光电倍增管

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

K ——光阴极;F ——聚焦极;D 1~D 10——打拿极;A ——阳极。

光电倍增管是一种常用的灵敏度很高的光探测器,它由光阴极、电子光学输入系统、倍增系统及阳极组成,并且通过高压电源及一组串联的电阻分压器在阴极──打拿极(又称“倍增极”)──阳极之间建立一个电位分布。光辐射照射到阴极时,由于光电效应,阴极发射电子,把微弱的光输入转换成光电子;这些光电子受到各电极间电场的加速和聚焦,光电子在电子光学输入系统的电场作用下到达第一倍增极,产生二次电子,由于二次发射系数大于1,电子数得到倍增。以后,电子再经倍增系统逐级倍增,阳极收集倍增后的电子流并输出光电流信号,在负载电阻上以电压信号的形式输出。

根据打拿极的几何形状和排列方式,光电倍增管分为聚焦型(环状、直线)和非聚焦型(百叶窗式、盒栅式)。本装置采用百叶窗式光电倍增管,过去采用GDB44F 型,现采用GDB43型。其优点为脉冲幅度分辨率较好,适用闪烁能谱测量。

它的主要指标应该包括以下几方面:光电转换特性、电子倍增特性、噪声或暗电流、时间特性等;在此主要介绍光电转换特性和电子倍增特性。

1. 光电转换特性——光阴极的光谱响应和灵敏度

光阴极是接收光子并放出光电子的电极,一般是在真空中把阴极材料蒸发在光学窗的内表面上,形成半透明的端窗阴极;光阴极材料的品种有数十种,但最常用的只是五、六种,如锑铯化合物等。一般光电倍增管光阴极前的光学窗有两种:硼玻璃窗或石英窗,前者适用于可见光,后者可透过紫外光。光阴极受到光照射后发射光电子的几率是波长的函数,称为光谱响应。在长波端的响应极限主要由光阴极材料的性质决定,而短波端的响应主要受入射窗材料对光的吸收所限制。了解光电倍增管的光谱响应特性有利于正确选择不同管子使之与闪烁体的发射光谱相匹配。

在实际应用中,光电转换特性通常使用另一个宏观定义,即一定通量F 的白光照射阴极所能获得的光电子流(i k )称为光阴极光照灵敏度:

k k i S F

(1) 其中i k 单位为微安;F 为光通量,单位为“流明”(lm)。

2. 电子倍增特性——光电倍增管的放大倍数及阳极灵敏度

1) 光电倍增管的放大倍数(增益)M

由于打拿极的倍增作用,从光阴极发射出来的电子不断被倍增,最后可在阳极上得到大量电子。从光阴极射出,到达第一打拿极的一个电子,经过多次倍增后在阳极得到的电子数,称为光电倍增管电流放大倍数(增益)。

M =阳极接收到的电子数第一打拿极收集到的电子数

在理想情况下一般可写成:

n M δ= (2)

式中δ是平均二次发射系数,n 为打拿极的级数。二次发射系数δ是极间电压的函数,可用经验公式表示:

()b D a V δ= (3)

其中V D 为打拿极之间的电压,a 、b 为经验常数。

如果打拿极电子传递效率为g ,那么增益M 比较实际的表达式可写成:

()n M g δ= (4)

对设计良好的聚焦型管子g 约等于1,对非聚焦型管子g<1。

2) 阳极光照灵敏度S

放大倍数是光电倍增管的重要参数之一,但往往有些技术说明书不直接给出它的数值,而是在给出光阴极光照灵敏度S k 的同时,给出光电倍增管的“阳极光照灵敏度”S a ,它们之间的关系是:

a a c k i S g MS F

==阳极电流入射到阴极的光通量 (5) 其中S a 的单位为A/lm ,g c 为第一打拿极对光电子的收集效率。阳极光照灵敏度的物理意义是:当一个流明的光通量照在光阴极上时,在光电倍增管阳极上输出的电流(阳极电流)i a 的数值。

当入射光通量F 增大时,阳极电流i a 在相当宽的范围内是线性增大的;但F 太大时,就出现偏离线性。原因之一是打拿极发射二次电子疲劳,使放大倍数减小;其二是最后几级打拿极和阳极上有空间电荷堆积;也有可能是分压电阻选择不当,使最后几级打拿极以及阳极之间的电压降低,放大系数减小,这一问题可以通过调整分压电阻来解决。

阳极光照灵敏度S a 和总电压的关系由式(3)、(4)、(5)可知:bn a V S ∝,故log log a S V ∝,两个量的对数成线性关系;因而随着电流增加到某一数值会出现非线性,logS a 增加变得缓

慢;一般说来,加在光电倍增管上的高压在1000V之内线性还是比较理想的。

需要指出的是:闪烁探测器的线性问题是由多个因素共同作用的结果,不仅光电倍增管是个重要因素,闪烁晶体本身也存在能量线性问题。因此在实际应用中,必须考虑多方面的因素,比如各部件的匹配等,而常用的解决方法则是调整光电倍增管的工作参数。

光电倍增管的管脚插入底座。底座是由分压器与射极跟随器组成。

1)分压器

光电倍增管中各电极的电位由外加电阻分压器抽头供给。本实验使用正高压电路,阴极接地,阳极处于高电位,输出端使用耐高压电容隔开。所加电压应根据说明书或不同用途以及管子的性能进行考虑;建议用户在使用本实验装置时采用我们的推荐值。

2)射极跟随器

射极跟随器具有电流放大作用(放大倍数一般为几十~一百以上),但其电压放大倍数恒小于1而接近于1,且输出电压和输入电压同相,因此具有电压跟随的特点,频率响应较好。

附录一 NaI(Tl)闪烁晶体

闪烁体按其化学性质可分为两类:一类是无机晶体闪烁体,通常是含有少量杂质(称为激活剂)的无机盐晶体,如碘化钠(铊激活)单晶体、即NaI(Tl),碘化铯(铊激活)单晶体、即CsI(Tl),硫化锌(银激活)、即ZnS(Ag)等;另一类是有机闪烁体,它们都是苯环碳氢化合物。闪烁体的发光机制比较复杂,在此对无机晶体闪烁体的发光机制作一些简要的定性介绍。

无机晶体闪烁体属离子型晶体,原子(离子)之间结合得比较紧密相互之间影响比较大,晶格中原子电子能级加宽成为一系列连续的能带。其中最低能量状态已为电子所填满,故称为满带;价电子都处于稍高的能量状态,这种能带称为“价带”。若价带未填满,则在外电场作用下将有净电流产生;若价带已填满,则必须有电子被激发到更高的能带——导带上去,才能产生电流,此时价带上有一空穴,导带上有一电子,即产生了一个自由电子——空穴对。价带与导带之间的空隙中不存在电子能级,称为禁带;禁带有一宽度E g,它和晶体的导电性质密切相关,导体在左右,半导体在—之间,无机闪烁体为绝缘透明物质,E g>3eV,NaI为。

也存在另一种情况:在闪烁晶体中产生的电子——空穴对仍束缚着,称为“激子”,它们在晶格中一起运动,在外电场中无净电流产生,其能带在导带之下,称为“激带”。自由的导带电子和价带空穴可以复合成激子,激子也可以吸收热运动能量变成自由电子——空穴

相关文档
最新文档