浅谈煤矿绿色开采技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要:深入分析了我国煤炭开采的现存问题,总结阐述了绿色开采的技术体系构成,调查研究了相关保障技术的研究现状和发展趋势,论证了以关键层理论为基础绿色开采是煤炭工业可持续发展的必然趋势。
关键词:绿色开采;关键层理论;保水开采;充填开采;煤炭气化
目录
一、我国煤矿开采存在的问题 (1)
(一)安全问题 (1)
(二)环境问题 (1)
二、绿色开采理论体系与总体框架 (2)
三、主要技术现状 (3)
四、结语 (5)
参考文献 (5)
浅谈煤矿绿色开采技术
2009年12月7~18日,世界各国领导人齐聚丹麦首都哥本哈根,协商如何共同遏制全球变暖,如何保护我们赖以生存的空气、水、土地和食物。然而会议没有达成全球亟需的气候保护协议,以不具法律约束力的《哥本哈根协议》草草收场,加剧了人们对全球气候恶化的担忧。如何应对全球气候变化,是每一个国家、每一个行业都有责任、有义务深入研究和思考的问题。
中国作为世界上主要的发展中国家,近些年在温室气体减排方面做了很多卓有成效的工作,全国各行业积极倡导和实施可持续发展、和谐发展观及循环经济等技术理念。正是在这个过程中,2003年钱鸣高院士提出了“绿色开采”的理念[1-2],为煤炭行业的发展指明了方向。
一、我国煤矿开采存在的问题
我国“富煤、贫油、少气”的能源赋存状况决定了能源消费必须以煤为主,一次能源消费中有70%~75%来源于煤炭,煤炭行业的健康发展关系到国民经济可持续发展的全局。多年煤炭开采带来一系列环境和安全问题,屡屡为人诟病。
(一)安全问题
2009年12月21日,黑龙江龙煤集团鹤岗分公司新兴煤矿发生特别重大瓦斯爆炸事故,再次引发公众对煤矿安全,特别是群死群伤公众事件的关注和深层思考。煤矿事故频发的原因何在,如何从根本上杜绝大型和特大型伤亡事故,不断拷问着各级监管、经营和科研服务单位。我国煤炭安全事故频发有着诸如井工开采量大、小煤矿安全装备和生产工艺落后、行业多年安全欠账严重、科技投入不足以及技术与管理人才流失严重等客观原因。从2006年起,国家加大对煤矿安全投入和治理,煤矿安全的总体形势是好转的,在产量增加的同时,死亡人数逐年下降,多年来煤炭产量以近2亿t/a的速度递增,而百万吨死亡率逐步下降。如何推动煤炭安全形势的进一步好转,实现以人为本与本质安全型的和谐矿区,是煤炭行业亟待解决的问题。
(二)环境问题
主要包括由于地下采掘引起的地面塌陷、水土流失、沙漠化、采煤废水排
放以及煤矸石露天堆放污染等。
我国煤炭开采主要采用冒落法管理采空区顶板,造成地面沉降和陷落,因而引发村镇、铁路、桥梁和地面管线设施破坏。大量的农田因塌陷、盐渍化和水土流失无法耕种。矿井开采过程中的大气降水、地表水、地下水及生产用水涌入井下而成为矿井水,目前矿山的年排水量约为22亿m3。以山西省为例[1],采煤破坏地下水达4.2亿m3/a,导致井水水位下降或干涸共计3 218个,影响水利工程433处、水库40座及输水管道793.89 km,造成1 678个村庄,81.271 5万人以及10.824 1万头牲畜饮水困难。《山西省煤炭开采对水资源的破坏影响及评价》显示,该省因采煤漏水和矿井水排放等造成的经济损失累计达300多亿元。
我国现有煤矸石山1 500余座,历年堆积量达30亿t,占地超过5 000 hm2,在大气降水淋溶时还会进一步污染周围水体、农田和地下水。目前有自燃现象的矸石山约140多座,自燃过程中产生大量的硫化物等有毒有害气体,成为大气污染源。
矿井瓦斯主要是矿井中由煤层气构成的以甲烷为主的有害气体。它既是煤矿重大安全事故的祸根,又是一种严重的温室效应气体。研究显示,甲烷造成的温室效应在全球气候变暖中所占份额为15%,仅次于二氧化碳。等量甲烷造成的温室效应是二氧化碳的21倍。据初步估计[2],我国2 000 m以浅范围内具有30~35万亿m3煤层气资源,居世界前列。但由于我国煤层透气性差,难以在开采前抽出。建国以来,我国煤矿发生煤与瓦斯突出事故1 500余次,2001年由于瓦斯事故的死亡人数占煤矿总死亡人数的40%。煤矿每年排放瓦斯70~190亿m3。
二、绿色开采理论体系与总体框架
绿色开采理念是在科学采矿三原则(安全、环保和经济)的指导下提出的,强调在现有采煤理论、方法和技术的基础上,发展与创新采矿科学技术,从广义资源的角度上认识和对待煤、瓦斯和水等一切可以利用的各种资源。其基本出发点是防止或尽可能减轻开采煤炭对环境和其他资源的不良影响,以期取得最佳的经济效益和社会效益[1]。
煤矿开采引发的环境与安全问题无不源于采矿活动造成的岩层运动,进而
引起周围岩体的应力场、节理裂隙场和瓦斯运移场等相关物理场的变化,因此,研究绿色开采技术必须以科学先进的岩层控制理论为基础,钱鸣高、缪协兴及许家林等人提出的关键层理论[3-5]为科学采矿的实施提供了理论基础。
在科学采矿的总体框架体系内,主要包括保水开采、煤与瓦斯共采、充填与条带开采和离层注浆减沉、煤巷支护和部分矸石井下处理以及煤炭地下气化等五大技术方向。
三、主要技术现状
近40年来,我国共发生矿井突水事故2 000余次,直接经济损失高达40多亿元。据统计,我国国有煤矿中半数具有突水危险性,且突水危险越来越严重。同时,山西、陕西和内蒙古等缺水地区也急需解决煤炭保水开采的问题。关键层理论认为[1],煤炭采出后,随着关键层的破断,在该区域内地下水将形成下降漏斗。地下水位能否恢复,取决于随着工作面的推进,上覆岩层中是否含有软弱岩层(事实上它是研究地下水渗漏的“关键层”),及其能否经重新压实导致裂隙闭合而形成隔水带。这说明从技术上把握了关键层的破断规律,可以有条件开采受水患威胁的优质煤炭资源。
煤与瓦斯共采技术充分利用了煤炭开采中上覆岩层的矿压活动,着重对卸压煤层的抽采时机把握和抽采工艺优化。在这项技术上,以袁亮院士为代表的课题组,创造性地解决了我国淮南矿区低透气性煤层群开采的关键问题。该技术将高瓦斯、高地压和低透气性煤层群的技术难题统一考虑,以沿空留巷的方式一体化解决高瓦斯、高地温、高地压、井巷失稳、瓦斯突出和冲击地压等开采技术难题,通过通风降温和简化采掘接替,实现连续开采,并为高效抽采瓦斯和治理煤层群瓦斯提供最佳的工作空间,提出基于快速留巷Y形通风抽采卸压瓦斯的煤气共采技术路线。这项技术在排除低透气性难抽瓦斯安全隐患的同时,改善了作业环境,扭转了采掘衔接紧张的不利局面,较好地贯彻了安全、经济和环保的科学采矿三原则。
充填开采技术在我国的应用源于抚顺地区建筑物下开采,最早采用的是水砂充填。水砂充填工序复杂,难以实现大规模生产,减沉效果有限,从20世纪