因素。结果表明,对于升阻比最大的粘性优化乘波体,存在最优圆锥激波角使得源自该基本流场的乘波体升阻比最大;摩阻和波阻处于同一量级;体积率、细长比随着基本流场激波角的增大而增大;随着马赫数的增大,最优激波角是减小的,并且得到的最大升阻比也是减小的。
β=°时优化的乘波体进行了三维流场的数值模拟,最后,对6
Ma=,12
数值模拟的结果与设计结果比较吻合,证明了本文的设计程序是比较可信的,可以得到满意的结果。
关键词:乘波体,气动力,锥形流场,升阻比,优化设计
- i -
Abstract
A waverider is a hypersonic or supersonic vehicle with a shock wave attached along its leading edge. This attached shock wave limits leakage from the lower flow region to the upper surface, thus allowing the potential for a high lift/drag ratio relative to conventional designs.
The design method and basic aerodynamic characteristics are studied for cone-derived waverider in this paper. The detailed viscous effects are included within the optimization process using the reference temperature method. A non-linear simplex method is used to obtain the waverider configuration for the maximum lift/drag ratio at different Mach numbers. The results show that, for the optimized design waverider, there is an optimum shock wave angle at which the lift/drag ratio is maximum for the waverider derived from the conical flow, while the skin friction drag and wave drag are the same order of magnitude. It is also concluded that the volumetric efficiency and slenderness increase with the shock wave angle increase, while the optimum shock wave angle and maximum lift/drag ratio decrease with Mach number increase.
Finally, three-dimensional numerical simulations are performed around waverider configurations to verify the design process implemented in this paper. These validation results show good agreement with those obtained during the design/optimization process.
Key words: waverider, aerodynamics, cone flow, lift/drag ratio, optimized design
- ii -