动力气象学第六章
动力气象学问题讲解汇编
![动力气象学问题讲解汇编](https://img.taocdn.com/s3/m/64ae2d27f242336c1eb95edf.png)
“动力气象学”问题讲解汇编徐文金(南京信息工程大学大气科学学院)本讲稿根据南京信息工程大学“动力气象学”学位考试大纲(以下简称为大纲)要求的内容,以问答形式编写,以便学习者能更好地掌握“动力气象学”中的重要问题和答案。
主要参考书为:动力气象学教程,吕美仲、候志明、周毅编著,气象出版社,2004年。
本讲稿的章节与公式编号与此参考书一致(除第五章外)。
第二章(大纲第一章) 描写大气运动的基本方程组问题2.1 大气运动遵守那些定律?并由这些定律推导出那些基本方程?大气运动遵守流体力学定律。
它包含有牛顿力学定律,质量守恒定律,气体实验定律,能量守恒定律,水汽守恒定律等。
由牛顿力学定律推导出运动方程(有三个分量方程)、由质量守恒定律推导出连续方程、由气体实验定律得到状态方程、由能量守恒定律推导出热力学能量方程、由水汽守恒定律推导出水汽方程。
这些方程基本上都是偏微分方程。
问题 2.2何谓个别变化?何谓局地变化?何谓平流变化?及其它们之间的关系? 表达个别物体或系统的变化称为个别变化,其数学符号为dtd ,也称为全导数。
表达某一固定地点某一物理量变化称为局地变化,其数学符号为t∂∂,也称为偏导数。
表达由空气的水平运动(输送)所引起的局地某物理量的变化称为平流变化,它的数学符号为∇⋅-V 。
例如,用dt dT 表示个别空气微团温度的变化,用tT ∂∂表示局地空气微团温度的变化。
可以证明它们之间有如下的关系 zT w T V dt dT t T ∂∂-∇⋅-=∂∂ (2.4) 式中V 为水平风矢量,W 为垂直速度。
(2.4)式等号右边第二项称为温度的平流变化(率),第三项称为温度的对流变化(率)或称为垂直输送项。
问题 2.3何谓绝对坐标系?何谓相对坐标系?何谓绝对加速度?何谓相对加速度?何谓牵连速度?绝对坐标系也称为惯性坐标系,可以想象成是绝对静止的坐标系。
而相对坐标系则是非惯性坐标系,例如,在地球上人们是以跟随地球一起旋转的坐标系来观测大气运动的,这种旋转的坐标系就是相对坐标系。
动力气象学习题2
![动力气象学习题2](https://img.taocdn.com/s3/m/dd1cf3fb0875f46527d3240c844769eae009a3f0.png)
第四章习题1. 证明在等压面坐标系中的地转风散度为xfa V g ∂Φ∂-=⋅∇φcot ,此处a 为地球半径,而Φ为纬度,在430N 处南风风速为10米秒-1时,问地转风的散度是多少?2. 距测站东、北、西和南方各50千米的风纪录为:900,10米秒-1;1200,4米秒-1;900,8米秒-1;600,4米秒-1。
计算测站上的近似水平速度散度值。
3. 假设习题2里给出的每个风速的误差为正负10%,问在最坏情况下,计算所得的水平速度散度的误差为百分之几?4. 一个无线电探空站上方各层水平速度散度值计算结果如下: 气压(毫巴))10(15--⨯⋅∇秒h V 1000+0.9 850+0.6 700+0.3 5000 300-0.6 100 -1.0假设大气是等温的,温度为2600K,并令在1000毫巴上w=0,计算每层的垂直速度。
第五章习题1. 有一东风气流(即向西流动),风速向北以10米秒-1/500千米的变率减小,问围绕每边边长为1000千米的正方形的环流是多少?又正方形中的平均相对涡度是多少?2. 在300N 有一个半径为100千米的空气圆柱,其半径膨胀到原半径的二倍。
假如开始时空气是静止的,问膨胀后圆周上的平均切线速度多大?3. 在300N 有一气块,向北移动时绝对涡度保持不变,假如起始时相对涡度为5*10 -5秒-1,问到达90 0 N 时的相对涡度是多少?4. 在60 0N 有一气柱,起始时δ=0,从地面直伸到固定的10千米高的对流层顶。
假如这气柱移动在450N 越过一个高为2.5千米的山岳,问当越过山顶时,绝对涡度和相对涡度各是多少?5. 一个内半径为200千米、外半径为400千米的圆环柱体,如已知其切线速度的分布由V=106/r 米秒-1给定,此处r 以米为单位。
试求其间的平均涡度。
又问在半径为200千米的内圆以内的平均涡度是多少?6. 在x 、y 平面上,又一个边长为1000千米的正方形,如果其间的温度分布为向东以1℃/200千米的变率增加,而气压向北以1毫巴/200千米的变率增加,又在原点的气压为1000毫巴,试计算沿正方形的环流变率。
动力气象学
![动力气象学](https://img.taocdn.com/s3/m/46f604dba58da0116c1749df.png)
动力气象学总学时:128(其中自学96,面授24,实习8)教材版本:动力气象学教程(吕美仲、彭永清编著)教学目的和要求:动力气象学是在热力学和流体力学的基础上,系统地讲述大气的热力过程和大气运动的基本规律,并指出这些规律的实践意义的一门专业基础课。
具体地说,它是应用物理学定律研究大气运动的动力过程、热力过程以及它们之间的相互关系,从理论上探讨大气环流、天气系统演变和其它大气动力过程,因而,它是天气学、数值天气预报及大气环流等专业课程的理论基础。
本课程,通过教学,目的在于使学生能深入地理解大气动力学的基本理论,了解近代动力气象学的主要进展,掌握用动力学方法分析和预报天气的基本原理和技术,从而使学生具有一定的理论水平和科学研究的能力。
为将来从事天气预报的业务及研究工作打下基础。
为达到上述目的,在教学中要求:⑴努力贯彻理论联系实际的原则。
在教学内容和取材上,从现今国内外气象业务部门及科研单位所使用的有代表性的方法和理论为主体,讲课中以讲授基本原理为重点,在讲深讲透基本理论的基础上,让学生进行必要的课堂讨论和作练习,使学生既能掌握基本原理,又能利用基本原理去探讨和解决实际问题。
⑵注重理论的系统性。
本课程是一门理论性较强的课程,在努力贯彻理论联系实际的原则下,要突出本课程的特点,在教学中应该注意有系统、有条理地介绍它的内容,强调各部分内容之间的有机联系,以使学生能掌握得深透。
教学的主要内容及学时分配:总学时:128课时,其中面授24课时,课堂练习8学时,自学96课时。
每章自学10学时,5~10章每章讲授4学时,其余4学时供课堂练习和答疑。
第一章大气运动的基本方程组§1.1全导数和局地导数§1.2旋转参考系中运动方程的矢量形式§1.3质量守恒定律--连续方程§1.4状态方程、热力学方程、水汽方程§1.5球坐标系中基本方程组§1.6局地直角坐标系中基本方程组§1.7闭合运动方程组、初始条件和边界条件第二章尺度分析与基本方程组的简化§2.1尺度概念、大气运动的尺度分类§2.2基本方程组的尺度分析§2.3无量纲方程、动力学参数§2.4 平面近似§2.5静力平衡大气、P坐标系第三章自由大气中平衡流畅§3.1自然坐标系§3.2平衡流场的基本形式与性质§3.3地转风随高度的变化、热成风§3.4地转偏差第四章环流定理、涡度方程和散度方程§4.1环流与环流定理§4.2涡度与涡度矢量方程§4.3泰勒——普劳德曼定理§4.4铅直涡度方程§4.5P坐标系中的涡度方程和散度方程§4.6位势涡度方程第五章大气行星边界层§5.1大气运动的湍流特性和平均运动方程组§5.2大气行星边界层及其特征§5.3属性的湍流输送通量及其参数化§5.4湍流运动发展的判据§5.5近地面层风随高度的分布§5.6埃克曼层风随高度的分布§5.7埃克曼抽吸与旋转减弱第六章大气能量学§6.1大气能量的主要形式§6.2大气能量方程§6.3静力平衡条件下大气中的能量转换§6.4有效位能§6.5大气中动能的消耗§6.6实际大气中的能量循环§6.7能量的转换过程第七章大气中的基本波动§7.1波动的基本概念§7.2微扰动法、基本方程组的线性化§7.3声波和LAMB波§7.4重力外波、重力慣性外波§7.5重力内波、性内波、重力慣性内波§7.6 波§7.7噪音与滤波第八章地转适应过程与准地转演变过程§8.1大尺度运动过程的阶段性§8.2正压大气中的地转适应过程§8.3斜压大气中的地转适应过程§8.4准地转运动的分类§8.5准地转运动方程组§8.6准地转位势倾向方程组与方程§8.7Q矢量、非热成风产生的二级环流的诊断第九章大气运动的稳定性理论§9.1流体动力学稳定性概念§9.2慣性不稳定§9.3开尔文——赫姆霍茨不稳定§9.4正压不稳定§9.5斜压不稳定第十章低纬度热带大气动力学§10.1热带运动系统概述§10.2热带大气运动的尺度分析§10.3热带扰动的生成与发展§10.4台风的结构与发展§10.5热带行星尺度波动。
动力气象学第六章 大气波动学
![动力气象学第六章 大气波动学](https://img.taocdn.com/s3/m/a742e9c1eefdc8d377ee325e.png)
其中,A——振幅; L——波长:相邻两个同位相点间的距离,
即一个完整的波形的长度;
T——周期: 质点完成一个全振动需要的时间;
c——波速或相速: 等位相线&等位相面的移动速度,即槽
的移速; 波动学中,求解天气系统移动的问题,
即求解波速c的问题。
k——波数: k 2 L 2 距离内波的数目;
ω——圆频率:
2 T 2 时间内质点完成全振动
的次数。
(kx t)
波速:等位相线(面)的移速。
C dx dt 常量
=( 2 x 2 t)=常量 2 dx - 2 =0
LT
L dt T
C dx = L dt 常量 T
一个周期,正好移动一个全波形
S(x,t) Acos( 2 x 2 t) Acos(kx t) Acos k(x ct)
P P P,
且 A A ,A代表任一物理量。
2)代入方程:
其中
1
1
1
(1 ) 2
1 1 x
u
u
V
1 x u V
u
V u V u
t t
1
P x
1
P x
2
P x
2
P x
fv
fv
基本量满足原方程
u
V
u
1
P
fv
t
x
扰动量二次以上乘积项可忽略
u
V
u V u
22 令:A(x,t) 2Acos( k x t)
22
则:S A(x, t)ei(kxt)
波数为k,圆频率为ω,振幅为 A(x,t)的波动
这里A(x,t) 2Acos( k x t)
大气动力学教学大纲
![大气动力学教学大纲](https://img.taocdn.com/s3/m/ad158d27783e0912a2162a7a.png)
《大气动力学》教学大纲第0章引论第一章大气运动的基本方程组§1. 旋转坐标系下的动量方程§2. 连续性方程§3. 热力学能量方程§4. 闭合方程组及其初边值条件§5. 球坐标系§6. 局地直角坐标系§7. P坐标系第二章自由大气中的平衡运动§1. 自然坐标系§2. 地转平衡与地转风§3. 梯度平衡与梯度风§4. 旋转平衡与旋转风§5. 惯性平衡与惯性风§6. 地转风随高度的变化:热成风§7. 地转偏差与垂直运动第三章大气中的涡旋运动§1. 环流定理§2. 涡度与涡度方程§3. 位势涡度方程§4. 散度与散度方程第四章大气边界层§1. 雷诺平均运动方程组§2. 行星边界层§3. 次级环流与旋转减弱§4. 地形上空的边界层(I) 均质流体§5. 地形上空的边界层(II) 层结流体第五章中纬度天气系统动力学§1. 大气层结与层结稳定度§2. 中纬度天气系统的结构:观测事实§3. 天气尺度系统的尺度分析§4. 准地转位势倾向方程§5. 方程§6. 发展中的斜压系统的理想模式第六章大气中的波动§1. 波动的基础知识§2. 摄动方法§3. 大气声波§4. 浅水重力波§5. 重力内波§6. Rossby波第七章大气波动的稳定度§1. Rossby波的正压不稳定§2. 斜压不稳定§3. Eady波§4. 两层模式中的斜压不稳定波第八章大气中的非线性过程§1. 非线性波与孤立波§2. 大气孤立波§3. Lorenz混沌系统主要参考书目:1、Holton, J. R., An Introduction to Dynamic Meteorology, 4th Edition, Academic Press,2004.2、刘式适、刘式达编著《大气动力学》上册3、杨大升等编著《动力气象学》4、伍荣生等,《动力气象学成绩构成:作业20%;报告,口试20%;期终考试60%大气动力学名词、思考题、习题和文献阅读一、名词f-平面 -平面正压大气斜压大气地转风梯度风热成风地转偏差自由大气边界层Ekman泵旋转减弱Ekman螺旋线气旋反气旋大气层结包辛尼斯克近似大气标高Rossby数Ekman数基别尔数层结稳定度惯性稳定度静力平衡地转平衡梯度平衡正压不稳定斜压不稳定白贝罗定律准不可压缩二、思考题1.考虑地球自转后,牛顿第二定律的形式如何?写出科氏力和惯性离心力的表达式。
动力气象学知到章节答案智慧树2023年南京大学
![动力气象学知到章节答案智慧树2023年南京大学](https://img.taocdn.com/s3/m/53f4f129c381e53a580216fc700abb68a982ad8b.png)
动力气象学知到章节测试答案智慧树2023年最新南京大学绪论单元测试1.不同于普通流体,地球大气有哪些基本特征?参考答案:受到重力场作用;旋转流体;具有上下边界 ;密度随高度变化2.中纬度大尺度大气运动的特点包括参考答案:准水平无辐散;准地转 ;准静力 ; 准水平3.以下哪种波动的发现及其深入研究,极大地推动了天气预报理论和数值天气预报的发展?参考答案:Rossby波4.动力气象学的发展与数学、物理学及观测技术的发展密不可分。
参考答案:对5.大气运动之所以复杂,其中一个原因是其运动具有尺度特征,不同尺度的运动控制因子不同。
参考答案:对第一章测试1.以下关于惯性坐标系,错误的说法是参考答案:惯性坐标系下测得的风速是地球大气相对于旋转地球的相对速度2.关于科里奥利力,以下错误的说法是参考答案:在全球大气的运动中,科里奥利力均使得大气运动方向右偏3.物理量S(x,y,z,t)能够替代z作为垂直坐标需要满足哪些条件参考答案:需要满足一定的数学基础和物理基础;S与z有一一对应关系;要求S在大气中有物理意义4.通过Boussinesq近似方法简化大气运动方程组,可得如下哪些结论参考答案:垂直运动方程中与重力相联系的项要考虑密度扰动作用;连续方程中可不考虑扰动密度的影响,与不可压流体的连续方程形式相同;大气密度的扰动变化,对垂直运动有较大影响5.Rossby数的物理意义包括参考答案:Rossby数的大小可用于划分运动的尺度;表征地球旋转的影响程度;判别相对涡度和牵连涡度的相对重要性第二章测试1.下面哪些变量可以描述大气旋转性特征参考答案:螺旋度;环流;涡度2.在什么情况下,绝对环流是守恒的参考答案:正压无摩擦大气;绝热无摩擦大气3.对于中纬度大气的平均状况而言,从对流层低层向上到平流层,位势涡度会发生怎样的变化参考答案:位涡在对流层顶附近会迅速增加4.对大尺度运动,引起绝对涡度变化的量级最大的项为参考答案:散度项5.通常在大气中,非绝热加热在热源上方和下方分别会产生哪种位涡异常参考答案:负,正第三章测试1.地转偏差随纬度和季节变化的特征有参考答案:夏季比冬季大;在低纬度地区相对较大;在大气低层相对较大2.下列关于地转偏差的表述正确的是参考答案:在北半球与加速度方向垂直;与加速度项成正比3.下面哪项不是地转偏差的组成项参考答案:气压梯度项4.下面关于地转适应和地转演变的说法错误的是参考答案:地转演变可以看成线性过程5.以下正确的说法是参考答案:流场和气压场相互调整,使得大气恢复准地转平衡的过程称作地转适应;纯地转运动是定常运动第四章测试1.浪花云是由两种不同云层的切变不稳定导致,以下说法正确的是参考答案:快速移动且密度较低的云层在速度较慢且密度更高的云层上方2.小扰动法的基本气流一般取为沿纬圈平均的速度场,若考虑斜压切变气流,这一速度场应取为参考答案:y和z的函数3.以下哪些条件可以滤去重力内波参考答案:水平无辐散;中性层结大气;f平面上地转近似4.关于Rossby波的频散强度,以下正确的有参考答案:大槽大脊频散强;低纬频散强5.由一维线性涡度方程∂ζ⁄∂t+βv=0讨论Rossby波的形成,对初始只有v=Vcos(kx)的南北风谐波状扰动,以下不正确的是参考答案:x=0处的运动状态将被其左侧的运动状态代替第五章测试1.如果扰动随时间增长,那我们称这个扰动为参考答案:发展2.斜压不稳定中,扰动发展的能量来自参考答案:有效位能的释放;基本气流的动能3.若采用标准模方法分析稳定性,设扰动方程单波解为,以下哪个参数影响波在x方向上的传播速度。
动力气象期末总结
![动力气象期末总结](https://img.taocdn.com/s3/m/6cd9fda7f61fb7360b4c6574.png)
旋转坐标系(相对坐标系):原点位于地球中心,坐标轴固定在地球上、随地球转动着的坐标系。
惯性坐标系和旋转坐标系个别变化的关系(普适的微分算子):局地直角坐标系(标准坐标系):坐标原点取在地球表面某一点处,z轴与地面垂直,指向天顶为正;x轴与y轴组成的平面相切与地面上的o点,x轴向东为正,y轴向北为正。
是一个正交右手坐标系。
适用于描述中低纬局部地区大气运动,不适用于靠近极地地区运动的尺度:各物理量变量具有代表意义的量值,称之为物理量值的特征值,即尺度尺度分析法:依据表征某类运动系统的运动状态和热力状态各物理量的特征值,估计大气运动方程组中各项量级的大小,从而使方程组得到简化的一种方法f平面近似:f=f0=2Ωsinφ,不考虑球面性,f/a南北运动的范围远远小于地球半径β平面近似:部分考虑地球球面性,将科式参数f在局地直角坐标系原点所处的纬度进行泰勒展开,保留前两项,略去其他项得到的近似。
f=f0+βy,f/a南北运动的范围为千千米β平面近似优点:用局地直角坐标系讨论大尺度运动是方便的。
虽然由于球面效应引起的曲率项被忽略了,但球面效应引起的随纬度的变化对大尺度运动的作用被部分保留了下来。
为何引入p坐标系:在气象业务中,我们常用等压面图来进行分析。
P坐标系的物理基础:(准)静力平衡P坐标系的优缺点:优点1.运动方程组中减少了一个场变量密度,气压梯度力项称为线性项,形式简单。
2.连续方程形式简单,成了一个诊断方程。
大气运动方程组由三个预报方程、两个诊断方程组成。
3.日常气象业务工作常用等压面分析法,便于利用p坐标系方程组进行诊断计算和分析。
4.等压面相对水平面的坡度很小,可以认为是准水平。
缺点1.下边界条件复杂2.小尺度运动不满足静力条件,不能用p坐标系运动方程组来描述。
z和p坐标转换关系式:1.时空导数关系 2.全导数关系重力位势Φ,它是将单位质量的流点从z = 0 移动到z = z 高度时,克服重力所做的功。
动力气象学第六章改过
![动力气象学第六章改过](https://img.taocdn.com/s3/m/e82a29edcd22bcd126fff705cc17552706225e73.png)
Z=0,位能参考面(即零位能面),则:
单击此处添加小标题
——重力-保守力
单击此处添加小标题
在Z高度处单位质量气块的位能:gz
单击此处添加小标题
质点处于地球表面附近重力场中任一点时,都具有重力势能(位能) 。
单击此处添加小标题
对大气而言,能量的基本形式有内能、位能、动能,如果考虑水汽,还有潜热能。
平均单位面积上铅直气柱中有效位能的近似表达式为:
由此可见,有效位能与大气的斜压性相对应,正压大气没有有效位能;斜压性越强,力管项大,有效位能越大。也称有效位能为斜压能。
五、实际大气中的能量循环过程
实际大气中的运动=
与大气环流相联系的纬向平均运动(“流”)+涡旋运动(“波”)
这样,考虑以下4个能量之间的转化:
(2)全位能与动能转换
同时在两个方程中出现,且正负相反;是全位能和动能之间的转换项。
且全位能变化多少,动能也要相应变化多少。体现了二者之间的转换关系,及转换机制。
01
所以,垂直运动是闭合系统中动能与全位能转换的必要条件
02
如果 则系统中有上升运动,也有下沉运动
进一步:
物理本质:暖空气-轻-上升
如果 正相关,即: 暖区加热,冷区冷却,使得等压面上本来就存在的温度差增大,故有效位能增加。 在南北方向上 在东西方向上
反之,如果是负相关,即: 暖区冷却,冷区加热,则温度分布趋向均匀,有效位能减小。 平均有效位能和扰动有效位能的转换: :由涡旋运动引起的通过某一纬圈的热量的南北输送
:由涡旋运动引起的某个纬带内热量的净输出量: 暖区有热量的净输出,冷区有热量的净输入。
闭合系统中的动能方程
已知单位质量质点的动能方程为:
中小尺度动力气象学
![中小尺度动力气象学](https://img.taocdn.com/s3/m/688da87d31b765ce050814a5.png)
中小尺度天气动力学第一章中尺度天气系统的特征1、中尺度天气系统:时间尺度和空间尺度比常规探测站网小,但比积云单体的生命周期及空间尺度大得多的一种尺度。
即水平尺度为几公里到几百公里,时间尺度由1小时到十几小时。
2、划分依据及分类:1)早期的经验分类天气系统——大尺度、中尺度和小尺度空间尺度分别为:106m、105m和104m时间尺度对应为:105s、104s和103s2)依据物理本质对天气系统进行分类(动力学分类方法)依据无量纲数罗斯贝数Ro 和拉格朗日时间尺度T的尺度分类行星尺度、气旋尺度、中尺度、积云尺度、小尺度3)Orlanski的综合分类(观测与理论分类)大尺度(α、β)中尺度(α、β、γ)小尺度3、中尺度大气运动的基本特征1)空间尺度范围广,生命周期跨度大;2)气象要素梯度大;3)散度、涡度与垂直速度;4)非地转平衡和非静力平衡;5)质量场和风场的适应;6)小概率和频谱宽、大振幅事件第二章地形性中尺度环流1、中尺度大气环流系统的分类:地形性环流系统、自由大气环流系统2、地形波的基本类型主要依赖风的不同类型(1)层状气流小风、层状气流。
平滑浅波,波动只发生在山脉上空的浅层,向上很快消失——山脉波(mountain wave)(2)驻涡气流:在山顶高度以上风速较大时,可能在山脉背风坡形成半永久性的涡动,上面则有气流的平滑浅波——驻涡(standing eddy)(3)波动气流当风速随高度增大时,在背风坡出现波动气流——背风波(lee wave)。
背风波可以伸展到对流层上层和平流层。
(4)转子气流:在背风波出现时,当垂直方向有风速极大值出现时,则会形成转子气流(rotor streaming)。
驻涡和转子是背风波的特殊形式!3、背风波的形成、特征及大气条件背风波是地形波的一种类型,由于障碍物引起空气垂直振荡而造成的。
特征:波长:1.8~70km之间,多为5~20km左右。
波长一般随高度而变,高层较长,低层较短。
动力气象学概要课件
![动力气象学概要课件](https://img.taocdn.com/s3/m/46d8b6abf9c75fbfc77da26925c52cc58ad6905b.png)
数值模式是大规模数值计算中用来描述和预测大气系统的软解方案、数据输入和输出等模
块。
数值模式广泛应用于天气预报、气候模拟和环境评估等领域。
03
数值模式的误差和不确定性
数值模式的误差主要来源于模式分辨率、物理过 程参数化和初始条件等方面。
不确定性主要表现在模式输入数据的误差、模式 本身的不完善以及计算误差等方面。
为了减小误差和不确定性,需要不断提高数值模 式的精度和可信度。
数值模式的未来发展和挑战
随着计算机技术的不断发展,数值模式的分辨率和计算能力将得到进一步 提高。
未来数值模式将更加注重物理过程参数化的改进和精细化,以更准确地模 拟和预测大气系统的行为。
同时,随着大数据和人工智能技术的发展,如何利用这些技术提高数值模 式的精度和效率也是未来发展的重要方向。
航空气象服务
提供航空气象预报、机场天气预报、航空气象观测和报 告等服务,保障航空安全。
航海气象服务
提供航海气象预报、海洋气象观测和报告等服务,保障 航海安全。
THANK YOU
感谢各位观看
03
大气的运动和变化
大气的热力和动力学过程
总结词
描述大气中热力和动力学过程对大气的运动和变化的影响。
详细描述
大气的热力和动力学过程是大气运动和变化的主要驱动力。这些过程包括温度 差异引起的对流、风速差异引起的湍流等。这些过程通过能量传递和物质迁移 等方式,影响大气的运动和变化。
大气中的波动和涡旋
动力气象学概要课件
目录
• 动力气象学简介 • 大气的基本结构和特性 • 大气的运动和变化 • 动力气象学的数值模拟和预测 • 动力气象学的应用和实践
01
动力气象学简介
中小尺度动力气象学
![中小尺度动力气象学](https://img.taocdn.com/s3/m/20c9f51f2e3f5727a4e96256.png)
中小尺度天气动力学第一章中尺度天气系统的特征1、中尺度天气系统:时间尺度和空间尺度比常规探测站网小,但比积云单体的生命周期及空间尺度大得多的一种尺度。
即水平尺度为几公里到几百公里,时间尺度由1小时到十几小时。
2、划分依据及分类:1)早期的经验分类天气系统——大尺度、中尺度和小尺度空间尺度分别为:106m、105m和104m时间尺度对应为:105s、104s和103s2)依据物理本质对天气系统进行分类(动力学分类方法)依据无量纲数罗斯贝数Ro 和拉格朗日时间尺度T的尺度分类行星尺度、气旋尺度、中尺度、积云尺度、小尺度3)Orlanski的综合分类(观测与理论分类)大尺度(α、β)中尺度(α、β、γ)小尺度3、中尺度大气运动的基本特征1)空间尺度范围广,生命周期跨度大;2)气象要素梯度大;3)散度、涡度与垂直速度;4)非地转平衡和非静力平衡;5)质量场和风场的适应;6)小概率和频谱宽、大振幅事件第二章地形性中尺度环流1、中尺度大气环流系统的分类:地形性环流系统、自由大气环流系统2、地形波的基本类型主要依赖风的不同类型(1)层状气流小风、层状气流。
平滑浅波,波动只发生在山脉上空的浅层,向上很快消失——山脉波(mountain wave)(2)驻涡气流:在山顶高度以上风速较大时,可能在山脉背风坡形成半永久性的涡动,上面则有气流的平滑浅波——驻涡(standing eddy)(3)波动气流当风速随高度增大时,在背风坡出现波动气流——背风波(lee wave)。
背风波可以伸展到对流层上层和平流层。
(4)转子气流:在背风波出现时,当垂直方向有风速极大值出现时,则会形成转子气流(rotor streaming)。
驻涡和转子是背风波的特殊形式!3、背风波的形成、特征及大气条件背风波是地形波的一种类型,由于障碍物引起空气垂直振荡而造成的。
特征:波长:1.8~70km之间,多为5~20km左右。
波长一般随高度而变,高层较长,低层较短。
《动力气象》课件
![《动力气象》课件](https://img.taocdn.com/s3/m/b24724b47d1cfad6195f312b3169a4517723e5a3.png)
动力气象的应用案例
航空航天
动力气象在航空航天领域的天 气预报和飞行安全中发挥着重 要作用。
能源
动力气象用于可再生能源的规 划、风能、太阳能等的资源评 估和利用。
气候研究
动力气象帮助科学家了解和预 测气候变化,为应对气候变化 提供依据。
动力气象的基本原理
1 气象要素与动力学关系
了解气象要素与动力过程的基本概念,掌握气象要素对动力过程的影响。
常用的动力气象指标
1 风场和涡度指标
通过分析风场和涡度数 据,可以了解大气的运 动和湍流现象。
2 温度和湿度指标
温度和湿度是描述大气 状态的重要指标,对动 力气象有着重要影响。
3 大气层结指标
大气层结的变化对于气 象现象的发生和发展具 有重要意义。
动力气象预报技术
1
数值模式和动力模拟
运用数值模式和动力模拟进行天气的预测和模拟,提高预报准确性。
2
数据分析和观测技术
通过数据分析和观测技术获取气象数据,为预报提供可靠的基础。
3
预报系统的评估和改进
对预报系统进行评估和改进,不断提高预报技术和准确性。
《动力气象》PPT课件
动力气象是研究大气运动和天气现象相互关系的跨学科领域。本课件将深入 探讨动力气象的概念、原理、指标、预报技术与应用案例,帮助您全面了解 这一重要领域。
主题背景介绍
概念与重要性
动力气象研究大气运动和天气现象之间的关 系,对于天气预报、气候变化等具有重要意 义。
应用领域
动力气象在航空航天、能源、气候研究等领 域有广泛应用,对社会经济发展具有重要影 响。
《新编动力气象学》习题答案
![《新编动力气象学》习题答案](https://img.taocdn.com/s3/m/89446633e009581b6bd9ebd9.png)
=
2p f
u02
+
v02
cos(
ft
+
tan -1
u0 v0
)
8
15
(1) u = u0 cos ft + v0 sin ft, v = v0 cos ft - u0 sin ft (2) V = u2 + v2 (3) (x - a)2 + ( y - b)2 = u02 + v02
f (4) r = u02 + v02 = 68568(m)
10
(1) u = -2x, v = 2 y , w = 2zt 1+t 1+t
(2) 不是 (3)ìíîzx=y1=1
ìx = e-2t (4)ïí y = (1+ t)2
ïîz = e2t (1+ t)-2
11
3
(1) 不存在势函数,存在流函数y= 1 y2 - y + tx 2
ì ïx ï
ur
ur ur
(2) Ñ ´V a = Ñ ´V + 2W
10 d ( rv ) = 0 dt rd
11
(1) w0 = 0.2(m × s-1) , 爬坡 (2) ¶p = 0.0501(N × m-2 × s-1) = 5.5(hPa / 3hr)
¶t (3) w = -0.731´10-2 (m × s-1),下坡
¶t
+
u
¶v ¶x
+
v
¶v ¶y
=
-
1 r
¶p ¶y
ï ï-(u î
¶w ¶x
+
v
¶w ) ¶y
成信工动力气象学讲义07热带大气动力学
![成信工动力气象学讲义07热带大气动力学](https://img.taocdn.com/s3/m/af1674a0cd22bcd126fff705cc17552706225e7a.png)
§1热带大气运动的主要特征§2热带大气运动的尺度分析§3热带大气波动§4热带扰动发生、发展的机制§5热带气旋结构的动力学分析重点:热带大气的基本特征,热带波动,CISK 理论§1热带大气运动的主要特征1f 的数值比较小,,比中高纬度小一个量级(但较大),所以热带地区采用赤道51010f s --=ββ平面近似:。
由于科氏力较小,大尺度运动是非地转的,但准静力平衡仍成立。
2()f y aββΩ==2大气运动的主要能源:太阳辐射能大部分在热带吸收,所以是大气运动的主要能源区,是平均动能的制造源。
3湿空气运动:凝结潜热能作为热带系统发展的主要能源。
4对流层的中、下层的层结稳定度较弱,有利于对流与物理量的垂直输送。
5水平温差较小,大气斜压性弱,所以热带某些地区的大气可视为准正压。
6主要的天气系统:1)积云对流云团(积云对流群):中、小尺度运动,水平尺度:几百千米,生命史:3—4天。
2)热带气旋(台风typhoon ,飓风Hurricane ):气旋式涡旋,低压,眼结构,暖心,螺旋云带。
易产生大风、暴雨等灾害性天气,水平尺度:几百千米,生命史:3天左右。
飓风一词源自加勒比海言语的恶魔Hurican,亦有说是马雅人神话中创世众神的其中一位,就是雷暴与旋风之神Hurakan。
台风一词则源自希腊神话中大地之母盖亚之子Typhon,它是一头长有一百个龙头的魔物,传说其孩子就是可怕的大风。
台风一词的由来:英语typhoon :(1)来自汉语(土耳其人在他们的"命名书"里说"TAYFUN"是指发生在中国海及西太平洋上的大风,译自“大风”(dais fang ),1560年进入英语。
(2)外来语(《辞海》,《英语大字典》:源自希腊语,与TYPHUS 有关.)中文「台風」一詞:(1)來自中国(2)源于日語台风的词汇几乎都一样,只是写法不同而已,而发音则几乎相同。
动力气象复习资料(名词解释和简答)
![动力气象复习资料(名词解释和简答)](https://img.taocdn.com/s3/m/7327db71a26925c52cc5bfa1.png)
一、各章节重点内容第一章:地球大气的基本特征?第二章:描述大气运动的基本方程组包括哪些?根据P23(2.52)推导位温公式。
根据球坐标运动方程组P28(2.78),证明绝对角动量守恒P29(2.82)式。
绝对坐标系、旋转坐标系、球坐标系和局地直角坐标系的区别,作图说明。
第三章:掌握尺度分析的方法,能对简单的方程进行尺度分析。
第四章:z坐标转化到p坐标所需要的数学物理条件,P坐标的优缺点?第五章:自由大气中根据力的平衡存在哪几种平衡?平衡的关系式是什么?正压大气与斜压大气的概念。
推导热成风方程(p94-p95),并利用热成风判断冷暖平流。
第六章:自然坐标系中,推导涡度的表达式,并分析各项的意义P111。
根据z坐标系中的水平动量方程推导涡度方程,并简要解释各项的意义。
根据位涡守恒原理解释形成过山槽的原因。
第七章:有效位能的概念。
内能、重力位能、动能、潜热能的表达式。
第八章:大气中行星边界层的主要特征,公式推导及解释埃克曼抽吸?公式推导及解释旋转衰减作用?第九章:利用微扰动法和标准波型法分析大气波动特征,如重力外波、重力惯性外波?或者,根据布西内斯克近似方程组分析,重力内波或惯性内波?第十章:描述地转演变过程?地转适应过程和演变过程在哪些方面体现了区分?第十一章:通过无量纲化方程组,利用摄动法推导第一类正压大气零级和一级方程组(P255-P257)。
利用P260(11.45)推导位势倾向方程并说明位势倾向方程中各项物理意义,或推导ω方程及解释各项物理意义。
第十二章:几个概念:惯性不稳定、正压不稳定、斜压不稳定、对称不稳定第十四章:CISK,热带大气动力学的基本特征名词解释(20分左右)简述题(20分左右)简单计算(10分左右)简单推导(10分左右)复杂推导、证明、解释等题(40分左右)二、名词解释要求(1)冷暖平流,(2)罗斯贝数,(3)梯度风,(4)地转风,(5) 平面近似,(6)Ekman抽吸,(7)旋转减弱,(8)惯性不稳定,(9)斜压不稳定,(10)CISK,(11)正压不稳定,(13)尺度,(14)基别尔数,(15)里查森数,(16)热成风,(17)地转偏差,(18)速度环流,(19)涡度,(20)有效位能,(21)摄动法,(22)惯性稳定,(23)中尺度对称不稳定,(24)条件不稳定,(25)气压梯度力,(26)重力,(27)平衡流场,(28)Q矢量,(29)位势倾向,(30)质量守恒数学表达三、理解物理过程要求1.地转偏差及其作用?2.有效位能及其性质?3.尺度,尺度分析法,尺度分析法的不确定性?4.为什么说等压面图上等高线愈密集的地区水平气压梯度力愈大?5.p坐标建立的条件是什么?p坐标的优缺点是什么?6.简述大气长波的形成机制?7.什么是微扰动法?8. 斜压不稳定波的结构有哪些特点?9.简述科里奥利力随纬度的变化?10.大气中考虑哪几种能量?简述净力平衡大气中全球能量平衡过程?11.薄层近似?12.局地直角坐标系?与一般直角坐标系的区别?13.热力学变量尺度及其特征?14.什么是σ坐标系?15.位势涡度守衡及其过山槽的形成?16.标准波形法?17.重力惯性外波生成的物理机制是什么?为什么说当地转平衡遭到破坏后,就会激发出重力惯性外波?而在地转平衡条件下,不存在或者说滤去了重力惯性外波?18.什么是Boussinesq近似?什么是滞(非)弹性近似?采用Boussinesq近似或滞弹性近似为什么可以滤去声波?从物理上说明静力平衡近似可以滤去沿垂直方向传播的声波,但不能滤去沿水平方向传播的Lamb波。
《动力气象学》课程笔记
![《动力气象学》课程笔记](https://img.taocdn.com/s3/m/904062dae43a580216fc700abb68a98271feace8.png)
《动力气象学》课程笔记绪论1. 动力气象学发展史1.1 重大理论发现动力气象学的早期发展主要基于对大气运动的观测和理论推测。
19世纪,科学家们开始系统地研究大气运动,并逐渐揭示了影响大气运动的一些关键因素。
这些因素包括:- 科里奥利力:由法国物理学家加斯帕尔·科里奥利首次提出,它解释了地球自转导致的风的偏转现象。
- 地转偏向力:由于地球自转,大气中的气流会相对于地面产生偏转,这个力就是地转偏向力。
- 大气压力和密度变化:大气压力和密度的变化会影响大气运动,这些变化与温度、湿度等因素有关。
1.2 数值天气预报20世纪中叶,随着计算机技术的发展,动力气象学进入了一个新的时代。
科学家们开始利用计算机来求解大气运动方程组,这种方法被称为数值天气预报。
数值天气预报的出现极大地提高了天气预报的准确性,使得气象学成为了一门更加精确的科学。
1.3 动力气象学发展新阶段近年来,动力气象学在气候变化研究中的应用变得越来越重要。
科学家们通过研究大气运动、能量转换和波动等现象,揭示了气候变化的原因和规律。
此外,动力气象学在防灾减灾、水资源管理等领域也发挥着重要作用。
2. 动力气象学的基本概念2.1 大气运动方程组大气运动方程组是描述大气运动的物理方程,包括连续性方程、动量方程和能量方程。
这些方程组基于质量守恒、牛顿第二定律和能量守恒等物理定律,为我们提供了研究大气运动的基本工具。
2.2 涡旋运动大气中的涡旋运动是天气系统和气候变化的重要因素。
涡旋运动包括环流、涡度和螺旋度等概念。
了解涡旋运动有助于我们预测天气变化和气候趋势。
2.3 准地转运动准地转运动是指大气中接近地转平衡状态的运动。
在这种状态下,大气运动主要受到地转偏向力和压力梯度力的作用。
准地转运动为我们提供了一个简化的大气运动模型,便于研究和预测天气。
2.4 大气波动大气波动是大气运动中的周期性变化,包括重力波、惯性重力波和Rossby 波等。
这些波动在天气系统和气候变化中起着关键作用,了解它们有助于我们预测天气和气候。
《动力气象学》课程辅导资料
![《动力气象学》课程辅导资料](https://img.taocdn.com/s3/m/7d76ff0efbd6195f312b3169a45177232f60e4c2.png)
《动⼒⽓象学》课程辅导资料《动⼒⽓象学》课程辅导资料知识点归纳总结第⼀章绪论1. 研究地球⼤⽓运动时的基本假设连续介质假设:研究⼤⽓的宏观运动时,不考虑离散分⼦的结构,把⼤⽓视为连续流体。
从⽽,表征⼤⽓运动状态和热⼒状态的各种物理量,例如⼤⽓运动的速度、⽓压、密度和温度等可认为是空间和时间的连续函数,并且经常假设这些场变量的各阶微商也是空间和事件的连续函数。
是研究⼤⽓运动的基本出发点。
理想⽓体假设:⽓压、密度、温度之间的关系满⾜理想⽓体状态⽅程。
2. 地球⼤⽓的运动学和热⼒学特性有哪些?⼤⽓是重⼒场中的旋转流体:⼤⽓运动⼀定是准⽔平的;静⼒平衡是⼤⽓运动的重要性质之⼀。
科⾥奥利⼒的作⽤:⼤尺度运动中科⾥奥利⼒作⽤很重要;中纬度⼤尺度运动中,科⾥奥利⼒与⽔平⽓压梯度⼒基本上相平衡——地转平衡;地球旋转⾓速度随纬度的变化,与每⽇天⽓图上的西风带中的波动有关;起稳定性作⽤——位能、动能的转换——锋⾯。
⼤⽓是层结流体:⼤⽓的密度随⾼度是改变的——层结稳定度;不稳定层结⼤⽓中积云对流;稳定层结⼤⽓中重⼒内波。
⼤⽓中含有⽔份:相变潜热——低纬度扰动和台风的发展。
⼤⽓的下边界是不均匀的:湍流性;海陆分布和⼤⽓环流。
3. ⼤⽓运动的多尺度性⼤⽓运动⽆论在时间尺度还是在⽔平尺度上都具有很宽的尺度谱,不同尺度系统在性质上有很⼤差异,对天⽓的影响也不同,不同尺度运动系统之间还存在相互作⽤。
⽽根据流体⼒学和热⼒学原理建⽴起来的⼤⽓运动⽅程组,表征了⼤⽓运动普遍规律,从物理上讲,它⼏乎描述了各种尺度运动和它们之间的相互作⽤,⽅程组是⾼度⾮线性的,难以求解。
因此,在动⼒⽓象中,常对各种运动系统进⾏尺度分类,利⽤尺度分析法分析各类运动系统的⼀般性质,建⽴各类运动系统的物理模型(第三章)。
第⼆章描写⼤⽓运动的基本⽅程组1. 作⽤于⼤⽓的⼒,哪些是真实⼒,哪些是视⽰⼒?真实⼒:⽓压梯度⼒、地球引⼒、摩擦⼒,既改变⽓流的运动⽅向,也改变速度的⼤⼩视⽰⼒:科⾥奥利⼒、惯性离⼼⼒,只改变⽓流的运动⽅向,不改变速度的⼤⼩2. 描述⼤⽓运动的基本⽅程组和各⾃遵守的物理原理⽜顿第⼆定律——运动⽅程质量守恒定律——连续⽅程理想⽓体实验定律——状态⽅程能量守恒定律——热⼒学能量⽅程⽔⽓质量守恒——⽔汽质量守恒⽅程3. 分析流体运动的两种基本⽅法拉格朗⽇⽅法:着眼于微团,研究其空间位置及其他物理属性随时间变化的规律,推⼴到整个流体运动。
动力气象学教材笔记
![动力气象学教材笔记](https://img.taocdn.com/s3/m/64bb6917c950ad02de80d4d8d15abe23482f0326.png)
动力气象学教材笔记第一章引言1.1 研究背景与目的动力气象学,作为气象科学领域的一个重要分支,专注于探索大气运动的基本规律以及这些规律如何与天气和气候变化相互联系。
在全球气候变化日益严峻的背景下,动力气象学的研究不仅具有深远的科学意义,更对实际应用领域,如天气预报和气候预测,具有不可替代的指导价值。
随着全球气候变暖趋势的加剧,极端天气事件频繁发生,给人类社会和经济发展带来了巨大挑战。
这些极端天气事件背后的大气动力过程复杂多变,亟需通过深入的动力气象学研究来揭示其内在机制。
此外,提高天气预报和气候预测的准确性也离不开对动力气象学基本理论的深入理解和应用。
因此,本文旨在系统梳理和总结动力气象学的核心理论,以期为更好地理解和预测大气运动提供坚实的理论基础。
在动力气象学的研究中,大气运动的基本规律是核心内容。
这些规律包括了大气中的能量守恒、动量守恒、质量守恒等基本物理定律,以及由此衍生出的一系列重要理论,如大气动力学方程、大气稳定性理论等。
这些理论和规律为我们理解和解释大气中的各种现象提供了有力的工具。
例如,通过对大气动力学方程的研究,我们可以了解大气中能量的转换和传递过程,从而揭示出风暴、气旋等天气系统的发展演变机制。
动力气象学还关注大气运动与天气、气候变化的内在联系。
天气和气候是大气运动在不同时间和空间尺度上的表现,二者之间存在着密切的相互作用和反馈机制。
动力气象学通过研究这些相互作用和反馈机制,不仅有助于我们更全面地认识大气系统的复杂性,还能为改进天气预报和气候预测模型提供科学依据。
例如,近年来发展起来的基于动力气象学原理的数值天气预报模型,已经在实际应用中取得了显著的成效,大大提高了天气预报的准确性和时效性。
动力气象学的研究还涉及大气与地球其他圈层(如水圈、生物圈、岩石圈)的相互作用。
这些相互作用对全球气候系统的稳定和发展具有重要影响。
例如,海洋与大气之间的热量和水分交换是影响全球气候的重要因素之一;而地表植被的变化则可能通过改变地表的反射率和粗糙度来影响大气的温度和风速等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 某处的位温-等压面上平均位温
如果是正压大气,等压面上位温处处相等,
0, A* 0
反之,斜压大气,等压面上位温分布不均匀
2 0; A* 0
有效位能与大气的斜压性相对应, 正压大气没有有效位能;
斜压性越强,力管项大,有效位 能越大。
也称有效位能为斜压能。
第五节 实际大气中的能量循环过程
V V V。
即:V V V
大气运动=纬向平均运动+涡旋运动 =大气环流+天气系统
K
1 2g
P1
V
2
dP
P2
纬向平均运动动能;
K
1
P1
V
2
dP
2g P2
涡旋运动或扰动运动动能。
K 与K 之间的相互转换,体现了大气环流
与天气系统(瞬变波)间的相互作用
波-流相互作用
4、潜热能
内能增加 温度升高 气柱膨胀 质心抬什 位能增加
大气的内能与位能之间是同向变化
如:大气动能增加,必定是内 能与位能同时减少向动能转换
1、无限高气柱的情形:
位能:
P1 zdP P0 zdP
P2
0
P0 [d (zP) Pdz] 0
zP P0 ,z0
0
Pdz
P0,z
lim
此时,净浮力向上,因此要反抗净浮力作功。 此时,气团温度高于环境,产生了等压面上 的温度(位温)差。 积累的有效位能=反抗净浮力作的功。
当把单位质量气团从
z=0移到z=z的过程中,
受净浮力 N 2 z
的作用。
干绝热过程:
d 0
dz
到达z=z高度,气团的位温仍是 0 (0)
而z=z高度等压面上的平均位温是 0 (z)
K
Vh K
K p
Vh
D
Vh
K
K p
K ( Vh
)
p
Vh
K
K
p
t
K
(Vh K )
K
p
Vh
D
如系统质量为M,则系统的动能方程为:
t MKdM M (VK )dM
M Vh dM
DdM
M
KVd
KV
d
KVnd 0
闭合系统的动能方程:
C z2 P A z1
Tdz
第二节、大气动能方程 ——讨论大气动能变化的机制
一、单位质量质点的动能方程
已知P坐标系下水平运动方程为:
dVh dt
f Vh
F
"Vh eq" 单位质量质点的动能方程:
d dt
(
1 2
Vh
2
)
Vh
Vh
(
f Vh )
F
Vh
Vh ( f Vh )科氏力作功项=0
在这个等压面上,产生了位温差:
0 (0)
0 (z)
0
z
z
反抗净浮力所作的功:
A z N 2 zdz 1 N 2 z 2
0
2
单位质量气块具有的有效位能:
A
1 2
N
2
(
0
)2
z
单位截面积的气柱具有的有效位能:
2
A*
0
1 2
N2
0
z
dz
P0 0
1 2g
N2(
0
)2 dP
=-Vh
Vh
p
(Vh )
(
p
) p
(Vh
)
p
( )
p
(V )
对闭合系统积分,得:
M
(Vh
)dM
M (V )dM MdM
MdM
t
MKdM
MdM
MDdM
2、全位能方程
已知热能方程:
Cp
dT dt
dP dt
Q
dE Q
dt
dE dt
E t
Vh
E
E p
— —由此讨论这些能量之间的相互转换
一、纬向平均运动动能方程
和涡旋运动动能方程
运动方程 动能方程
V 运动方程:
Vh
Vh t
t
K;
纬向平均动能方程:Vh
Vh t
t
K;
这里:K
1 2
Vh
2
所以首先要求出对应的纬向平均运动方程
已知水平运动方程:
Vh t
V Vh
h
f Vh
FT
"eq"得:
E t
Vh
E
E p
E(
Vh
)
p
E t
(Vh E)
p
(E)
E
(EV )
t
对闭合系统积分,得:
dE
E
M dt dM M t dM M (EV )dM t MEdM
闭合系统全位能方程:
t
MEdM
MdM
M
QdM
3、闭合系统中的能量守恒与转换:
(1)闭合系统中的动能方程+全位 能方程:
第四节、有效位能
一、有效位能的概念: 动能与全位能间的转换,是动能变
化,即天气系统变化的重要机理。 但大气中的全位能不能被全部释放,
在考虑天气系统变化时,有意义的是能 够转换成动能的那部分全位能。
有效位能,可以理解为:能够被释 放出来的那部分全位能。
例如:水电站:位能——动能——电能。
总是建在落差大的地方,而不是建在 位能大的地方。
且全位能变化多少,动能也要相 应变化多少。体现了二者之间的 转换关系,及转换机制。
进一步:
MdM
M
RT P
dM
如果=0,则 MdM=0
所以,垂直运动是闭合系统中动能与 全位能转换的必要条件
如果 0 则系统中有上升运动,也
有下沉运动;且由连续方程知:上
升质量等于下沉质量:
1 2
M
:
0
1 2
M
:
0
MdM
M
RT P
dM
如果分布均匀,则MdM=0
如果(T)与是负相关,即:
大(T大)空气、 0 暖空气上升
小(T小)空气、 0 冷空气下沉
这时有MdM
0
t
t
MKdM MEdM
0 0
全位能向动能转换,反之亦然。
物理本质:暖空气-轻-上升 冷空气-重-下沉
系统质心下降,全位能减少,动能增加
Vh t
V Vh
V Vh
h
f Vh
FT
Vh " eq",得:
t
K
V K
Vh是涡旋运动的动量通量。
由连续方程:
u v 0
x y p
V 0; V 0
对全球(或半球)大气
——闭合系统——通量项=0
V K (VK ) K V (VK )
R
z2 z1
Tdz
AR
z1P1 z2 P2 CV
C z2 V z1 A
Tdz
z1P1 z2 P2 0.41I
∴对有限高气柱而言,位能不是 简单的与内能成正比,还与气柱 的底部、顶部的高度和气压有关。
E +I
z1P1
z2 P2
AR CV CV
C z2 V Tdz
A z1
z1P1 z2P2
F Vh=-D为粘性力作功项,D 0
Vh 为压力剃度力作功项
∴动能的来源只能来自压力梯度力作功
单位质量质点的动能方程:
d dt
K
Vh
D
讨论:
1、地转运动
Vg 0
系统动能不发生变化。
∴要使系统动能发生变化,一定要 有穿越等位势高度线的运动
——非地转运动。
2、风从高位势吹向低位势:
1 A
CV
T
这里,CVT的单位是卡,A 热功当量。
1J=A卡,1卡= 1 J A
dz厚度的簿块的内能:
dI
1 A
CV
Tdz
Z1—Z2单位截面积气柱所具有的内能:
I CV z2 Tdz
A z1
P坐标下:
I CV P2 TdP CV P1 TdP
Ag P1
Ag P2
3、动能 ——标志着天气系统的强度。
t
KdM
M
M Vh
dM
DdM
M
第三节 闭合系统的能量转换与守恒
闭合系统动能增加,则一定是
压力梯度力作正功 作功角度; 全位能向动能转换 能量转换角度。
利用闭合系统中的动能与全位 能方程,考察闭合系统动能变化的 同时,全位能的变化情况,讨论二 者的转换关系。
1、动能方程 :
Vh
Vh ( Vh p )
Vh V Vh
(ui vj ) (i (V )u j (V )v)
u (V )u v (V )v)
V u (V u) u V (V u);
V v (V v)
Vh V Vh u V u v V v
CV
CV
E CP CV
Tdz CP
Tdz
CV A 0
A0
单位质量气团: CP T 焓 A
即气柱的全位能就是气柱的焓
2、有限高气柱的情形:
P1 zdP zP z1,P1 z1 Pdz
P2
z2 ,P2
z2
(z1P1 z2 P2 )
z2 Pdz
z1
( z1 P1
z2 P2 )
单位质量气块所具有的动能:
1
V2
2
dz厚度的簿块所具有的动能:
dK
1
dzV 2
2