金属晶体金属堆积方式

合集下载

剖析2016年高考大纲新变化点——金属晶体常见的堆积方式

剖析2016年高考大纲新变化点——金属晶体常见的堆积方式

剖析2016年高考大纲新变化点——金属晶体常见的
堆积方式
1. 正交晶体:由许多晶格元素组成的具有规则堆积的结构,其晶格元素在每个晶粒中的位置与周围的晶格元素的位置和比例都有重要差異。

2. 调控晶体:由相同晶格元素组成,但它们位置上有重要差别,也可以形成一种调节链状结构。

3. 球形晶体:由多个层层包裹的晶格元素组成,体积大小较小,层状的堆积过程分为多门晶体和单门晶体。

4. 晶胞晶体:一种晶体,由不规则的晶格元素及其之间的关系而成,大多数以堆积方式出现在低温下或平衡条件下,其解析度相对较高。

金属晶体堆积方式

金属晶体堆积方式

金属晶体堆积方式 的研究意义和展望
提高材料的力学性能,如强度、硬度、韧性等 优化材料的电学、热学和磁学性能 实现材料的功能化与智能化,如传感器、驱动器等 探索新型材料,推动科技进步和产业发展
金属晶体堆积方 式的研究有助于 深入理解物质结 构和性质
金属晶体堆积方 式的多样性是决 定金属材料性能 的重要因素
添加标题
添加标题
添加标题
添加标题
金属晶体的堆积方式会影响其物理 性质,如导电性、热导率等。
了解金属晶体的堆积方式对于材料 性能的优化和新型材料的开发具有 重要的意义。
特点:金属晶体堆积方式具有高度 的对称性和规则性,不同金属晶体 堆积方式的差异较大。
影响因素:金属晶体堆积方式受金 属原子半径、金属键类型等因素影 响。
添加标题
添加标题
添加标题
添加标题
应用:金属晶体堆积方式对金属的 物理性质和化学性质有重要影响, 如导电性、耐腐蚀性等。
实验研究:通过X射线衍射、中子 衍射等实验手段研究金属晶体堆积 方式。
金属晶体堆积方式在材料科学中的应用 金属晶体堆积方式在电子器件制造中的应用 金属晶体堆积方式在航空航天领域的应用 金属晶体堆积方式在生物医学领域的应用
金属晶体堆积方式的形成原因 是为了实现空间利用率的最大 化。
通过合理的堆积方式,金属晶 体可以获得更高的密度和更强
的机械性能。
金属晶体堆积方式的形成还受 到金属原子间相互作用力的影
响。
金属晶体堆积方式 的特点和应用
金属晶体堆积方式的特点包括周期 性、对称性和密堆积等。
金属晶体的堆积方式在材料科学和 工程领域具有广泛的应用,如金属 材料、催化剂等。
热性能。
金属晶体的堆 积方式决定了 其物理和化学

金属晶体原子堆积方式

金属晶体原子堆积方式
前视图
A
2
1
3
B
6
4
A
5
B
A
(2)ABCABC…堆积方式
▪ 第三层小球对准第一层小球空穴的2、4、6位。
▪ 第四层同第一层。
前视图
▪ 每三层形成一个周期地紧密堆积。
A
C
2 13
2 13
B
2 13
A
64 5
64 5
64C
5
B
A
▪ 俯视图: ABAB…堆积方式 ABCABC…堆积方式
(1)ABAB…堆积方式
a 空间利用率= V球 100%
V晶胞
4 4 r3 3 100% =74%
16 2r3
堆积方式及性质小结
堆积方式 晶胞类型 空间利 配位数 用率
实例
简单立 简单立方 方堆积
体心立方 密堆积
体心立方
六方最 密堆积
六方
面心立方 面心立方 最密堆积
52% 68% 74% 74%
6
Po
8
Na、K、Fe
12 Cu、Ag、Au
空间利用率只有52%,是金属中最 不稳定的结构,只有少数金属如αPo属于这种类型。
(2)体心立方堆积 (钾型)
体 心 立 方 晶 胞
▪ ①配位数: 8 上下层各4
56 87 12 43
▪ ②×8
+
1=
2
▪ ③金属原子半径 r 与正方体边长 a 的关系:
ba
20多金属属于体心立方晶体。
活动与探究3 三维空间里密置层金属原子的堆积方式
▪ 将密置层的小球在一个平面上黏合在一起, 再一层一层地堆积起来(至少堆4层),使 相邻层上的小球紧密接触,有哪些堆积方式?

金属原子堆积方式

金属原子堆积方式

金属原子堆积方式
金属原子堆积方式是指金属原子在固态结构中的排列方式。

金属原子大多具有较高的离子半径和较少的价电子,因此它们易于形成紧密堆积的晶体结构。

金属原子在晶体结构中的排列方式直接影响着金属的物理和化学性质,如密度、硬度、导电性、热传导性等。

金属原子的堆积方式主要有以下几种:
1. 立方密堆积:金属原子在面心立方晶体结构中按照ABCABC的顺序排列。

2. 六方密堆积:金属原子在六方晶体结构中按照ABABAB的顺序排列。

3. 面心立方密堆积:金属原子在面心立方晶体结构中按照ABCABC的顺序排列。

4. 体心立方密堆积:金属原子在体心立方晶体结构中按照ABCABC的顺序排列。

以上四种堆积方式是最常见的金属结构,但也有其他种类的金属结构,如针状晶体、板状晶体等。

不同的金属结构会影响金属的物理和化学性质,因此在材料科学和工程学中,对金属结构的研究是非常重要的。

- 1 -。

金属晶体的三种密堆积方式

金属晶体的三种密堆积方式

金属晶体的三种密堆积方式金属晶体的三种密堆积方式中,原子排列的密堆积方式是指原子在三维空间中紧密排列,以使得晶体的空间利用率达到最大。

密堆积方式可以有效影响金属的密度、强度、硬度等物理性质,因此在材料科学和固体物理中具有重要意义。

通常,金属晶体的密堆积方式主要分为以下三种:面心立方堆积(FCC)、六方最密堆积(HCP)和体心立方堆积(BCC)。

一、面心立方堆积(FCC)面心立方堆积(Face-Centered Cubic, FCC)是一种常见的密堆积方式,其中每个立方体的面上都有一个原子,且每个顶点上也有一个原子。

FCC结构可以看作是由许多面心立方单元重复堆积而成,其代表性金属包括铜(Cu)、铝(Al)、银(Ag)和金(Au)等。

1. 结构特点:在FCC结构中,每个原子都有12个最近邻原子,即配位数为12。

该结构单胞中包含4个原子(8个顶点上的原子分别与相邻单元共享,6个面的原子与邻近单元共享),堆积因子达到0.74,即约74%的空间被原子占据,属于最密堆积结构。

2. 性质:FCC结构由于其紧密的堆积方式,具有较高的塑性和延展性。

因此,FCC金属在室温下一般较易发生滑移,从而产生延展变形。

例如,铜和铝具有良好的延展性,易于加工成型。

3. 堆积方式:在面心立方堆积中,原子在平面上形成紧密的六边形排列,层间顺序为ABCABC 的排列模式。

这意味着每三层后结构重复,形成周期性排列。

4. 应用:FCC结构的金属由于其良好的延展性和抗冲击性,常用于制造电线、金属薄膜和结构材料等。

二、六方最密堆积(HCP)六方最密堆积(Hexagonal Close-Packed, HCP)是一种与面心立方相似的密堆积方式,但其晶体结构为六方柱体,且具有不同的堆积顺序。

HCP结构的代表性金属包括镁(Mg)、钛(Ti)、锌(Zn)和钴(Co)等。

1. 结构特点:在HCP结构中,原子的配位数同样为12,说明其紧密度与FCC相似。

金属堆积

金属堆积


1
2
两 个 密 置 层 密 置 堆 积
三 个 密 置 层 密 置 堆 积
六方堆积
面心立方 堆积
3.六方堆积(镁型)镁、锌、钛等属于六方堆积
第一种: 将第三层球对准第一层的球 A
1 6 5 4
2
3
B
A B
于是每两层形成一个 周期,即 AB AB 堆积方 式,形成六方堆积。
A
上图是此种六方 堆积的前视图
阅读课文P76《资料卡片》,并填写下表
堆积模型 简单立方 钾型( bcp ) 镁型(hcp) 铜型(ccp) 典型代表 空间利 用率 配位数 晶胞
金属晶体的四中堆积模型对比
能力训练
1.下列有关金属元素特征的叙述中正确的是
A.金属元素的原子只有还原性,离子只有氧 化性 B.金属元素在化合物中一定显正价
A
C B A
1 6
2 3
5
4
C B
配位数 12 ( 同层 6, 上下层各 3 )
A 此种立方紧密堆积的前视图
铜型(面心立方最密堆积)
1 ABC铜型面心立方晶胞的抽取
C
B
B
A C B A
A C
B
晶胞内原子数:4
配位数:12 空间利用率: 74% 典型金属:Cu Ag Au
三、金属晶体的四种堆积模型对比
第二节 金属晶体的原子 堆积模型
金属晶体的原子堆积模型
(1)几个概念 配位数:在晶体中与每个微粒紧密相邻的 微粒个数 空间利用率:晶体的空间被微粒占满的体积 百分数,用它来表示紧密堆积的程度
空间利用率= 球体积 晶胞体积 100%
一、 二维平面堆积方式
非密置层
行列对齐,四球一空 非最紧密排列 配位数:4

金属晶体堆积方式

金属晶体堆积方式
人教版高中化学必修三 物质结构与性质
第三章第三节 金属晶体
金属晶体的原子堆积方式
学习目标
熟知金属晶体的原子堆积模型的分类 及结构特点
金属原子在二维空间的放置方式
金属晶体中的原子可看成直径相等的球体,金属原子 排列在平面上有两种放置方式。
非密置层
密置层
金属原子在三维空间的放置方式
金属晶体可看成金属原子在三维空间中堆积而成。金 属原子堆积有如下4种基本模式。 1.简单立方堆积 2.体心立方堆积 3.六方最密堆积 4.面心立方最密堆积
归纳总结
1.堆积原理
组成晶体的金属原子在没有其他因素影响时,在空间的排列大都服从
紧密堆积原理。这是因为在金属晶体中,金属键没有方向性和饱和性,
因此都趋向于使金属原子吸引更多的其他原子分布于周围,并以密堆
积方式降低体系的能量,使晶体变得比较稳定。
2.常见的堆积模型
堆积模型
简单 立方
采纳这种堆积 的典型代表
置层记作A,第二层记作B,B层的球对准A层中的三角形
空隙位置,第三层记作C,C层的球对准B层的空隙,同时
应对准A层中的三角形空隙(即C层球不对准A层球)。这种 排列方式三层为一周期,记为ABC„由于在这种排列中可
以划出面心立方晶胞,故称这种堆积方式为面心立方最密
堆积。 Cu 、 Ag 、 Au 等均采用此类堆积方式。
两层中各 3 个球相接触,故每个球与周围 12 个球相
接触,所以其配位数是 12 。原子的空间利用率最大。 Mg、Zn、Ti都是采用这种堆积方式。
面心立方堆积(ABCABC…)
B
C
A
A C B A C B A
面心立方堆积(ABCABC…)
A C B A C B A

金属晶体堆积方式

金属晶体堆积方式
密置堆:
第三层球放在第二层球的空隙上有两种方式
重复ABC的堆积叫A1堆积,重复单位⃒ABC⃒。
A B A
重复AB的堆积叫A3堆积,重复单位⃒AB⃒。
3、六方最密堆积
抽出六方晶胞,又叫六方最密堆积(hexagonal closest packing)简写为hcp 。
A3堆积:
配位数:12 空间利用率74% 晶胞内含有2个球。
分数坐标:
A
B
A
4、面心立方最密堆积
A1堆积:
抽出立方面心晶胞,又叫面心立方最密堆积(cubic closest packing)简写为ccp 。
配位数12 空间利用率74% 晶胞内含有4个球。
A
A
B
C
x
z
祝同学们学习进步 天天有个好心情。
第三节 金属晶体
2
3
4
1
2
3
4
5
6
-配位数:6
每个晶胞包含一个原子 空间利用率52%
1、简单立方堆积
单击添加文本
单击添加文本理:原子、离子、分子的排布总是趋向于配位数高,空间利用率大的紧密堆积结构方式,最紧密的堆积往往是最稳定的结构。
A B C A

金属晶体中原子堆积方式

金属晶体中原子堆积方式

(三)三维堆积
非密置层 密置层
三、金属晶体基本构型
1.简单立方堆积:
非最紧密堆积, 空间利用率低
边长 = 2r
(2)体心立方堆积(A2):
例:金属钾 K 的体 心立方堆积
体对角线 = 4r 边长=4 3 r/3
(3)六方紧密堆积(A3)
1 2
6 5 4
3
各层均为密置层
于是每两层形成一个周期,即:AB、 AB 堆积方式,形成六方紧密堆积。
边长 = 2 2 r 面对角线 = 4r
四、晶体中有关计算
1.晶胞中微粒数的计算 (1)简单立方:在立方体顶点的微 粒为8个晶胞共享, 微粒数为:8×1/8 = 1 空间利用率: 4лr3/3 (2r)3
= 52.36%
(2)体心立方:在立方体顶 点的微粒为8个晶胞共享,处 于体心的金属原子全部属于 该晶胞。 微粒数为:8×1/8 + 1 = 2
(3)六方晶胞:在六方体顶 点的微粒为6个晶胞共有,在 面心的为2个晶胞共有,在体 内的微粒全属于该晶胞。
微粒数为:12×1/6 + 2×1/2 + 3 = 6
(4)面心立方:在立方体顶点的微粒为8 个晶胞共有,在面心的为2个晶胞共有。 微粒数为: 8×1/8 + 6×1/2 = 4 空间利用率: 4×4лr3/3 (2×1.414r)3
= 74.05%
2.配位数:
每个小球周围距离最近的小球数 简单立方堆积: 体心立方堆积: 六方紧密堆积: 6 8 12 12
面心立方紧密堆积:
(3)六方紧密堆积
A B A B A
A A B B A A
密 置 层
边长 = 2r 高 = 4 6 r/3

金属晶体堆积模型及计算公式

金属晶体堆积模型及计算公式

----体心立方堆积:
5 8 1
6 7 2
4
3
这种堆积晶胞是一个体心立方,每个晶胞含 2 个原子,属于非密置层堆积,配位数 为 8 ,许多金属(如Na、K、Fe等)采取这种 堆积方式。
空间利用率的计算
(2)体心立方:在立方体顶 点的微粒为8个晶胞共享,处 于体心的金属原子全部属于 该晶胞。 微粒数为:8×1/8 + 1 = 2
1200
平行六面体
每个晶胞含 2 个原子
铜型(面心立方紧密堆积)
7 6 5 1 8 9 4 2 3
12
10 11
这种堆积晶胞属于最密置层堆集,配位数 为 12 ,许多金属(如Cu、Ag、Au等)采取这 种堆积方式。
(3)面心立方:在立方体顶点的微粒为8 个晶胞共有,在面心的为2个晶胞共有。 微粒数为: 8×1/8 + 6×1/2 = 4 空间利用率: 4×4лr3/3 (2×1.414r)3
分子间以范德 通过金属键形成的 华力相结合而 晶体 成的晶体
作用力
构成微粒 物 理 性 质 实例 熔沸点
共价键
原子 很高
范德华力
分子 很低
金属键
金属阳离子和自由 电子 差别较大
硬度
导电性
很大
无(硅为半导体) 金刚石、二氧化硅、 晶体硅、碳化硅
很小
无 Ar、S等
差别较大
导体 Au、Fe、Cu、钢 铁等
= 74.05%
堆积方式及性质小结
堆积方式 晶胞类型 空间利 配位数 用率 简单立 方堆积 简单立方 52% 68% 74% 74% 6 8 12 实例
Po Na、K、Fe
体心立方 体心立方 堆积 六方最 密堆积 六方

金属晶体金属堆积方式

金属晶体金属堆积方式

其他金属堆积方式
六方堆积:如 镁、锌等金属 的堆积方式, 原子密排程度 高,强度大,
塑性好。
面心立方堆积: 如铝、铜等金 属的堆积方式, 原子密排程度 较高,强度较 大,导电性好。
体心立方堆积: 如铁、铬等金 属的堆积方式, 原子密排程度 较低,强度较 小,导电性较
差。
简单立方堆积: 如铅、锡等金 属的堆积方式, 原子密排程度 低,强度小,
金属堆积方式的稳定性与其在高温 下的性能表现密切相关,稳定性较 高的堆积方式可以提高金属在高温 下的抗氧化性能和抗蠕变性能。
添加标题
添加标题
添加标题
添加标题
紧密堆积方式可以提高金属晶体的 硬度和稳定性,而开放堆积方式则 有利于金属的塑性和延展性。
金属堆积方式的形成还受到原子间 相互作用力和晶体结构的影响,这 些因素可以影响金属的化学性质和 反应活性。
金属晶体的金属堆积方式
汇报人:XX
金属晶体的基本概念 金属晶体的金属堆积方式 金属堆积方式的形成与特点 金属堆积方式的实际应用 金属堆积方式的研究进展与展望
金属晶体的基本概念
金属晶体的定义
金属晶体是由金属原子或金属离子通过金属键结合而成的晶体。 金属晶体具有金属光泽和良好的导电、导热性能。 金属晶体的结构取决于金属原子的半径和堆积方式。 金属晶体的性质与金属键的强度和方向有关,受到温度、压力等因素的影响。
密排六方堆积
定义:密排六方 堆积是一种金属 晶体的堆积方式, 其中金属原子在 三维空间中以六 方最密堆积的方 式排列。
特点:具有高度 的空间利用率和 稳定性,是金属 晶体中最常见的 堆积方式之一。
应用:广泛存在 于各种金属晶体 中,如镁、锌、 镉等。
形成过程:金属 原子在结晶过程 中,首先形成二 维平面排列,然 后逐渐堆积形成 三维结构。

金属晶体四类晶胞空间利用率的计算

金属晶体四类晶胞空间利用率的计算

金属晶体四类晶胞空间利用率的计算高二化学·唐金圣在新课标人教版化学选修3《金属晶体》一节中,给出了金属晶体四种堆积方式的晶胞空间利用率。

空间利用率就是晶胞上占有的金属原子的体积与晶胞体积之比。

下面就金属晶体的四种堆积方式计算晶胞的空间利用率。

一、简单立方堆积:在简单立方堆积的晶胞中,晶胞边长a等于金属原子半径r的2倍,晶胞的体积V晶胞=(2r)3。

晶胞上占有1个金属原子,金属原子的体积V原子=4πr3/3 ,所以空间利用率V原3/ (3×(2r)3)=52.33﹪。

子/V晶胞 = 4πr二、体心立方堆积:在体心立方堆积的晶胞中,体对角线上的三个原子相切,体对角线长度等于原子半径的4倍。

假定晶胞边长为a ,则a2 + 2a2 = (4r)2, a=4 r/√3 ,晶胞体积V晶胞 =64r3/ 3√3 。

体心堆积的晶胞上占有的原子个数为2,原子占有的体积为V原子=2×(4πr3/3)。

晶胞的空间利用率等于V原子/V晶胞 =(2×4πr3×3√3)/(3×64r3)= 67.98﹪。

三、面心立方最密堆积在面心立方最密堆积的晶胞中,面对角线长度是原子半径的4倍。

假定晶胞边长为a,则a2 + a2 = (4r)2 ,a = 2√2r ,晶胞体积V晶胞=16√2r3。

面心立方堆积的晶胞上占有的原子数为4,原子占有的体积为V原子 = 4×(4πr3/3)。

晶胞的空间利用率等于V原子/V晶胞 =(4×4πr3)/(3×16√2r3)= 74.02﹪.四、六方最密堆积六方最密堆积的晶胞不再是立方结构。

晶胞上、下两个底面为紧密堆积的四个原子中心连成的菱形,边长a = 2r ,夹角分别为60°、120°,底面积s = 2r×2r×sin(60°) 。

晶胞的高h的计算是关键,也是晶胞结构中最难理解的。

金属镁的晶体堆积方式

金属镁的晶体堆积方式

金属镁的晶体堆积方式嘿,大家好呀!今天咱们来聊聊金属镁的晶体堆积方式。

这可是个挺有意思的话题呢,对于咱们理解金属的结构和性质很有帮助哦。

一、金属晶体堆积方式的基本概念金属晶体中,金属原子就像一个个小珠子,它们会按照一定的规律排列堆积在一起。

这种排列方式可不是随便来的哦,它会影响到金属的很多性质,比如密度、硬度、导电性等等。

常见的金属晶体堆积方式有简单立方堆积、体心立方堆积、面心立方堆积和六方最密堆积等。

二、金属镁的晶体堆积方式——六方最密堆积金属镁采用的是六方最密堆积方式。

想象一下哈,咱们把一堆同样大小的小球按照一定的规律摆放。

在六方最密堆积中,第一层的小球紧密排列,就像蜂巢一样,每个小球都和周围的六个小球相切。

然后呢,第二层的小球放在第一层小球形成的空隙中,这样可以让空间利用得更充分。

到了第三层的时候,它的排列方式和第一层是一样的,也就是ABAB这样的重复排列模式。

三、六方最密堆积的特点这种堆积方式有很多特点哦。

从空间利用率来说,六方最密堆积的空间利用率很高,达到了74%左右,这意味着金属原子在晶体中排列得很紧密,使得金属镁的密度相对较大。

而且呀,由于原子之间的紧密排列,金属键的作用也更强,这让金属镁具有一定的硬度和强度。

在导电性方面,这种紧密排列也有利于电子的自由移动,所以金属镁是良好的导电材料呢。

四、六方最密堆积对金属镁性质的影响金属镁的很多性质都和它的六方最密堆积方式有关。

比如说它的延展性,因为原子之间的排列比较规则,当受到外力作用时,原子层之间可以相对滑动,而不会轻易断裂,所以金属镁可以被拉成细丝或者压成薄片。

再比如说它的化学活性,由于原子排列紧密,金属镁在化学反应中表现出比较活泼的性质,容易失去电子,和很多物质发生反应。

概括性来讲呢,金属镁的六方最密堆积方式决定了它的很多性质,了解了这个,咱们就能更好地理解金属镁在生活和工业中的各种应用啦。

金属原子堆积方式

金属原子堆积方式

金属原子堆积方式
金属原子的排列方式通常是以晶格为单位进行堆积。

晶格是一种具有规则重复结构的三维点阵,其中每个点代表一个原子。

金属的晶体结构可以分为三类:面心立方(fcc)、体心立方(bcc)和简单立方(sc)。

面心立方结构中,原子在晶格的每个面的中心和每个角上都有一个原子,对于每个原子,其周围都有12个最近邻原子。

铜、铝、金、银等都是面心立方结构。

体心立方结构中,原子位于晶格的每个面的中心和晶格的每个立方体的中心,对于每个原子,其周围有8个最近邻原子。

铁、钴、铬、钛等都是体心立方结构。

简单立方结构中,原子只位于晶格的顶点,对于每个原子,其周围只有6个最近邻原子。

钠、铅、锌、铜等都是简单立方结构。

金属原子的堆积方式是由晶体结构所决定的。

不同的晶体结构会影响金属的物理性质和化学性质。

例如,面心立方结构的金属通常具有良好的延展性和导电性,而体心立方结构的金属则通常具有高强度和硬度。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识石拓展-石墨 墨 晶 体 结 构
石墨
• 1、石墨为什么很软?
石墨为层状结构,各层之间是范德华力结合,容易 滑动,所以石墨很软。
• 2、石墨的熔沸点为什么很高(高于金刚石)?
石墨各层均为平面网状结构,碳原子之间存在很 强的共价键,故熔沸点很高。
3、石墨属于哪类晶体?为什么?
石墨为混合键型晶体。
①简单立方堆积
配位数 = 6 空间利用率 = 52.36%
② 体心立方堆积 ——体心立方晶胞
配位数 = 8 空间利用率 = 68.02%
③ 六方堆积 ——六方晶胞
④面心立方堆积 ——面心立方晶胞
配位数 = 12 空间利用率 = 74.05% 配位数 = 12 平均值)
【讨论3】金属为什么具有较好的延展性?
原子晶体受外力作用时,原子间的位移必 然导致共价键的断裂,因而难以锻压成型, 无延展性。而金属晶体中由于金属离子与自 由电子间的相互作用没有方向性,各原子层 之间发生相对滑动以后,仍可保持这种相互 作用,因而即使在外力作用下,发生形变也 不易断裂。
⑷、金属晶体结构具有金属光泽和颜 色
上图是此种六方 堆积的前视图
配位数 12 ( 同层 6,上下层各 3 )
六方最密堆积分解图
镁型(AB型六方最密堆积)
B
B
A
A
B B
A
镁型晶胞的抽取
六方晶胞
晶胞内原子数:2
B
配位数:12
A
空间利用率:74%
典型金属:Mg Zn Ti
第三层的另一种排列 方式,是将球对准第一层 的 1,3,5 位,不同于 AB 两层的位置,这是 C 层。
金属晶体
Ti
金属样品 Ti
1、金属共同的物理性质
容易导电、导热、有延展性、有金属光泽等。
金属为什么具有这些共同性质呢? 2、金属的结构
㈠、金属键
(1)定义: 金属离子和自由电子之间的相互作用。 (2)成键微粒: 金属阳离子和自由电子 (3)键的存在: 金属单质和合金中
(4)方向性: 无方向性 (5)键的本质: 电子气理论
12
6
3
54
12
6
3
54
12
6
3
54
Ⅳ.面心立方
金、银、铜、铝等属于面心立方堆积
堆积(铜型)
第四层再排 A,于是形成
A
ABC ABC 三层一个周期。
这种堆积方式可划分出面心
C
立方晶胞。
B
12
6
3
54
配位数 12 ( 同层 6, 上下层各 3 )
A
C B A 此种立方紧密堆积的前视图
堆积方式及性质小结
钠晶体的晶胞
如某晶体是右图六棱柱状晶胞, 则晶胞中的原子数是12×1/6+2×.1/2 + 3 = 6
练习
2. 最近发现一种由某金属原子M和非金 属原子N构成的气态团簇分子,如图所 示.顶角和面心的原子是M原子,棱的 中心和体心的原子是N原子,它的化学
式为( C )
A. M4N4 B.MN
C. M14N13
一般情况下,金属晶体熔点由金属键强弱决定:
金属阳离子半径越小,所带电荷越多,自由电子越多, 金属键越强,熔点就相应越高,硬度也越大。 如: Na Mg Al
Li Na K Rb Cs
熔点最低的金属:汞(常温时成液态) 熔点很高的金属:钨(3410℃) 铁的熔点:1535 ℃
合金
(1)定义:把两种或两种以上的金属(或金
3、金属晶体的结构与金属性质的内在联系
⑴、金属晶体结构与金属导电性的关系
【讨论1】 金属为什么易导电?
在金属晶体中,存在着许多自由电子,这些自由 电子的运动是没有一定方向的,但在外加电场的条件 下自由电子就会发生定向运动,因而形成电流,所以 金属容易导电。
⑵、金属晶体结构与金属导热性的关系 【讨论2】金属为什么易导热?
➢ 二维平面堆积方式
非密置层
行列对齐,四球一空 非最紧密排列
配位数:4
密置层
行列相错,三球一空 最紧密排列 配位数:6
➢ 三维空间堆积方式
非密置层的三维堆积方式
Ⅰ. 简单立方堆积
立方晶胞
晶胞内原子数: 1
配位数:
6
空间利用率: 52%
典型金属: (钋)Po
Ⅱ. 体心立方堆积(钾型)
Na、K、Cr、Mo、 W等属于体心立方堆
石墨是层状结构的混合型晶体
自由电子在运动时经常与金属离子碰撞,引 起两者能量的交换。当金属某部分受热时,那 个区域里的自由电子能量增加,运动速度加快, 通过碰撞,把能量传给金属离子。
金属容易导热,是由于自由电子运动时与金 属离子碰撞把能量从温度高的部分传到温度低 的部分,从而使整块金属达到相同的温度。
⑶、金属晶体结构与金属延展性的关系
积。
Ⅱ. 体心立方堆积(钾型)
这是非密置层另一种堆积方 式,将上层金属填入下层金 属原子形成的凹穴中,得到的 是体心立方堆积。 体心立方晶胞
晶胞内原子数:2 配位数:8 空间利用率:68 % 典型金属: K 、Na、Fe
➢ 三维空间堆积方式
密置层的三维堆积方式 第一层 :
第二层 : 对第一层来讲最紧密的堆积方式是将 球对准1,3,5 位。 ( 或对准 2,4,6 位,其情形是一 样的 )
(3)六方晶胞:
在六方体顶点的微粒为6个晶胞共有,在面心的 为2个晶胞共有,在体内的微粒全属于该晶胞。
微粒数为:12×1/6 + 2×1/2 + 3 = 6
长方体晶胞中不同位置的粒子对晶胞的贡献: 顶点----1/8 棱----1/4 面心----1/2 体心----1
练习
1. 右图是钠晶体的晶胞结构, 则晶胞中的原子数是8×1/8 +1=.2
②具有比各成分金属更好的硬度、强度和机械加 工性能。
二.金属晶体的原子堆积模型
(2)金属晶体的原子在二维平面堆积模型
金属晶体中的原子可看成直径相等的 小球。将等径圆球在一平面上排列,有两 种排布方式,按左图方式排列,剩余的空 隙较大,称为非密置层;按右图方式排列, 圆球周围剩余空隙较小,称为密置层 。
属与非金属)熔合而成的具有金属特性的物 质叫做合金。
例如,黄铜是铜和锌的合金(含铜67%、锌 33%);青铜是铜和锡的合金(含铜78%、锡 22%);钢和生铁是铁与非金属碳的合金。故 合金可以认为是具有金属特性的多种元素的混 合物。
(2) 合金的特性
① 合金的熔点比其成分中金属 低 (低, 高,
介于两种成分金属的熔点之间;)
• 由于自由电子可吸收所有频率的光,然后 很快释放出各种频率的光,因此绝大多数 金属具有银白色或钢灰色光泽。而某些金 属(如铜、金、铯、铅等)由于较易吸收 某些频率的光而呈现较为特殊的颜色。
• 当金属成粉末状时,金属晶体的晶面取向 杂乱、晶格排列不规则,吸收可见光后辐 射不出去,所以成黑色。
4.金属晶体熔点变化规律
顶点占1/8
棱上占 1/4
面心占1/2 体心占1
2.晶胞中微粒数的计算
(1)体心立方:
在立方体顶点的微粒为8个晶胞共享,处于体 心的金属原子全部属于该晶胞。
微粒数为:8×1/8 + 1 = 2
(2)面心立方:
在立方体顶点的微粒为8个晶胞共有,在面心的 为2个晶胞共有。
微粒数为:8×1/8 + 6×1/2 = 4
D.条件不够,无法写出化学式
练习
3.合金有许多特点,如钠-钾合金 ( 含钾
50% ~80%)为液体,而钠钾的单质均
为固体,据此推测生铁、纯铁、碳三
种物质中,熔点最低的是 ( A )
A. 生铁
B. 纯铁
C. 碳
D. 无法确定
知识拓展-石墨
一种结晶形碳,有天然出产的矿物。铁 黑色至深钢灰色。质软具滑腻感,可沾污手 指成灰黑色。有金属光泽。六方晶系,成叶 片状、鳞片状和致密块状。密度2.25g/cm3, 化学性质不活泼。具有耐腐蚀性,在空气或 氧气中强热可以燃烧生成二氧化碳。石墨可 用作润滑剂,并用于制造坩锅、电极、铅笔 芯等。

12
6
3
54
12
6
3
54
AB
关键是第三层,对第一、二层来说,第三层可以有两种 最紧密的堆积方式。


















六方堆积
面心立方 堆积
Ⅲ.六方堆积(镁型) 镁、锌、钛等属于六方堆积
第一种: 将第三层球对准第一层的球
A
12
6
3
B
54
A
B
于是每两层形成一个周
A
期,即 AB AB 堆积方式, 形成六方堆积。
金属原子脱落下来的价电子形成遍布整晶体 的“电子气”,被所有原子所共用,从而把所有 的金属原子维系在一起。
(6)键的强弱:阳离子半径;所带电荷
阳离子所带电荷多、半径小----金属键 强,熔沸点高
㈡、金属晶体: 概念:金属阳离子和自由电子通过金属键作 用形成的晶体
组成粒子:金属阳离子和自由电子 作用力:金属键(电子气理论)
相关文档
最新文档