实验四区间估计与假设检验

合集下载

区间估计和假设检验

区间估计和假设检验
参数估计
在回归分析中,区间估计可以用来估计未知参数的取值范围,从 而更好地理解参数对结果的影响。
假设检验的应用场景
检验假设是否成立
在科学研究或实际应用中,我们经常需要通过假设检验来检验某个 假设是否成立,以做出决策或得出结论。
诊断准确性评估
在医学诊断中,假设检验常用于评估诊断方法的准确性,例如比较 新方法与金标准之间的差异。
非参数检验的优点是不受总体分布限制,适用于更广泛的情况。常见的非参数检验包括秩和检验、符 号检验等。
假设检验的步骤
选择合适的统计方法
根据假设和数据类型选择合适 的统计方法进行检验。
确定临界值
根据统计量的分布情况,确定 临界值。
提出假设
根据研究问题和数据情况,提 出一个或多个假设。
计算统计量
根据选择的统计方法计算相应 的统计量。
区间估计和假设检验
目录
• 区间估计 • 假设检验 • 区间估计与假设检验的联系 • 应用场景 • 案例分析
01
区间估计
定义
区间估计
基于样本数据,对未知参数或总体分布特征 给出可能的取值范围。
参数估计
基于样本数据,对总体参数进行估计,如均 值、方差等。
非参数估计
基于样本数据,对总体分布特征进行估计, 如分位数、中位数等。
结果具有互补性
03
区间估计和假设检验的结果可以相互补充,帮助我们更全面地
了解总体的情况。
区别
1 2 3
目的不同
区间估计的目的是估计一个参数的取值范围,而 假设检验的目的是检验一个关于总体参数的假设 是否成立。
侧重点不同
区间估计更侧重于估计总体参数的可能取值范围 ,而假设检验更侧重于对总体参数的假设进行接 受或拒绝的决策。

实验报告4——SAS区间估计与假设检验

实验报告4——SAS区间估计与假设检验

【小结】
本次实验为区间估计与假设检验,主要是首先用分布拟合图、QQ 图、分布检验等方法 判断总体分布是否为正态分布。然后利用 SAS 软件中的 INSIGHT 模块和“分析家”功能以 及编程的方法,均可以在不同的置信水平下求出总体参数的置信区间,在不同的检验(显著) 水平下对总体的参数和分布特性进行检验。
表 4-6 学生成绩
81 68 71 85 57 85 92 74 61 80 68 77 75 57 46 80 69 63 67 92 88 75 89 75 59 72 85 77 100 73 58 69 68 68 59 89 70 72 89 94 78 45 92 93 69 70 99 79 80 69 82 67 74 73 72 70 83 70 76 60
input data group$ @@;
cards;
31 j 34 j 29 j 32 j 35 j 38 j 34 j 30 j 29 j 32 j
31 j 26 j
26 y 24 y 28 y 29 y 30 y 29 y 32 y 26 y 31 y 29 y
32 y 28 y ;
run;
表 4-7 装配时间(单位:分钟)
甲法: 31
34
29
32
35
38
34
30
29
32
31
26
乙法: 26
24
28
29
30
29
32
26
31
29
32
28
设两总体为正态总体,且方差相同。问两种方法的装配时间有无显著不同( = 0.05)? 生成数据集代码(甲组为 j,乙组为 y): data zy4_3;

实验四区间估计与假设检验

实验四区间估计与假设检验

实验4 区间估计与假设检验利用样本对总体进行统计推断,主要有两类问题:一类是估计问题,另一类是检验问题。

参数估计是根据样本的统计量来对总体的参数进行估计,假设检验则是利用样本的统计量来检验事先对总体参数或分布特性所作的假设是否正确。

利用SAS软件中的INSIGHT模块和“分析家”功能以及编程的方法,均可以在不同的置信水平下求出总体参数的置信区间,在不同的检验(显著)水平下对总体的参数和分布特性进行检验。

在对总体参数作区间估计和假设检验之前,常常需要判断总体分布是否为正态分布。

检验数据是否来自正态分布总体,应用中常用分布拟合图、QQ图、分布检验等方法。

4.1 实验目的掌握使用SAS对总体参数进行区间估计与假设检验方法,掌握使用SAS对总体分布情况进行判断以及正态性检验的方法。

4.2 实验内容一、用INSIGHT对总体参数进行区间估计与假设检验二、用“分析家”对总体参数进行区间估计与假设检验三、编程对总体参数进行区间估计与假设检验四、在INSIGHT和“分析家”模块中研究分布并使用UNIV ARIATE过程对总体分布进行正态性检验4.3 实验指导一、用INSIGHT对总体参数进行区间估计与假设检验【实验4-1】已知某种灯泡的寿命服从正态分布,现从一批灯泡中抽取16只,测得其寿命如表4-1(sy4_1.xls)所示:表5-1 某种灯泡的寿命(单位:小时)1510 1450 1480 1460 1520 1480 1490 14601480 1510 1530 1470 1500 1520 1510 1470求该灯泡平均使用寿命90%、95%及99%的置信区间,并指出置信区间长度与置信水平的关系。

假设上述数据已存放于数据集Mylib.sy4_1中,如图4-1所示,变量sm表示灯泡寿命。

实验步骤如下:(1) 启动INSIGHT模块,并打开数据集Mylib.sy4_1。

(2) 选择菜单“Analyze(分析)”→“Distribution(Y)(分布)”。

区间估计和假设检验

区间估计和假设检验

区间估计和假设检验 正态总体的均值、方差的区间估计
输出结果如下: LCHI UCHI 70687.19 406071.51 即方差的置信区间为:[70687.19, 406071.51]
区间估计和假设检验
假设检验是从样本特征出发去判断关于总体分布的某种“看法”是否成立。 一般步骤为 :
例2 检验某种型号玻璃纸的横向廷伸率。测得的数据如下
横向廷伸率% 35.5 37.5 39.5 41.5 43.5 45.5 47.5 49.5 51.5 53.5 55.5 57.5 59.5 61.5 63.5
频数 7 8 11 9 9 12 17 14 5 3 2 0 2 0 1
*
区间估计和假设检验 2 均值、方差的假设检验
两正态总体的参数的假设检验
*
区间估计和假设检验 2 均值、方差的假设检验
假设检验与区间估计的关系
*
区间估计和假设检验 2 均值、方差的假设检验
例5
设某厂一车床生产的钮扣,其直径据经验服从正态 , 。为了判断其均值的置信区间,现抽取容量n=100的子样,其子样均值=26.56,请检验假设是否成立:
区间估计和假设检验 正态总体的均值、方差的区间估计
区间估计和假设检验 1 正态总体的均值、方差的区间估计
例4 SAS程序为 data val2; input weight@@; cards; 3100 2520 3000 3000 3600 3160 3560 3320 2880 2600 3400 2540 run; proc means data=val2; output out=tval1 css=ss n=n; Run; data tval2; set tval1; df=n-1;xlchi=cinv(0.025,df);xuchi=cinv(0.975,df); lchi=ss/xuchi;uchi=ss/xlchi; Run; proc print data=tval2;var lchi uchi; run;

简述假设检验与区间估计之间的关系 统计学原理

简述假设检验与区间估计之间的关系 统计学原理

简述假设检验与区间估计之间的关系统计学原理一、简介假设检验与区间估计是统计学中两个重要的概念,它们都是基于样本数据对总体参数进行推断的方法。

假设检验主要用于判断总体参数是否符合某种特定假设,而区间估计则用于对总体参数进行范围性的估计。

本文将从统计学原理角度出发,详细介绍假设检验与区间估计之间的关系。

二、假设检验1. 假设检验的基本思想在进行假设检验时,我们首先要提出一个关于总体参数的假设(称为原假设),然后根据样本数据来判断这个假设是否成立。

具体来说,我们会根据样本数据计算出一个统计量(如t值、F值等),然后通过比较这个统计量与某个临界值(也称为拒绝域)来决定是否拒绝原假设。

2. 假设检验中的错误类型在进行假设检验时,有可能会犯两种错误:一种是将一个正确的原假设错误地拒绝了(称为第一类错误),另一种是将一个错误的原假设错误地接受了(称为第二类错误)。

通常情况下,我们会将第一类错误的概率控制在一个较小的水平(如0.05或0.01),这个水平被称为显著性水平。

3. 假设检验的步骤进行假设检验时,通常需要按照以下步骤进行:(1)提出原假设和备择假设;(2)选择适当的检验统计量,并计算出样本数据所对应的值;(3)确定显著性水平,并找到相应的拒绝域;(4)比较样本统计量与拒绝域,得出结论。

三、区间估计1. 区间估计的基本思想在进行区间估计时,我们会根据样本数据来构建一个区间,这个区间包含了总体参数真值的可能范围。

具体来说,我们会根据样本数据计算出一个点估计量(如样本均值、比例等),然后根据中心极限定理和大数定律等原理来构建置信区间。

2. 区间估计中的置信度在进行区间估计时,我们通常会给出一个置信度,表示该区间包含总体参数真值的概率。

例如,如果我们给出了一个95%置信度,则意味着在大量重复实验中,有95%的置信区间都会包含总体参数真值。

3. 区间估计的步骤进行区间估计时,通常需要按照以下步骤进行:(1)选择适当的点估计量,并计算出样本数据所对应的值;(2)确定置信度,并找到相应的置信区间;(3)解释置信区间的含义,得出结论。

区间估计与假设检验的联系与区别讲义资料

区间估计与假设检验的联系与区别讲义资料

区间估计与假设检验的联系与区别讲义资料
区间估计与假设检验是统计推断的两种常见方法。

它们虽然都属于推断统计,但也有明显的不同之处。

区间估计的主要目的是估计总体参数的值,也可以称作参数估计。

根据样本信息,我们可以得出一个可能的参数值范围,也就是置信区间,从而得到一个可靠的估计区间。

估计是不断变化的,每一次统计分析给出的参数估计值都可能有所变化,从而慢慢趋近真实值。

假设检验即“判断”,是统计学中比较常用的检验方法,目的是确定两个总体之间的差异是由随机因素造成的,还是由特定的因素(如环境因素)造成的。

假设检验涉及两个立场:备择假设和原假设。

假设检验的结果由抽样分布决定,不同的抽样分布对应不同的结论,比如有抽样分布下假设检验结果可能是拒绝备择假设,也可能是接受备择假设。

从概念上讲,区间估计技术计算的是一个参数的值的估计,而假设检验是用于检查参数的方法,它只检验两个总体是否具有显著的性质差异,而不会真正测量它们的差异。

总的来说,区间估计通过单组数据范围尽可能准确地估计参数的取值范围,而假设检验则是针对任何特定统计主题,利用数据样本来检验其是否与假设相符。

两者都具有自己的优点和不足,可以结合使用来为抽样荟萃而得出结论,从而更准确地了解样本的真实情况。

区间估计与假设检验的联系与区别

区间估计与假设检验的联系与区别
区间估计与假设检验的联系都以抽样分布为理论依据建立在概率论基础之上的推断都具有一定的可信程度和风二者可相互转换区间估计问题可以转换成假设问题假设问题也可以转换成区间估计问题
区间估计与假设检验 的联系与区别
11406
a
1
区间估计
参数估计:指的是用样本中的数据估计总体分布 的某个或某几个参数
参数估计的方法:点估计和区间估计。
点估计:用估计量的某个取值直接作为总体参数 的估计值。点估计的缺陷是没法给出估计的可靠 性,也没法说出点估计值与总体参数真实值接近 的程度。
区间估计:在点估计的基础上给出总体参数估计 的一个估计区间,该区间通常是由样本统计量加 减估计误差得到的。在区间估计中,由样本估计 量构造出的总体参数在一定置信水平下的估计区 间称为置信区间。
主要区别: a、参数估计是以样本资料估计总体参数的真 值,假设检验是以样本资料检验对总体参数 的先前假设是否成立; b、区间估计求得的是求以样本估计值为中心 的双侧置信区间,假设检验既有双侧检验, 也有单侧检验; c、区间估计立足于大概率,假设检验立足于 小概率。
a
6
拒绝域。 4.比较并作出统计推断。
a
4
区间估计与假设检验的联系
主要联系: a、都是根据样本信息推断总体参数; b、都以抽样分布为理论依据,建立在概率 论基础之上的推断,都具有一定的可信程 度和风险; c、二者可相互转换,区间估计问题可以转 换成假设问题,假设问的区别
a
2
区间估计
总体均值的区间估计 (1)大样本的估计方法:总体方差已知,用z
分布。 (2)小样本(样本数小于30)的估计方法:总
体方差未知 , t分布。 总体比率的区间估计 z分布 总体方差的区间估计 χ^2分布

简述假设检验与区间估计之间的关系 统计学原理

简述假设检验与区间估计之间的关系 统计学原理

假设检验与区间估计的关系假设检验和区间估计是统计学中两个重要的概念和方法。

它们在数据分析和推断中经常被使用,并且有密切的关联。

假设检验假设检验是统计学中一种通过样本数据对总体参数进行推断的方法。

它的基本思想是,我们根据样本数据得到的统计量,与我们对总体参数的假设进行比较,从而判断这个假设是否合理。

在假设检验中,我们通常会提出一个原假设(null hypothesis)和一个备择假设(alternative hypothesis)。

原假设是我们要进行推断的对象,备择假设则是原假设不成立时所代表的情况。

然后,我们根据样本数据计算得到一个统计量,并且利用该统计量对原假设进行检验。

这个统计量通常会服从某种已知或近似已知的概率分布。

最后,根据统计量在概率分布中所处位置的概率来决定是否拒绝原假设。

如果这个概率非常小(小于显著性水平),则我们有充分的证据拒绝原假设;反之,如果这个概率较大,则我们没有充分的证据拒绝原假设。

总结一下,假设检验的步骤如下:1.提出原假设和备择假设;2.根据样本数据计算得到一个统计量;3.假设这个统计量服从某种概率分布;4.利用概率分布来计算统计量在概率分布中所处位置的概率;5.根据这个概率来决定是否拒绝原假设。

区间估计区间估计是统计学中一种通过样本数据对总体参数进行估计的方法。

它的基本思想是,我们根据样本数据得到的统计量,以及该统计量的抽样分布特性,构建一个区间,这个区间可以包含真实总体参数的真值。

在区间估计中,我们通常会选择一个置信水平(confidence level),表示我们对该区间包含真实总体参数的程度的置信程度。

常用的置信水平有95%和99%。

然后,我们根据样本数据计算得到一个统计量,并且利用该统计量和抽样分布特性来构建一个置信区间。

这个置信区间具有以下特点:如果我们重复使用相同方法对不同样本进行估计,那么约有95%(或99%)的置信区间会包含真实总体参数的真值。

最后,我们根据置信区间来进行参数估计。

医学课件第7部分统计假设检验和区间估计

医学课件第7部分统计假设检验和区间估计

拒绝条件为|Z|> z1-α/2,其中,
( Z1 2
)
1
2
.
P(|Z|>z1-α/2)=α
Z检验 α/2
φ(x)
α/2
- z1-α/2
z1-α/2
X
否定域 接受域 否定域
双侧统计检验
例:用精确方法测量某化工厂排放的气体中有害气体含量
服从正态分布N(23,22),现用一简便方法测量6次得一组数据 23,21,19,24,18,18(单位:十万分之一),若用简便方法测得有害气体含量 的方差不变,问用该方法测得有害气体含量的均值是否有系统偏差?
λ1
λ2
X
2
或 2
2 1
(n
1)
2
否定域 接受域 否定域
例:在正常的生产条件下, 某产品的测试指标
总体X~N(μ0,σ02),其中σ0=0.23.后来改变生产工艺,出了新产 品,假设新产品的测试指标总体仍为X,且X~N(μ,σ2). 从新产 品中随机地抽取10件, 测得样本值为x1,x2,…,x10,计算得到 样本标准差S=0.33. 试在检验水平α=0.05的情况下检验: 方 差σ2有没有显著变化?
:
2
2 0
0.232
P( Z >z1-α)≤α
(z1 ) 1
φ(x)
α
接受域
z1-α
X
否定域
单侧(右侧)统计检验
原假设的确定一般应遵循以下原则 要把等号放在原假设里.
设总体X~N(μ,σ2), X1,X2,…,Xn 为一组样本, ② H0:μ≤μ0(已知); H1:μ>μ0
1) 提出原假设和备择假设: H0:μ≤μ0; H1:μ>μ0,

简述假设检验与区间估计之间的关系统计学原理

简述假设检验与区间估计之间的关系统计学原理

简述假设检验与区间估计之间的关系统计学原理假设检验与区间估计是统计学中两个重要的概念和方法,它们都是用于推断总体参数的。

假设检验是一种通过利用样本信息来判断总体参数的一个或一组特定值是否有效或可接受的方法。

在假设检验中,我们首先设立一个虚无假设(null hypothesis)H0,表示总体参数的一些值或总体参数之间的关系成立;然后通过收集样本数据,计算样本的统计量,然后与建立在虚无假设下的分布进行比较,从而得出对虚无假设的结论。

假设检验的结果可以分为接受虚无假设,拒绝虚无假设两种情况。

区间估计是一种通过利用样本信息来估计总体参数的取值范围的方法。

在区间估计中,我们使用样本数据计算样本的统计量,并根据统计量的抽样分布来构建一个置信区间。

置信区间表示总体参数在一些置信水平下的估计范围,置信水平通常取95%或90%等。

在这个范围内,我们可以合理地认为总体参数落在其中。

区间估计进一步提供了总体参数的不确定性程度。

此外,假设检验与区间估计之间还存在一种互补关系。

在假设检验中,我们可以根据检验的结果拒绝或接受虚无假设,从而判断总体参数是否落在一些给定的取值范围内,这可以视为一种特殊的区间估计。

而在区间估计中,我们利用样本数据估计总体参数的取值范围,这可以视为一种特殊的假设检验,即总体参数的真值是否落在估计的区间内。

综上所述,假设检验与区间估计是统计学中两个重要的概念和方法,它们都是推断总体参数的方法。

假设检验通过对总体参数的一个或一组特定值进行判断来推断,而区间估计通过构建置信区间来估计总体参数的取值范围。

两者在原理和方法上有相似之处,可以互相补充和解释。

在实际应用中,我们可以根据具体的问题选择使用假设检验还是区间估计,或者两者结合应用,从而得出更准确和可靠的推断结果。

区间估计和假设检验

区间估计和假设检验

说明这个区间估计的可靠性为95%.
对于同一总体和同一抽样规模来说
①所给区间的大小与做出这种估计所具有的把握性形
成正比.
② 区间大小所体现的是估计的精确性,区间越大,精确
性程度越低,区间越小精确性越高,二者成反比.
精选可编辑ppt
3
③ 从精确性出发,要求所估计的区间越 小越好,从把握性出发,要求所估计的区间越大 越好,因此人们总是需要在这二者之间进行平 衡和选择.
Z(0.05/2)=1.96
精选可编辑ppt
16
然后根据样本数计算统计值:
公式为:
Z= X—μ = 220—210 = 6.67
S/√n
15/√100
由于Z=6.67>Z (0.05/2) =1.96 所以.拒绝虚无假设,接受研究假设,即
从总体上说,该单位职工月平均奖金与上月 相比有变化.
精选可编辑ppt
P≤
0 .1 0 0 .0 5 0 .0 2 0 .0 1
│ Z│ ≥
一端
二端
1 .2 9
1 .6 5
1 .6 5
1 .9 6
2 .0 6
2 .3 3
2 .3 3
2 .5 8
精选可编辑ppt
7
3.总体百分数的区间估计
总体百分数的区间估计公式为:
P±Z(1-α)
P(1—p) n
这里,P为样本的百分比 。 例题:
为了验证这一假设是否可靠,我们抽取100 人作调查,结果得出月平均收入为220元,标准 差位15元.
显然,样本的结果与总体 结果之间出现了 误差,这个误差是由于我们假设错误引起的,还 是由于抽样误差引起的呢?
如果是抽样误差引起的,我们就应该承认

区间估计及假设检验算法实现方法详解

区间估计及假设检验算法实现方法详解

区间估计及假设检验算法实现方法详解随着数学、统计学等学科的发展,计算机技术在数学、统计学中扮演着越来越重要的角色。

在实际应用中,人们往往需要对各种数据进行分析处理以满足不同的需求,如何快速准确地进行数据分析,是一个非常重要的问题。

其中,区间估计和假设检验是数据分析中常用的两种方法。

本文将详细介绍这两种方法的实现方式。

一、区间估计区间估计是以样本统计量为基础,通过分析样本的信息来推断总体参数的取值范围,同时限定一定程度的误差。

通常,我们通过样本估计总体的平均数、标准差等参数,并对其进行区间估计。

常见的区间估计有置信区间、预测区间等。

1. 置信区间置信区间是指在给定的置信水平下,估计总体参数的取值范围。

在实际中,一个置信水平通常取95%或99%,即我们希望在95%或99%的数据中,总体参数的真实值可以被估计出来。

例如我们要估计一个总体的均值,使用样本均值计算出来一个估计值,并使用标准误和置信系数得到置信区间,那么这个置信区间的含义就是,我们认为有95%的置信度,总体均值在这个置信区间之内。

2. 预测区间预测区间是指在给定的置信水平下,预测一个新的数据值的取值范围。

通常,我们需要根据给定的样本数据来估计总体参数,并通过置信水平和误差限制得到一个预测区间。

例如,我们要预测未来一家公司的利润,使用以前几年公司利润值的样本数据,得到一组样本均值、标准误和置信系数等参数,根据置信系数和置信区间计算得到预测区间,那么这个预测区间的含义就是,在一定置信水平下,公司未来的利润值会在这个预测区间之内。

在实际进行区间估计的过程中,通常会使用计算机进行计算。

例如,在R语言中,我们可以使用以下代码实现置信区间的计算:```# 假设有一个样本数据data# 想要计算一个均值的置信区间result <- t.test(data, conf.level = 0.95)# 得到result$conf.int即为置信区间```我们可以看到,R语言中的t.test函数就可以方便地实现置信区间的计算,而不需要手动进行计算。

4区间估计与假设检验

4区间估计与假设检验

例1.
设X1,
X2,
·
·
·
,
Xn是来自正态总体N
(
µ,
σ2)的简单随机样
本,其中σ2已知。试求未知参数µ的置信水平为1 − α的置信区间。
• • • • • • • • First Prev Next Last Go Back Full Screen Close Quit
例1.
设X1,
X2,
·

·
例1.
设X1,
X2,
·
·
·
,
Xn是来自正态总体N
(
µ,
σ2)的简单随机样
本,其中σ2已知。试求未知参数µ的置信水平为1 − α的置信区间。
【枢轴量法】
(1)找一个与待估参数θ有关的统计量T = T (X1, X2, · · · , Xn), 一般是θ的点估计。(如上例中的X )
(2)构造枢轴量S (T, θ),即T 和θ的函数,要求S (T, θ)的分布F 已 知,且F 与θ无关。
§1.区间估计
一 区间估计的基本概念 1. 两个要求: (1)P {θˆ1 ≤ θ ≤ θˆ2}尽可能大 (2)估计的精度尽可能高,如区间长度θˆ2 − θˆ1尽可能小 2. Neyman原则
• • • • • • • • First Prev Next Last Go Back Full Screen Close Quit
试确解定:总已体知均X值µ∼的N置(信µ, 0水.5平2),为且90σ%的=置0.信5,区故间µ。的置信水平为1 − α的
• • • • • • • • First Prev Next Last Go Back Full Screen Close Quit

统计中的区间估计与假设检验

统计中的区间估计与假设检验

统计中的区间估计与假设检验统计学是一门应用广泛的学科,其中的区间估计与假设检验是统计学中常用的两种方法。

这两种方法在研究和实践中被广泛应用,用于推断总体参数、比较样本之间的差异以及验证科学假设的有效性。

本文将介绍统计中的区间估计与假设检验的概念、原理以及应用。

一、区间估计区间估计是基于样本数据推断总体参数的取值范围。

在统计学中,常常无法获得整个总体的完整数据,而只能通过抽取部分样本数据,利用样本数据来推断总体的特征。

区间估计给出了参数估计的下限和上限,以一定的置信水平表示。

一般而言,置信水平常用的有95%和99%。

在区间估计中,经常使用的方法有点估计法和区间估计法。

点估计法基于样本数据对总体参数进行点估计,即使用样本数据作为总体参数的估计值。

而区间估计法则给出一个区间范围,以包含总体参数真实值的可能性,而不仅仅是一个点估计的值。

区间估计的步骤可以总结为以下几个:1. 选择合适的抽样方法,获取样本数据;2. 根据样本数据计算参数的点估计值;3. 根据样本数据计算置信水平和抽样误差等;4. 根据置信水平和抽样误差计算置信区间。

二、假设检验假设检验是一种用于验证科学假设的统计方法。

在假设检验中,我们根据样本数据对总体参数或者总体分布是否满足某种假设进行判断。

假设检验通常包括原假设(H0)和备择假设(H1)两个假设。

原假设通常是关于总体参数的一个陈述,而备择假设则是关于总体参数的一个替代陈述。

我们根据样本数据的表现来判断原假设是否应该被拒绝,从而接受备择假设。

通常使用统计量和p值来进行假设检验。

假设检验的步骤可以总结为以下几个:1. 建立原假设和备择假设;2. 选择适当的假设检验方法;3. 设置显著性水平,通常为0.05或0.01;4. 根据样本数据计算统计量的值;5. 根据统计量的值和显著性水平,判断原假设是否应该被拒绝。

三、区间估计与假设检验的应用区间估计与假设检验在实际应用中有着广泛的领域。

比如,在医学研究中,我们可以利用区间估计来估计某种治疗方法的疗效范围;在市场调研中,我们可以利用假设检验来判断广告的效果是否显著。

区间估计与假设检验的分类总结

区间估计与假设检验的分类总结

区间估计与假设检验的分类总结区间估计和假设检验是统计推断的两个主要方法。

它们都是根据样本数据对总体参数进行推断,但是它们的目的和原理不同。

下面我将对区间估计和假设检验进行分类总结。

一、区间估计分类总结:区间估计是根据样本数据对总体参数进行估计,并给出估计结果的一个范围。

根据不同的参数和样本情况,区间估计可以分为以下几种类型:1.均值的区间估计:a.单个总体均值的区间估计:当总体标准差已知时,使用正态分布进行估计;当总体标准差未知时,使用t分布进行估计。

b.两个总体均值之差的区间估计:根据两个总体样本的样本均值和样本方差的差异,使用正态分布或t分布进行估计。

c.大样本均值的区间估计:对于大样本,总体均值的估计可以使用正态分布进行估计。

2.方差的区间估计:a.单个总体方差的区间估计:对于正态总体,使用卡方分布进行估计。

b.两个总体方差之比的区间估计:根据两个总体样本方差的比值,使用F分布进行估计。

c.大样本方差的区间估计:对于大样本,总体方差的估计可以使用卡方分布进行估计。

3.比例的区间估计:b.两个总体比例之差的区间估计:根据两个总体样本比例的差异,使用正态分布进行估计。

二、假设检验分类总结:假设检验是根据样本数据对总体参数的一些假设进行检验,并得出是否拒绝假设的结论。

根据不同的参数和样本情况,假设检验可以分为以下几种类型:1.均值的假设检验:a.单个总体均值的假设检验:当总体标准差已知时,使用正态分布进行检验;当总体标准差未知时,使用t分布进行检验。

b.两个总体均值之差的假设检验:根据两个总体样本的样本均值和样本方差的差异,使用正态分布或t分布进行检验。

c.大样本均值的假设检验:对于大样本,总体均值的检验可以使用正态分布进行检验。

2.方差的假设检验:a.单个总体方差的假设检验:对于正态总体,使用卡方分布进行检验。

b.两个总体方差之比的假设检验:根据两个总体样本方差的比值,使用F分布进行检验。

c.大样本方差的假设检验:对于大样本,总体方差的检验可以使用卡方分布进行检验。

区间估计与假设检验

区间估计与假设检验

区间估计与假设检验在统计学中,区间估计和假设检验是两个常用的推断方法,用于对总体参数进行估计和推断。

本文将对区间估计和假设检验进行介绍,并讨论它们的应用和差异。

一、区间估计区间估计是用样本数据来推断总体参数的取值范围。

它通过计算估计值以及与之相关的置信水平,给出一个参数的范围估计。

这个范围被称为置信区间。

置信区间常用于描述一个参数的不确定性。

例如,我们要估计某种药物的平均效果。

通过对随机抽取的样本进行实验,我们可以得到样本均值和标准差。

然后,结合样本容量和置信水平,可以计算出药物平均效果的置信区间。

例如,我们可以得出一个95%置信区间为(0.2, 0.6),表示我们有95%的置信水平相信真实的平均效果在这个区间内。

二、假设检验假设检验是用于判断总体参数是否符合某种假设的统计方法。

假设检验通常分为两类:单样本假设检验和双样本假设检验。

1. 单样本假设检验单样本假设检验用于推断一个总体参数与某个特定值之间是否存在显著差异。

它包括以下步骤:(1)建立原假设(H0)和备择假设(H1),其中原假设是要进行检验的假设,备择假设是对原假设的补充或对立的假设。

(2)选择合适的显著性水平(α),表示我们接受原假设的程度。

(3)计算样本数据的检验统计量,例如t值或z值。

(4)根据显著性水平和检验统计量,判断是否拒绝原假设。

2. 双样本假设检验双样本假设检验用于比较两个总体参数之间是否存在显著差异。

常见的双样本假设检验包括独立样本t检验和配对样本t检验。

独立样本t检验用于比较两个独立样本的均值是否有差异,而配对样本t检验用于比较同一样本的两个相关变量的均值是否有差异。

三、区间估计与假设检验的差异区间估计和假设检验都是推断总体参数的方法,但它们的应用和目的略有不同。

区间估计主要关注参数的范围估计,给出了参数估计值的不确定性范围。

它强调了估计的稳定性和精确度,但不直接涉及参数的显著性判断。

因此,区间估计对于参数的精确度提供了一个相对准确的度量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验4 区间估计与假设检验利用样本对总体进行统计推断,主要有两类问题:一类是估计问题,另一类是检验问题。

参数估计是根据样本的统计量来对总体的参数进行估计,假设检验则是利用样本的统计量来检验事先对总体参数或分布特性所作的假设是否正确。

利用SAS 软件中的INSIGHT 模块和“分析家”功能以及编程的方法,均可以在不同的置信水平下求出总体参数的置信区间,在不同的检验(显著)水平下对总体的参数和分布特性进行检验。

在对总体参数作区间估计和假设检验之前,常常需要判断总体分布是否为正态分布。

检验数据是否来自正态分布总体,应用中常用分布拟合图、QQ 图、分布检验等方法。

4.1 实验目的掌握使用SAS 对总体参数进行区间估计与假设检验方法,掌握使用SAS 对总体分布情况进行判断以及正态性检验的方法。

4.2 实验内容一、用INSIGHT 对总体参数进行区间估计与假设检验 二、用“分析家”对总体参数进行区间估计与假设检验三、编程对总体参数进行区间估计与假设检验四、在INSIGHT 和“分析家”模块中研究分布并使用UNIV ARIATE 过程对总体分布进行正态性检验4.3 实验指导一、用INSIGHT 对总体参数进行区间估计与假设检验【实验4-1】已知某种灯泡的寿命服从正态分布,现从一批灯泡中抽取16只,测得其寿命如表4-1(sy4_1.xls )所示:表5-1 某种灯泡的寿命(单位:小时)度与置信水平的关系。

假设上述数据已存放于数据集Mylib.sy4_1中,如图4-1所示,变量sm表示灯泡寿命。

实验步骤如下:(1) 启动INSIGHT 模块,并打开数据集Mylib.sy4_1。

(2) 选择菜单“Analyze (分析)”→“Distribution(Y)(分布)”。

在打开的“Distribution(Y)”图4-1 数据集Mylib.sy4_1对话框中选定分析变量:sm,如图4-2左所示。

(3) 单击“Output”按钮,在打开的对话框中选中“Basic Confidence interval(基本置信区间)”复选框,如图4-2右。

两次单击“OK”按钮,得到结果,如图4-3所示。

图4-2 区间估计的设置结果包括一个名为“95%Confidence Intervals(95%置信区间)”的列表,表中给出了均值(Mean)、标准差(Std Dev)、方差(Variance)的估计值(Estimate)、置信下限(LCL)和置信上限(UCL)。

结果表明,根据抽样样本,灯泡平均使用寿命的置信水平为95%的置信区间为(1476.8034,1503.1966)。

(4) 选择菜单“Tables(表)”→“Basic Confidence Interval(基本置信区间)”→“Others (其他)”,在打开的“Basic Confidence Interval”对话框中修改置信水平,如图4-4所示。

图4-4 90%、97.5%置信区间可以看到,由于置信水平的提高,置信区间的长度在增加。

【实验4-2】正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如表4-2(sy4_2.xls)所示:表4-2 “四乙基铅中毒”患者的脉搏数(次/min)无显著差异(α = 0.05)?这是一个单样本均值的双边检验问题。

若μ为“四乙基铅中毒”患者脉搏数的均值,需要通过样本数据检验如下假设:H0:μ =72,H1:μ≠ 72。

图4-3 95%置信区间假定上述数据存放在数据集Mylib.sy4_2中,如图4-5所示,脉搏次数用变量cs表示。

使用INSIGHT对均值进行检验的步骤如下:(1) 首先启动INSIGHT,并打开数据集Mylib.sy4_2,选择菜单“Analyze(分析)”→“Distribution(Y)(分布)”。

(2) 在打开的“Distribution(Y)”对话框中选定分析变量:选择变量cs,单击“Y”按钮,将变量移到右上方的列表框中。

单击“OK”按钮,得到变量的描述性统计量。

(3) 选择菜单“Tables(表)”→“Tests for Location(位置检验)”;在弹出的“Tests for Location”对话框中输入72,单击“OK”按钮得到输出结果,如图4-6所示。

图4-6 位置检验结果显示,不等于72的观测有10个,其中有1个观测值大于72。

图中第一个检验为t检验(Student's t),需要假定变量服从正态分布,检验的p值为0.0366,这个检验在0.05水平下是显著的,可认为均值与72有显著差异。

第二个检验(Sign)是叫做符号检验的非参数检验,其p值为0.0215,在0.05水平下是显著的,第三个检验(Sgned Rank)是叫做符号秩检验的非参数检验,其p值为0.0410,在0.05水平下也是显著的。

由于这三个检验的结论中的p值均小于0.05,所以应拒绝原假设,即总体的均值与72有显著差异。

因此,可认为“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。

二、用“分析家”对总体参数进行区间估计与假设检验【实验4-3】用数据集SASUSER.GPA,求总体中女生比例的95%的置信区间( = 0.05)。

步骤如下:(1) 在“分析家”中打开数据集SASUSER.GPA,选择菜单“Statistics(统计)”→“Hypothesis Tests(假设检验)”→“One Sample Test for a Proportion(单样本比例检验)”。

(2) 在打开的“One Sample Test for a Proportion”对话框中选择变量sex,单击“Variable”,将其移到“Variable”中,单击“Level of Interest”下拉框右侧的下拉箭头,选“female”,如图4-7左所示。

(3) 单击“Intervals”按钮,在打开的对话框中选定置信估计类型和置信水平,如图4-7右所示。

两次单击“OK”按钮,得到结果,如图4-8所示。

图4-7 设置比例的置信区间结果显示:变量sex取值为“female”的比例的95%置信区间为(0.585,0.710)。

图4-5 数据集Mylib.sy4_2【实验4-4】生产工序的方差是工序质量的一个重要度量。

当方差较大时需要对工序进行改进以减小方差,现测得两部机器生产的部分袋茶重量如表4-3(sy4_4.xls )所示,设两个总体为正态总体,求两个总体方差比的95%的置信区间( = 0.01)。

表4-3 两部机器生产的袋茶重量(单位:克)步骤如下:(1) 首先,将表中的数据生成数据集mylib.sy4_4,如图4-9所示,两部机器生产的袋茶重量分别用两个变量jq1和jq2表示。

(2) 在分析家中打开数据集mylib.sy4_4后,选择菜单“Statistics (统计)”→“Hypothesis Tests (假设检验)”→“Two-Sample Test for V ariance (双样本方差检验)”,打开“Two-Sample Test for Variance ”对话框。

(3) 在“Groups are in ”栏中选择“Two variables ”选项,并将变量jq1和jq2分别移至“Group1”和“Group2”框中;如图4-10左所示。

(4) 单击“Intervals ”按钮,在打开的对话框中选定置信估计类型和置信水平,如图4-10右所示。

两次单击“OK ”按钮,得到分析结果,如图4-11所示。

图4-10 设置方差比检验图4-8 比例的置信区间图4-9 数据集Mylib.sy5_4结果显示,在95%的置信水平下,两个总体方差比的置信区间为(0.3827,2.3244)。

【实验4-5】某种电子元件的寿命(以小时记)服从正态分布。

现测得16只元件的寿命如表4-4(sy4_5.xls )所示:表4-4 某种电子元件的寿命问是否有理由认为元件的平均寿命显著地大于225小时( = 0.05)? 这是一个单样本均值的单边检验问题。

若μ为元件的平均寿命,需要通过样本数据检验如下假设: H 0:μ >= 225, H 1:μ < 225。

由于此时的方差未知,所以使用t 检验法。

假定上述数据存放在数据集mylib.sy4_5中,灯泡寿命用变量sm 表示,如图4-12所示。

步骤如下:(1) 在“分析家”中打开数据集mylib.sy4_5,选择菜单“Statistics(统计)”→“Hypothesis Tests (假设检验)”→“One Sample t – test fora Mean (单样本均值t - 检验)”,打开“One Sample t – test for a Mean ”对话框。

(2) 选中变量“sm ”,单击“Variable ”按钮,将其移到“Variable ”框中,单击选项按钮“Mean<”,在假设框“Mean>=”右边的文本框中填入原假设的均值数据225,如图4-13左所示。

(3) 单击“OK ”按钮,得到结果如图4-13右所示。

结果显示t 统计量的p 值为0.743>0.05,所以在0.05的显著水平下,不能拒绝平均寿命大于225小时的原假设。

图4-13 设置均值检验【实验4-6】有若干人参加了一个减肥锻炼,在一年后测量了他们的身体脂肪含量(身体脂肪含量的百分数),结果如表4-5(sy4_6.xls )所示:图4-11 双样本方差比的置信区间图4-12 数据集Mylib.sy4_5表4-5 男女生脂肪含量这是一个(独立)两样本均值检验问题,若μ1和μ2分别表示男性和女性身体脂肪的平均含量,则检验的是:H 0:μ1 – μ2 = 0, H 1:μ1 – μ2 ≠ 0;假定数据存放在数据集mylib.sy4_6中,如图4-14所示,将男女生脂肪含量的观测值记在同一分析变量z 下,不同的样本用一个分类变量g 的不同值加以区分,而且分类变量g 只能取两个值(“m ”表示男,“f ”表示女),否则无法进行检验。

分析步骤如下:(1) 在“分析家”中打开数据集mylib.sy4_6。

(2) 选择菜单“Statistics (统计)”→“Hypothesis Tests (假设检验)”→“Two Sample t - Test for Means (两样本均值的t - 检验)”。

(3) 在打开的“Two Sample t - Test for a Means ”对话框中,将变量z和g 分别选到“Dependent ”和“Group ”中,如图4-15左所示。

(4) 单击“OK ”按钮,得到结果如图4-15右所示。

相关文档
最新文档