如何在数学教学中注重渗透数学思想方法
如何在小学数学课堂教学中渗透数学思想方法
如何在小学数学课堂教学中渗透数学思想方法摘要:在数学领域中数学思想方法不计其数,每一种数学思想方法都闪烁着人类智慧的火花。
但小学生的年龄特点决定有些数学思想方法他们不易接受,而且要想把那么多的数学思想方法都渗透给学生也不现实。
因此,应该有选择地渗透一些数学思想方法。
在课堂上我们教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入数学目标之中,在课堂教学的各环节中有效渗透一些基本的数学思想方法。
那么在小学数学课堂教学当中如何渗透数学思想方法,下面就结合自己的教学实践谈一些粗浅的认识:关键词:转化类比对应分类集合转化一、在引入新知中渗透数学思想教学中教师应抓住新旧知识之间的生长点,创设情境,让学生初步感悟数学的思想方法,为学生搭建有意建构的桥梁,让学生运用转化类比的数学思想方法进行合理的正迁移。
如有位教师在上循环小数这节内容时,为了激发学生的求知欲,提高学生学习兴趣,老师步入课堂就问大家,一年有几个季节,学生齐声说有四个季节,哪四个季节,春夏秋冬,每年这四个季节会反复出现,哪位同学站起来把这四个季节反复说下去,我们能说完不,同学们大声说:说不完,这时老师趁热打铁,今天我们大家一起认识一种新的小数,像这种在小数部分重复出现的数字,我们把这种小数叫作循环小数。
二、在教学过程中渗透数学思想(1)渗透对应的思想方法。
对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。
小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。
在小学数学课本中,有很多方面运用了对应的数学思想方法,如教材六年级教材中的数对,和根据方向和距离来确定物体的位置,还有一年级初步让学生感知谁比谁多多少或者少多少,都是借助图形和虚线,把相同的部分用虚线连起来,让学生一眼就可以看出问题答案,这些无不融进了一一对应的数学思想。
如何在数学教学中渗透思想方法
如何在数学教学中渗透思想方法摘要:数学方法、数学思想的自觉运用往往使运算简捷、推理机敏,是提高数学能力的必由之路。
应用数学思想方法可提高学生的创新精神、实践能力,有的放矢地训练学生的数学思想方法,强化学生的思想方法意识。
如何在中学数学教学中体现数学思想方法,不失时机地向学生渗透数学思想方法是一个十分重要的问题。
因此就课堂教学中如何渗透思想方法谈几点体会。
关键词:数学思想;渗透;方法数学方法是以数学为工具进行科学研究的方法,即用数学语言表达事物的状态、关系和过程,经过推导、运算和分析,以形成解释、判断和预言的方法。
数学思想方法是数学学习和研究的“核心”和“灵魂”。
因此在数学课堂教学中,只有多方式、多途径,有计划、有步骤地反复渗透数学思想方法,体现知识教学和能力培养的统一,才能使学生领悟到思想方法的价值而滋生“学”“用”的意识,使学生真正掌握数学思想方法这个锐利武器而受益终身。
一、思维分析数学思想方法伴随着数学科学的产生而产生,是人类长期思维的结晶。
每一种数学思想方法都有它形成的原因和功能,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想。
教学过程中,只有教师充分暴露数学思想方法的形成过程,展现它们的应用过程,才能使学生深刻理解思想方法,自觉地运用思想方法解决问题。
二、挖掘提炼数学教材中,存在着明暗两条线:明线——按逻辑体系编排的知识线,它是数学科学的外在形式,也是教师教、学生学的依据;暗线——蕴涵于知识发生、发展和应用过程中的思想方法,它是数学发展的内在动力,是数学知识的“灵魂”。
但它潜伏于数学活动的深层次中,不易发现,又受表面知识的牵引和蒙蔽,容易被人忽视。
因此,教学过程中,教师要深钻教材,努力挖掘和提炼出知识发生、发展和应用过程中所蕴涵的思想方法,并明确地告诉学生,阐明其作用,促使暗线显明。
排列组合问题从提出到解决,始终都伴随着数学思想方法;加法原理、乘法原理中隐含着分类思想,化归转化思想;排列数、组合数公式的推导过程体现了对应思想、方程思想;排列组合问题的解决又离不开特殊化方法、递推方法、模型方法等。
小学数学教学如何加强思想方法的渗透
小学数学教学如何加强思想方法的渗透数学思想方法是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识。
由于小学生的认知能力和小学数学内容的限制,只能将部分重要的数学思想方法落实到小学数学教学过程中去,而且数学思想方法在教学中的渗透不宜要求过高。
根据“数学思想方法隐含于数学之中”的特点,小学数学教学中数学思想方法渗透,应遵循下列模式:操作——掌握——领悟。
数学思想方法的教学要求教师掌握深层的知识,以保证在教学过程中有明确的教学目的。
教师要针对不同的数学内容,灵活设计教法,积极引导学生在主动探究数学知识的过程中,领悟和掌握数学思想方法。
在教学中,我经常深入地研究教材,发掘教材内容中隐含的数学思想方法,把它渗透到自己的备课中,渗透到学生思维过程的展示中,渗透到知识形成的过程中,渗透到课堂小结中,渗透到学生作业中,使学生在探究学习中渗透数学思想方法,在操作中亲身经历、感受、理解、掌握和领悟数学思想方法,让数学思想方法在与知识能力形成的过程中共同生成。
《课标》(修订稿)把“双基”改变“四基”,即改为关于数学的:基础知识、基本技能、基本思想、基本活动经验。
“基本思想”主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。
演绎和归纳不是矛盾的,其教学也不是矛盾的,通过归纳来预测结果,然后通过演绎来验证结果。
在具体的问题中,会涉及到数学抽象、数学模型、等量替换、数形结合等数学思想,但最上位的思想还是演绎和归纳。
之所以用“基本思想”而不用基本思想方法,就是要与换元法、递归法、配方法等具体的数学方法区别。
每一个具体的方法可能是重要的,但它们是个案,不具有一般性。
作为一种思想来掌握是不必要的,经过一段时间,学生很可能就忘却了。
这里所说的思想,是大的思想,是希望学生领会之后能够终生受益的那种思想方法。
演绎推理的主要功能在于验证结论,而不在于发现结论。
我们缺少的是根据情况“预测结果”的能力;根据结果“探究成因”的能力。
如何在教学中渗透数学思想和方法
如何在教学中渗透数学思想和方法数学思想和数学方法是从数学知识中提炼出来的数学学科的精髓,是将数学知识转化为数学能力的桥梁。
用数学思想和数学方法可以解决数学知识,但如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略深层知识的真谛。
教材的每项内容都渗透着若干思想方法。
我们教师要善于抓住有利时机,引导学生发现探索数学思想和方法。
多次渗透,潜移默化,让学生在不知不觉中领会,在解决问题中自觉运用,最终掌握基本的数学思想方法。
数学思想和方法是数学知识的精髓,又是知识转化为能力的桥梁。
提高学生的数学素质、必须指导学生掌握学习数学的方法。
我认为要培养学生的数学思想和数学方法,可以从以下两方面着手:一、了解《数学新课标》要求,把握教学方法。
所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。
所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。
数学思想是数学的灵魂,数学方法是数学的行为。
运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。
1.新课标要求,渗透“层次”教学。
《数学新课标》对初中数学中渗透的数学思想、方法划分为四个层次,即“了解”、“理解”“掌握”和“应用”。
在教学中,要求学生“了解”数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。
教师在整个教学过程中,不仅应该使学生能够领悟到这些数学思想的应用,而且要激发学生学习数学思想的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。
在《数学新课标》中要求“了解”的方法有:分类法、类比法、反证法等。
要求“掌握”或“应用”的方法有:待定系数法、消元法、降次法、配方法、换元法、图象法等。
在教学中,要认真把握好“了解”、“理解”、“掌握”、“应用”这四个层次。
在初中数学教学中如何渗透数学思想方法
在初中数学教学中如何渗透数学思想方法摘要:掌握一定的数学学习方法是学好数学的关键,培养一定的数学思维,构建数学思想。
老师在课堂教学中要传达自己的教学思想,这样不仅能让数学课堂更加让学生容易接受新的思想,还能够让学生从此爱上数学,让学生在处理数学问题上有更成熟的思维。
本文主要探讨有关在初中数学教学过程中注重数学思想方法的意义及如何能够将数学思想方法与初中数学课堂教学相结合的相应的措施。
关键词:思维方法;初中数学教学;数学思想网络;措施;影响当今我国的教育状况和教育模式让老师在教学中更加重视的是教学的效果和学生的成绩,却忽视了应该在数学教学过程中注重数学思想的灌输,不懂得进行变通。
这就要求初中教师在初中数学教学过程中要更多地渗入数学思维方法,能够让学生构建解决数学问题的思维网络,让学生能够更加全面地考虑问题。
这不仅能够很快地提高学生的学习成绩,还能够增强他们的数学思想。
1、初中数学教学过程中渗入一定的数学思想方法的有怎样的意义1.1正确的数学方法能提高学生的数学成绩大多数的初中生在学习数学时都会有产生一种共同的感觉,那也就是感到无聊枯燥,抽象,难以理解,学习数学对他们来说是十分痛苦的事。
这样时间一长,学生对学习数学就会丢失兴趣并且课堂上的学习积极性也会有也一定程度的下降,并导致数学成绩下滑。
甚至,还会会出现老师已经反复讲解过的题目当学生在下次考试中遇到还是出错的情况。
初中数学老师想要去提高课堂的教学效率,就要在课堂教学中格外注重将数学思维渗透给学生,重视培养学生的各种数学思维能力,让他们有属于自己的独特的数学思维方式和能力,这样他们在平时学习时就能够有效地掌握所学知识,同时能够增强他们的理解能力和水平。
1.2培养学生的发散性思维和扩张性思维很多初中生在思考某些问题,他们应对问题的措施会有不同。
他们考虑问题的方法可能是灵活多变的,也可能是的单一的。
但这都证明了每个人都有自己的思维方式。
并且这也会影响他们数学学习成绩能否得到提高。
如何在数学教学中渗透数学思想方法
的形式向学生渗透数学思想方法。事实证明 , 在以分散方式进
合数学发展的历史进程 进行分析 , 让学生明 白数学上每~ 项重大 行渗透性教学 的基础上 ,再辅 以集中的教学形式易 于进 一步 成果 的取得都与数学思想方法 的突破和创新有关 。 如对~元一次 突出数学思想方法 的教学 。如教 完 几年级数学一元二次 方程 方程进行分析 ,不仅要发掘出将未知转化 为已知 的思想方法 , 而 之 后 , 教师可以引导学生思考这一章 的主要思想 是转化思想 。 且 能从数学历史发展与演进 的角 度加 以领悟 。制定教学 目标 时 , 具体体现是 : 配方法体现了数学式子 的转化 , 公式法 直接 利用 未知 ” 化为 “ 转 已知 ” 因式分 解法 通过 “ , 降 既要体现知识的获取过程 , 又要体现思想和方法的渗透过程 。具 公 式把 方程 中的“ 体备课 时 , 既要抓住重要 的知识点 , 又要 找到知识与思想 方法结 次”把一元二次方程转 化为两个一元一次方程 等。还可以进 , 合的交 叉点 。欲使数学思想方法 的教 学落 到实处 , 制订计划时不 仅要 明确章节和课 时教学 的知识点 , 还要列出知识 与思想 方法的
者所需要的数学知识 , 相对的说是 不多的 , 而数学 的精神 、 思想和 的思 想 、 由特殊 到一般 的思想 、 比的思 想 , 了思 想我们 的 类 有 方法却是绝对必要的。 数学 的知识可以记忆一时 , 但数学 的精神 、 解题就有了方 向 , 我们要学会应用这些思想 。 思想和方法随时随地发挥作用 , 以使人受益终身。” 可 显然上述 的教学活 动中 ,由于让学生亲 自 参与 问题 的探 课程标 准的总体 目标 中第一条 明确指 出 : 让学生 “ 获得适 应 索过程 , 从而大大激发学生的求知兴趣 , 并使学生在学 习和探
小学数学教学中数学思想的渗透方法6篇
小学数学教学中数学思想的渗透方法6篇第1篇示例:小学数学教学中数学思想的渗透方法,是指在数学教学过程中,通过巧妙的方式将数学思想融入教学中,帮助学生在学习数学的过程中不仅掌握数学知识,更重要的是培养学生的数学思维能力和解决问题的能力。
在小学数学教学中,数学思想的渗透方法尤为重要,因为小学阶段是学生打好数学基础的关键时期,如何有效地渗透数学思想,激发学生对数学的兴趣,对于学生的数学发展具有重要的意义。
一、培养学生对数学的兴趣在小学数学教学中,培养学生对数学的兴趣是十分重要的。
只有学生对数学感兴趣,才能更主动地学习数学知识,同时也更容易接受和理解数学思想。
为了培养学生对数学的兴趣,教师可以通过一些生动有趣的教学方法,如数学游戏、数学竞赛等,让学生在愉快的氛围中学习数学,从而激发学生对数学的热爱。
教师还可以通过展示一些有趣的数学应用场景,让学生感受到数学的魅力,从而激发学生对数学的好奇心和求知欲。
二、注重数学思想的引导和训练在小学数学教学中,除了掌握基本的数学知识和运算技巧外,更重要的是培养学生的数学思维能力和解决问题的能力。
教师在教学中应注重数学思想的引导和训练,帮助学生建立正确的数学思维模式,培养学生的逻辑推理能力和综合分析能力。
在教学中,教师可以通过提出有趣的问题,引导学生进行思考和探讨,让学生从实际问题中感受数学的魅力,从而培养学生的数学思维能力。
还可以通过让学生参与一些数学探究活动,让学生在实践中体会数学思想的应用,从而提高学生的解决问题的能力。
三、培养学生的自主学习能力四、利用多种教学资源和技术第2篇示例:要将数学思想融入到教学内容中。
数学思想是指那些贯穿于整个数学学科的基本思维方式,包括抽象、逻辑、推理、系统等。
在教学中,教师可以通过设计一些有趣而具有启发性的数学问题和活动,让学生在实践中感受到数学思想的魅力。
在教学中可以引导学生思考“为什么”、“怎么证明”等问题,培养学生的逻辑推理能力和问题解决能力。
新课标下如何在高中数学教学中渗透数学思想方法
新课标下如何在高中数学教学中渗透数学思想方法一、数学思想方法及其教学的重要性数学思想是对数学知识和方法本质的认识,数学方法是解决问题、体现数学思想的手段和工具、数学思想方法是形成学生的良好认识结构的纽带,是由知识转化为能力的桥梁.我们应在数学教学的每一个环节中重视数学思想方法的教学,使学生对数学知识内容和所使用的方法有本质的认识,使学生终生受益.二、教学中如何把握数学思想方法1.首先教师必须更新观念,提高对数学思想方法教学的认识.2.把握数学思想方法教学要求的层次.3.数学思想方法教学所采用的主要方法是渗透,让学生对数学思想方法的认识由浅入深,由表及里,渐进地达到一定的认识高度,从而自觉地运用之.三、数学思想方法教学的主要方式——渗透渗透教学应遵循以下原则:渗透性原则;渐进性原则;发展性原则;学生参与原则.四、教学中渗透数学思想方法的几点尝试数学思想、数学方法很多,这里仅就高中教材中和高考试题中常见的函数与方程思想、数形结合思想、分类讨论思想、等价转化思想作些探讨.1.函数与方程思想函数思想的实质是提取问题的数学特征,用联系和变化的观点建立函数关系,构造函数原型,化归为方程问题,实现函数与方程的互相转化,达到解决问题的目的.函数知识涉及的知识点多,面广,在概念性、应用性、理解性上能达到一定的要求,有利于检测学生的深刻性、独创性思维.中学数学中,方程、数列、不等式等问题都可利用函数思想得以简解;几何量的变化问题也可以通过对函数值域的考查加以解决.高中数学教材中,函数与方程思想的内容相当广泛.例1.设f(x)=lg■,当x∈(-∞,1)时f(x)有意义,求实数a的取值范围.分析:当x∈(-∞,1]时f(x)=lg■有意义的函数问题,转化为1+2x+4xa>0在x∈(-∞,1]上恒成立的不等式问题.解:由题设可知,不等式1+2x+4xa>0在x∈(-∞,1]上恒成立, 即:(■)2x+(■)x+a>0在x∈(-∞,1]上恒成立.设t=(■)x,则t≥■,又设g(t)=t2+t+a,其对称轴为t=-■.所以t2+t+a=0在[■,+∞]上无实根,即g(■)=(■)2+■+a>0,得a>-■.所以a的取值范围是a>-■.【注】对于不等式恒成立,引入新的参数化简不等式后,构造二次函数利用函数的图像和单调性进行解决问题,其中也联系到了方程无解,体现了方程思想和函数思想.一般地,我们在解题中要抓住二次函数及图像、二次不等式、二次方程三者之间的紧密联系,将问题进行相互转化.在解决不等式(■)2x+(■)x+a>0在x∈(-∞,1)上恒成立的问题时,也可使用“分离参数法”:设t=(■)x,t≥■,则有a=-t2-t∈(-∞,-■),所以a的取值范围是a>-■.其中最后得到a的范围,是利用了二次函数在某区间上值域的研究,也可属应用“函数思想”.例2.《苏教版.数学必修5》p41,关于等差数列的前n项和公式的推导.在得出公式sn=na1+n(n-1)■后,教师要不失时机地指出,在该公式中,将n看作变量,则sn是关于n的二次函数,这个二次函数的常数项为零,二次项系数为■,因此可以用二次函数的有关知识来解决等差数列的前n项和的问题.如九三年高考题:设等差数列{an}的前n项和为sn,已知a3=12,s12>0,s13g(x)解集就是函数f(x)的图像位于函数g(x)的图像的上方的那一部分所对应的x的取值范围.2.数形结合的思想方法“数”就是方程、函数、不等式及表达式,代数中的一切内容;“形”就是图形、图像、曲线等.数形结合就是抓住数与形之间的本质上的联系,以“形”直观地表达数,以“数”精确地研究形.高中数学教材中处处都蕴涵着数形结合的思想.数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,形象性,使问题化难为易,化抽象为具体.例3.若方程lg(-x2+3x-m)=lg(3-x)在x∈(0,3)内有唯一解,求实数m的取值范围.[分析]将对数方程进行等价变形,转化为一元二次方程在某个范围内有实解的问题,再利用二次函数的图像进行解决.■[解]:原方程变形为3-x>0,-x2+3x-m=3-x即:3-x>0,(x-2)2=1-m设曲线y1=(x-2)2,x∈(0,3)和直线y2=1-m,图像如图所示。
谈谈在初中数学教学中如何渗透数学思想方法
谈谈在初中数学教学中如何渗透数学思想方法数学思想指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。
数学方法指某一数学活动过程的途径、程序、手段,它具有过程性、层次性和可操作性等特点。
数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,我们把它们合称为数学思想方法。
数学教学的目的不仅要求学生掌握好数学的基础知识和基本技能,还要求发展学生的能力,培养他们良好的个性品质和学习习惯。
在数学教学中,教师除了基础知识和基本技能的教学外,还应重视数学思想方法的渗透,注重对学生进行数学思想方法的培养,这对学生今后的数学学习和数学知识的应用将产生深远的影响。
从初中阶段就重视数学思想方法的渗透,将为学生后续学习打下坚实的基础,会使学生终生受益。
一、初中数学教学应渗透的思想方法1.分类讨论思想分类讨论是根据教学对象的本质属性将其划分为不同种类,即根据教学对象的共同性与差异性,把具有相同属性的归入一类,把具有不同属性的归入另一类。
分类是数学发现的重要手段。
在教学中,如果对学过的知识恰当地进行分类,就可以使大量纷繁的知识具有条理性。
2.数形结合思想一般地,人们把代数称为“数”而把几何称为“形”,数与形表面看是相互独立,其实在一定条件下它们可以相互转化,数量问题可以转化为图形问题,图形问题也可以转化为数量问题。
在数学教学中,由数想形,以形助数的数形结合思想,具有可以使问题直观呈现的优点,有利于加深学生对知识的识记和理解;在解答数学题时,数形结合,有利于学生分析题中数量之间的关系,丰富表象,引发联想,启迪思维,拓宽思路,迅速找到解决问题的方法,从而提高分析问题和解决问题的能力。
抓住数形结合思想教学,不仅能够提高学生数形转化能力,还可以提高学生迁移思维能力。
3.整体思想整体思想在初中教材中体现突出,如用字母表示数就充分体现了整体思想,即一个字母不仅代表一个数,而且能代表一系列的数或由许多字母构成的式子等,这对培养学生良好的思维品质,提高解题效率是一个极好的机会。
小学数学课堂中渗透的数学思想方法6篇
小学数学课堂中渗透的数学思想方法6篇第1篇示例:在小学数学课堂中,教师不仅仅是传授知识,更重要的是要培养学生的数学思想和方法。
数学思想方法是指数学知识的理解、运用、推理和解决问题的方式和方法。
只有通过培养学生正确的数学思想方法,才能使他们真正掌握数学知识,提高数学学习的效率。
在小学数学课堂中,教师可以通过一些渗透式的教学方法来培养学生的数学思想和方法:教师可以在教学中强调问题的发现和提出。
在解决数学问题时,学生需要首先发现问题,并提出相应的解决方法。
教师可以在课堂上设计一些富有启发性的问题,引导学生思考,帮助他们发现问题的本质。
通过这种方式,学生可以逐渐培养自己的问题意识和解决问题的能力。
教师可以在教学中注重数学概念的建立和理解。
数学是一门抽象而严谨的学科,理解数学概念对于学生来说至关重要。
教师可以通过具体的例子和实际问题,帮助学生建立起数学概念的意义和内涵,让他们深刻理解数学概念的本质和联系。
在教学中,教师还可以引导学生注重数学方法的选择和运用。
在解决数学问题时,学生需要根据具体情况选择合适的解题方法,并灵活运用。
教师可以通过一些案例分析和练习,引导学生学会分析问题,选择合适的方法,并熟练运用,从而提高他们的问题解决能力。
教师还可以在教学中激发学生的学习兴趣和思维方法。
数学是一门需要逻辑思维和创造性思维的学科,教师可以通过一些趣味性的数学问题和活动,激发学生的学习兴趣,培养他们的思维能力。
通过培养学生的主动学习和探索精神,可以逐步提高他们的数学综合素养,使他们在学习和生活中都能够灵活运用数学知识和方法。
在小学数学课堂中,教师要通过渗透式的教学方法,培养学生的数学思想和方法。
只有注重问题的发现和解决、建立数学概念的理解、选择和运用数学方法、激发学生的兴趣和思维,才能真正培养学生的数学素养,使他们在数学学习中不仅能够掌握知识,更能够发展自己的批判性思维和创造性思维,提高解决问题的能力和水平。
通过这样的教学方法,可以让学生爱上数学,享受数学,更好地发挥数学的作用,成为具有数学素养的终身学习者。
小学数学教学中数学思想方法的渗透7篇
小学数学教学中数学思想方法的渗透7篇第1篇示例:小学数学教学中数学思想方法的渗透数学思想方法的渗透应从提出问题的角度入手。
在教学中,老师可以引导学生通过提出问题的方式激发学生的求知欲和思考能力。
老师可以设计一些富有启发性的问题,让学生在思考问题的过程中逐渐领会到数学的思维方法。
通过这种方式,学生不仅能够理解数学知识,更能够在解决问题的过程中培养出对数学的兴趣和热爱。
数学思想方法的渗透应注重培养学生的逻辑推理能力。
在小学数学教学中,逻辑推理是一个非常重要的环节。
老师可以通过一些适当的案例和练习来帮助学生培养逻辑推理能力。
老师可以设计一些逻辑推理题目,让学生通过分析、比较、归纳等方式来解决问题,从而提高他们的逻辑思维能力。
通过这种方式,学生可以在实际生活中更好地运用数学思维方法解决问题,提高自己的思维能力。
小学数学教学中数学思想方法的渗透对学生的发展起着至关重要的作用。
通过引导学生提出问题、培养逻辑推理能力、锻炼问题解决能力等方式,可以有效地培养学生的数学思维能力和解决问题的能力。
希望在今后的小学数学教学中,教师们能够更加重视数学思想方法的渗透,为学生的综合素质提升打下坚实的基础。
【本文2000字,仅供参考】。
第2篇示例:在小学数学教学中,数学思想方法的渗透是非常重要的。
数学思想方法是指在解决数学问题时所运用的思维方式和方法论,它是数学学习的核心,也是培养学生数学素养和数学能力的关键。
在小学数学教学中,教师应该注重数学思想方法的渗透,引导学生掌握正确的数学思考方式,培养学生的逻辑思维能力和数学解决问题的能力。
在教学中应该注重引导学生运用多种数学思想方法解决问题。
数学思想方法有很多种,比如归纳法、演绎法、直观法、实证法等,每一种方法都有其独特的优点和适用范围。
教师在教学中应该灵活运用不同的数学思想方法,引导学生灵活运用各种数学方法解决问题。
通过多种数学思想方法的渗透,可以提高学生的数学解决问题的能力,增强他们的数学思维能力。
浅谈数学思想方法在数学教学中的渗透
浅谈数学思想方法在数学教学中的渗透【摘要】数学思想方法是数学的精髓和灵魂,在数学教学中发挥着重要作用。
文章主要对教学中数学思想方法的渗透作了探讨。
【关键词】数学;教学;思想方法新课程强调了数学思想方法在数学教学中的渗透,高中数学课程标准指出:在数学教学中应“运用多种教学方法和手段,引导学生积极主动地学习,掌握数学的基础知识和基本技能以及它们所体现的数学思想方法”。
在实际教学中,笔者认为可以通过以下几个有效的途径来渗透数学思想方法。
一、在概念的学习过程中体会数学思想方法数学概念是进行数学思维活动的基础,概念的形成过程是学生的认识由感性上升到理性的过程,而这个过程的实现又离不开数学思想方法的指导。
因而,在进行概念教学时,使学生领会概念的定义的同时,还要在概念的引入、概念的形成以及概念同化过程中适时地对概念所蕴含的数学思想方法予以揭示,使学生对数学思想方法有所领悟和体会,从而对概念的本质与内涵有更深刻的认识,理解概念也会更容易,进而完善和优化数学认知结构。
例如,在学习有理数的概念时,需要对有理数进行分类,将有理数分为整数和分数,也可以将其分为正有理数、零和负有理数,渗透分类思想。
二、在性质的探索过程中领会数学思想方法数学中的公式、定理、法则等数学性质的获得需要经过观察、猜想、操作、推理、证明等一系列的数学思维活动过程,而整个思维活动过程又是在一定的数学思想方法的引导之下进行的。
因而,在公式、定理、法则的教学中,不仅要使学生经历结论的探究与推导过程,同时还要使学生领会在推导、探索和发现这些结论时所应有的数学思想方法。
例如,在学习有理数加法法则时,要引导学生将问题分为同号的两个数相加、异号的两个数相加、一个数与零相加三种情况加以探讨,归纳出有理数的加法法则,渗透了分类讨论的思想方法。
三、在问题的解决过程中强化数学思想方法数学问题解决与数学思想方法紧密相联,数学思想方法为数学问题解决的思维过程指引了方向,起到定向和指导的作用,提供了解决问题的思路。
小学课堂教学中如何有效渗透数学思想方法
小学课堂教学中如何有效渗透数学思想方法作为一名小学教师,每天的课堂教学我们总是在有意或无意的渗透着数学思想方法是提高学生数学能力和思维品质的重要手段,是数学教育实现从传授知识到培养学生分析问题、解决问题能力的重要途径,也是小学数学教学进行素质教育的真正内涵之所在。
在小学数学教学中不仅要重视显性的数学知识的传授,而且应在分析教材的基础上去领悟隐含于教材的字里行间的数学思想方法,不失时机地进行思想方法的渗透,让学生亲身经历知识形成过程,发掘在数学知识的发生、形成和发展过程中所蕴藏的重要思想方法,促进和提高学生能够进行“数学思维”。
那么,小学课堂教学中如何有效渗透数学思想方法呢?下面我就谈谈在小学数学教学中我的一些做法:一、及时渗透数学思想方法于课堂教学中。
(1)在知识的形成过程中渗透。
如概念的形成过程,结论的推导过程等,这些都是向学生渗透数学思想和方法的极好机会。
例如量的计量教学,首要问题是要合理引入计量单位。
作为课本不可能花大气力去阐述这个过程。
但是作为教师根据教学的实际情况,适当地展示它的简单过程和所运用的思想方法,有利于培养学生的创造性思维品质和为追求真理而勇于探索的精神。
例如,在“面积与面积单位”一课教学中,当学生无法直接比较两个图形面积的大小时,引进“小方块”,并把它一个一个地铺在被比较的两个图形上,这样,不仅比较出了两个图形的大小,而且,使两个图形的面积都得到了“量化”。
使形的问题转化为数的问题。
在这一过程中,学生亲身体验到“小方块”所起的作用。
接着又通过“小方块”大小必须统一的教学过程,使学生深刻地认识到:任何量的量化都必须有一个标准,而且标准要统一。
很自然地渗透了“单位”思想。
(2)在问题的解决过程中渗透。
如:教学“鸡兔同笼” 这一课时,在解决问题的过程中,用图表、课件展示的方法让学生逐步领会“假设”这种策略的奥妙所在。
(3)在复习小结中渗透。
在章节小结、复习的数学教学中,我们要注意从纵横两个方面,总结复习数学思想与方法,使师生都能体验到领悟数学思想,运用数学方法,提高训练效果,减轻师生负担,走出题海误区的轻松愉悦之感。
数学思想方法在教学中的渗透
数学思想方法在教学中的渗透数学思想方法代表的是数学思想和数学方法。
数学思想是在长期实践中形成的对数学的理性认识,是解决数学问题的根本策略;数学方法是解决问题的手段和工具。
数学思想方法体现的是数学的灵魂。
只有明确和掌握了数学思想方法,才算真正掌握了数学。
因而数学思想方法也是学生必须具备的基本素质之一。
一、数学中的主要思想方法1.数学中的主要思想:函数与方程思想,分类讨论思想,整体思想,数形结合思想,化归思想。
(1)函数与方程思想。
就是从函数出发,将一些不属于函数的问题转化为函数问题,并借助于对函数问题的研究,使问题得以顺利解决。
通常是按以下思路进行的:将实际问题化为函数问题,建立函数模型,研究建立起来的函数模型,得出结论。
(2)分类讨论思想。
就是从数学对象的本质属性出发,将数学对象分为不同情况进行讨论的思想方法,它能充分体现数学对象的内在规律。
(3)整体思想。
整体思想在数学教材中体现突出,例如;(x+y)2+ 2(x+y)-3=0,求x+y。
令z=x+y,则方程变为:z2+2z-3=0,将x+y看成一个整体,就充分体现了整体思想。
(4)数形结合思想。
数形结合思想是指把代数知识里的“数”与几何知识里的“形”有效结合起来进行思考,其根本是将数学语言与图形结合起来考虑问题,从而使题目由抽象变为直观,或由直观变为抽象,在解题的方法上相互转换,使“数”与“形”相互交融。
(5)化归思想。
化归思想在数学中随处可见。
所谓化归思想,就是转化和归结的总称,是指把待解决的问题或复杂的问题通过转化,归结到已经解决的问题或者简单的问题中去。
化归的一般原则是:①化归目标简单化原则;②和谐统一性原则;③具体化原则;④标准形式化原则二、数学中的基本数学方法1.数学中的几种常用求解方法:换元法、参数法、归纳法、极坐标法、消元法、待定系数法等;2.数学中的几种重要推理方法:综合法与分析法、反证法与同一法、完全归纳法与数学归纳法、演绎法;3.数学中的几种重要科学思维方法:概括与抽象、直觉与顿悟、比较与分类、观察与尝试、特殊与一般、分析与综合、归纳与类比等。
如何在小学数学教学中渗透数学思想方法
如何在小学数学教学中渗透数学思想方法
1.引导学生多思考,多练习。
要求学生多思考,多练习,给学生提出问题,让学生自己探索,自己解决问题,以培养学生的独立思考能力。
2.让学生发现规律。
在教学中,要求学生发现规律,让学生通过观察,思考,分析,抽象,归纳,推理,验证等方法,发现数学规律,以培养学生的数学思维能力。
3.用数学思想解决实际问题。
在教学中,要求学生用数学思想解决实际问题,让学生通过实际问题,体会数学思想,以培养学生的数学应用能力。
4.引导学生提出问题。
教师要引导学生提出问题,让学生主动思考,学会分析问题,解决问题,以培养学生的数学创新能力。
5.激发学生的学习兴趣。
要抓住学生的兴趣点,让学生亲身参与,增强学生的学习兴趣,激发学生的学习热情,以培养学生的学习自信。
怎样在教学中渗透数学思想和数学方法
怎样在教学中渗透数学思想和数学方法摘要:数学思想和方法是数学知识的精髓,在教学过程中渗透数学思想方法,能提高教学效果,提高学生数学素养。
关键词:数学教学渗透数学思想数学方法数学思想和方法是数学知识的精髓,在教学过程中渗透数学思想方法,能提高教学效果,提高学生数学素养。
把数学思想、方法作为基础知识的重要组成部分,在大纲中明确提出来,这不仅是大纲体现义务教育性质的重要表现,也是对学生实施创新教育、培训创新思维的重要保证。
笔者结合自身的教学实践浅谈一下自己的看法:一、加强对数学思想和方法的认识所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。
所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。
数学思想是数学的灵魂,数学方法是数学的行为。
运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。
若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。
数学思想和方法是数学知识的精髓,又是知识转化为能力的桥梁。
目前初中阶段,主要数学思想方法有:数形结合思想、分类讨论思想、整体思想、化归思想、转化思想、归纳思想、类比思想、函数思想、辩证思想、方程与函数思想方法等。
提高学生的数学素质、指导学生学习数学方法,毋用置疑,必须指导学生紧紧抓住掌握数学思想方法是这一数学链条中的最重要的一环。
许多数学家和教育家历来强调对中学生的数学思想教育,其目的就是要提高学生的数学思维能力和数学素养。
在初中数学教材中集中了大量的优秀例题和习题,它们所体现的数学知识和数学方法固然重要,但其蕴涵的数学思想却更显重要,作为一个执教者,要善于挖掘例题、习题的潜在功能。
二、渗透“方法”,了解“思想”由于初中学生数学知识比较贫乏,抽象思维能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。
在数学教学中如何渗透数学思想方法
浅谈在数学教学中如何渗透数学思想方法摘要:数学思想方法是数学的灵魂和精髓,如何在中学数学教材中体现数学思想方法,有意识地向学生渗透数学思想方法是一个十分重要的问题。
并且我们必须重视数学思想方法,深化数学教材改革,让学生学会用数学思想方法分析问题、解决问题,切实实现素质教育的要求。
关键词:数学思想方法数学教学渗透古人云:“师者,传道授业解惑也!”作为数学教师不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法。
数学思想方法是数学科的灵魂,它反映在数学教学内容里面,体现在解决问题的过程之中,它是将知识转化为能力的桥梁。
只有运用数学思想方法,才能把数学知识和技能转化为分析问题和解决问题的能力。
因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。
在以往的教学模式中,大部分教师把提高数学成绩的关键放在题海战术上。
这种教学模式既不利学生的健康发展,也有悖于素质教育的要求。
在新的教学理念下,向学生渗透数学思想方法成为一个关键所在。
那么,在数学教学中又应当如何展示和渗透数学思想方法?一、在概念、定理、公式、法则教学中渗透数学思想方法数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。
教师讲不讲,讲多讲少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉。
对于学生的要求是能领会多少算多少。
因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。
其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。
如何在数学教学中渗透数学思想方法
如何在数学教学中渗透数学思想方法长春市宽城区第二实验小学赵立娟数学思想方法是处理数学问题的指导思想和基本策略,是数学的灵魂。
它是对数学的本质认识,更是一个人数学素养的重要内涵之一。
那么如何在数学教学中渗透思想方法呢?我认为,可以从以下几个方面有意识地渗透:一扩大数学学习外延,了解数学思想方法。
我们可以根据学习内容的特点适时向学生介绍自然数的形成与发展,十进制计数法的由来,数学符号的产生过程,祖冲之关于圆周率的探索,古代人是怎样计时的等史料,使学生了解小学数学思想方法主要有:化归思想、优化思想、符号化思想、集合思想、函数思想、极限思想、分类思想、概率统计思想等;分析与综合,抽象与概括,联想与猜想等方法。
学生了解数学知识产生的背景和发展的过程,知道来龙去脉,也就把握了知识本源和数学思想方法。
二、在概念形成的过程中渗透数学思想与方法。
概念的形成过程,结论的推导过程,是向学生渗透数学思想和方法的最佳契机,我们把握好了渗透点,学生的思维能力就会大大提高。
例如在讲自然数概念时,我们必然要经历数数活动,这一活动中就蕴含着丰富的数学思想,我们引导学生“点数”(手指着一个物体口中说出一个数时,这是渗透了一一对应的数学思想,数数时必须有序的数,否则就会漏数或者重复数,这是向学生渗透有序观察有序思考的方法。
我们也可以多设计一些引导学生探究规律、总结结论的题目,例如观察和不变、差不变、积不变、商不变等条件下,两个数之间的变化关系,学生通过独立思考、小组合作等形式能得出两个变量的变化规律,老师再渗透、点拨其实规律中隐含着函数思想,这样的训练,既自然巧妙的渗透了数学思想方法,又提高了学生的迁移类推能力,学生能在这种思想的指引下主动发现相关联的算式中存在的其它规律。
三.在问题的解决过程中渗透数学思想方法。
数学的思想和方法存在于问题的解决过程中,数学问题的步步转化无不遵循着数学思想方法的指导。
布鲁纳指出:“掌握基本的数学思想方法,能使数学更容易理解和记忆,领会基本的数学思想和方法是通向迁移大道的光明之路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何在数学教学中注重渗透数学思想方法
数学思想方法是借助于数学知识、技能为载体而体现出来的,思想要融入内容和应用中,才成为思想,就思想方法讲思想方法,学生会感到枯燥无味,是不能真正掌握数学思想方法的。
只有在教学中反复多次渗透,方能“随风潜入夜,润物细无声”,让学生在不知不觉中领会、掌握,才能自觉运用,形成能力。
一、渗透“方法”,了解“思想”。
知识是思想的“躯体”,思想是知识的“灵魂”。
《数学课程标准》中提出的目标是学生在学段末最终应达到的目标,而由于初中学生数学知识比较贫乏,抽象思想能力也较为薄弱,对相应知识的理解是逐步深入的,不可能“一步到位”。
因而只能将数学知识作为载体,把数学思想方法教学渗透到数学知识的教学中。
教师要把握好渗透的契机,重视学生知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,逐级递进,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。
事实上,许多重要的数学思想方法,即使是对同一学段的学生而言,也不是一次可以学成的。
教师在整个教学过程中,不仅应该使学生能够领悟到这些数学思想方法的应用,而且要激发学生学习数学思想方法的好奇心和求知欲,通过独立思考,不断追求新知,发现、提
出、分析并创造性地解决问题。
在教学中,要认真把握好“了解”、“理解”、“会应用”这三个层次。
不能随意将“了解”的层次提高到“理解”的层次,把“理解”的层次提高到“会应用”的层次,不然的话,学生初次接触就会感到数学思想抽象难懂,高深莫测,从而导致他们丧失信心。
二、训练“方法”,理解“思想”。
数学教学内容始终反映着数学基础知识和数学思想方法这两条线。
数学教材的每一章内容,都体现着这两条线的有机结合。
这是因为没有脱离数学知识的数学方法,也没有不包含数学思想方法的数学知识。
而在数学课上,由于能力、心理发展的限制,学生往往只注意了数学知识的学习,而忽视了联结这些知识的思想、观点,以及由此产生的解决问题的方法与策略。
即使有所觉察,也是处于“朦朦胧陇”、“似有所悟”的境界。
如学生学习用换元法解分式方程,对换元法的理解是按教师要求,设未知数,换元,解换元后的方程等解题步骤。
学生把换元法当作解题步骤来记忆,而未能体会出换元思想是数学中的常用的思想方法。
因此教师在数学课堂教学时,必需对学生进行有意识的启发。
如用字母表示数,这是中学生学好代数的关键一步,要跨越这一步是有一定的困难的。
从算术到代数,思维方式上要产生一个飞跃,有一个从量变到质变的发展过程,学生始终认为“a是正数”,“两个数的和大于其中任何一个加数”等,对“字母表示数,它可以代表任何一个数,
像已知数一样参加运算”很不习惯,往往只见树木,不见树林。
我们应尽量帮助学生缩短这个“悟”的过程,在教学中多次渗透,不断强化,逐步完成学生从数到式,由普通语言到符号语言,由特殊到一般,由具体到抽象的飞跃。
又如,渗透化归思想。
化归,是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法,转化的思想在数学教学中应贯穿始终。
教材中,把有理数减法、除法转化为加法与乘法,把复杂的一元一次方程化为标准方程,把多元方程组化为一元一次方程,把高次方程化为低次方程,把分式方程化为整式方程,由无理方程化为有理方程,将复杂图形转化为简单图形,将未知化为已知,等等,都体现了化归的思想方法。
在教学中根据学生的认知结构,结合具体内容,探索转化方法,渗透转化思想,逐步养成学生迎难而上,化难为易的品质,这种品质的形成可以让学生受益终身。
三、掌握“方法”,运用“思想”。
数学的思想方法蕴含在教材的内容中,只有吃透内容,才会领会基本思想,学会其中的方法。
很多学生只把课本当成习题集,很少看书,这就很难领会其思想。
常言道:“书读百遍,其义自见”。
只有读透内容,才能知其义,晓其理。
通过阅读可培养学生的阅读、分析、思考问题的习惯,促使学生在实际情景和数学知识之间找到一个切入口,达到“此时无声胜有声”的效果,从而学会数学语言。
通过使用数学语言进行听、说、读、写、
译的活动,就可以流畅地用数学语言进行交流,促进学生会用数学思想方法去思考问题,解决问题。
总而言之,教师在进行教学时应站在学生的角度来优化教学过程,充分考虑学情,给学生以阅读、思考、交流的机会,适时让学生体悟数学思想方法,长期坚持下去必将会极大地唤起学生的主体意识,同时课堂也将充盈着春天般的生命力。
四、提炼“方法”,完善“思想”。
教学中要适时恰当地对数学方法给予提炼和概括,让学生有明确的印象。
由于数学思想、方法分散在各个不同部分,而同一问题又可以用不同的数学思想、方法来解决。
因此,教师的概括、分析是十分重要的。
教师还要有意识地培养学生自我提炼、揣摩概括数学思想方法的能力,这样才能把数学思想、方法的教学落在实处。
在教学中,抓住机会,适时渗透。
教学知识的发生过程,实际上也是思想方法的发生过程、思考过程。
因此,概念的形成过程、结论的推导过程、方法的思考过程、问题的发现过程、规律的被揭示过程都蕴藏着向学生渗透数学思想方法、训练思维的极好机会。