庞浩计量经济学课件第八章 虚拟变量回归

合集下载

虚拟变量回归课件

虚拟变量回归课件
虚拟变量回归在各个领域都有广泛的应用,其中包括房价预测和汽车保险费用预估。通过实际案例分析, 我们将展示其在实际问题中的应用。
虚拟变量回归面临的问题
在进行虚拟变量回归时,我们可能会面临多重共线性问题。为了解决这个问 题,我们将介绍哑变量陷阱和特征选 收集数据 2. 对数据进行预处理 3. 分析数据 4. 建立模型 5. 模型的评估与优化
虚拟变量回归
通过介绍虚拟变量回归,我们将探讨其概念、作用以及应用。还将讨论面临 的问题和解决方法,以及如何进行虚拟变量回归并提高模型精度。
什么是虚拟变量回归
虚拟变量回归是一种统计方法,用于处理具有分类特征或非数字特征的数据。 它将非数字变量转换为二元变量,以便在回归模型中使用。
虚拟变量回归的应用
总结
虚拟变量回归具有自身的优点和局限性。我们将总结这些,并探讨未来的发 展方向。最后,我们将分享一些提高模型精度的技巧和建议。

庞皓《计量经济学》笔记和课后习题详解(虚拟变量回归)【圣才出品】

庞皓《计量经济学》笔记和课后习题详解(虚拟变量回归)【圣才出品】
考点二:虚拟解释变量的回归 ★★★★
1.用虚拟变量表示不同截距的回归——加法方式 以加法方式将虚拟变量引入模型,只会改变模型在不同情况下的截距,不会影响斜率。 按照变量的种类和数量进行分类,可以分成四种情况,具体如表 8-2 所示。
2 / 27
圣才电子书 十万种考研考证电子书、题库视频学习平台

2.用虚拟变量表示不同斜率的回归——乘法方式 以乘法形式引入虚拟解释变量,会改变模型的截距和斜率。用乘法方式引入虚拟变量的 作用是:①进行两个回归模型的比较,即结构变化检验;②进行因素间的交互影响分析;③ 使模型更加符合现实经济现象。按照不同的作用,可以将乘法方式分成三种,具体如表 8-3 所示。
表 8-3 以乘法方式引入虚拟变量的三种类型
2.虚拟变量的作用及模型的类型 (1)虚拟变量的作用 ①可以作为性别、所有制等属性因素的代表。 ②可以作为受教育程度、管理者素质等非精确计量的数量因素的代表。 ③可以作为战争、灾害、改革前后等偶然因素或政策因素的代表。 ④可以作为时间序列分析中季节(月份)的代表。 ⑤可以实现分段回归,研究斜率、截距的变动,或比较两个回归模型的结构差异等。 (2)虚拟变量模型的类型(见表 8-1)
考点三:虚拟被解释变量 ★★★★
1.线性概率模型(LPM) (1)线性概率模型含义 当被解释变量是虚拟变量,并且模型的函数形式为线性时,即 Yi=β1+β2Xi+ui,该模 型就是线性概率模型。 由于 E(Yi)=0·(1-pi)+1·pi=pi,其中 pi 表示 Yi=1 的概率,所以系数 β2 可解释 为:当其他条件不变时,X 每增加 1 单位,Y=1 的概率增加值。 (2)线性概率模型的估计 ①线性概率模型不能直接用普通最小二乘进行估计,因为存在如下问题: a.随机扰动项 ui 的非正态性。在线性概率模型中,ui 不再服从正态分布,但是对参数 的假设检验和区间估计要求随机扰动项 ui 服从正态分布。当对大样本进行估计时,OLS 估 计量的概率分布将会趋近于正态分布,估计值不会因为非正态性而产生很大的误差。

8第八章包含虚拟变量的回归

8第八章包含虚拟变量的回归
D1=1,大学;=0,其他 D2=1,中学;=0,其他 D3=1,中学以下;=0,其他 回归方程为: Y=b0+b1 X1 +
c1D1 +c2 D2+ c3 D3
引入二个虚拟变量
D1=1,大学;=0,其他 D2=1,中学;=0,其他
Y=b0+b1 X1 +
c1D1 +c2 D2
2、模型中一个定性变量,该变量 具有多种分类,p218
即多分定性变量 假定根据横截面数据,我们做个人旅游支 出Y对其收入X和学历的回归,学历这个定 性变量,可分为:
中学以下、中学、大学三个层次,
如何设置虚拟变量?
我们有如下选择
引入一个虚拟变量D 引入三个虚拟变量
D= 2,大学;=1,中学;=0,中学以下 回归方程为:Y=b0+b1 X1 +b2 D
这里有两个两分定性变量,肤色和种族 可引入两个虚拟变量
例-性别、肤色和工龄、学历(3种类型) 一起解释薪酬
性别、肤色分别引入2个虚拟变量,学历引入2
个虚拟变量
例题
P221 10-18:性别、种族对收入的影响
Y-小时工资,X-教育年限 D2-=1(女性);=0(男性) D3-=1(非白种人且非西班牙裔);=0(其 他) Y^=-0.26-2.36 D2-1.73 D3+0.80X 总结:每个定性变量所需引入的虚拟变量 比该变量类型数少一。 返回
对于方程10-18 ,其样本回归线
Y^=-0.26-2.36 D2-1.73 D3+0.80X,隐含假定
了不同性别下,种族变量对收入的影响是一样 的。同样的,不同种族下,性别变量对收入的 影响也是相同的。

计量经济学课件虚拟变量

计量经济学课件虚拟变量
提高模型精度和预测能力
通过引入虚拟变量,可以更准确地刻画经济现象的非线性特征,从而提高计量经济学模型 的精度和预测能力。
拓展应用领域
虚拟变量的引入使得计量经济学模型能够应用于更多的领域,如金融、环境、社会等,进 一步拓展了计量经济学的应用范围。
未来研究方向和趋势
深入研究虚拟变量的理论 和方法
未来研究将进一步深入探讨虚 拟变量的理论和方法,包括虚 拟变量的选择、设定和估计方 法等,以更准确地刻画经济现 象。
https://
未来研究将积极推动虚拟变量 在交叉学科领域的应用,如环 境经济学、金融经济学等,以 促进不同学科之间的交流和合 作。
WENKU DESIGN
WENKU DESIGN
2023-2026
END
THANKS
感谢观看
KEEP VIEW
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
要点二
虚拟变量的设置原则
在设置虚拟变量时,需要遵循完备性 和互斥性的原则。完备性要求虚拟变 量的取值能够覆盖所有可能的情况, 而互斥性则要求不同虚拟变量之间不 能存在重叠或交叉的情况。
要点三
虚拟变量的回归系数 解释
在线性回归模型中,虚拟变量的回归 系数表示该定性因素对因变量的影响 程度。当虚拟变量取值为1时,其对 应的回归系数表示该水平与参照水平 相比对因变量的影响;当虚拟变量取 值为0时,则表示该水平对因变量没 有影响。
参数估计与假设检验
参数估计
采用最小二乘法等估计方法,对引入虚拟变量后的模型进行参数估计,得到各 解释变量的系数估计值。
假设检验
根据研究问题和假设,构建相应的原假设和备择假设,通过t检验、F检验等方 法对参数进行假设检验,判断虚拟变量对模型的影响是否显著。

计量经济学第八章 虚拟变量回归

计量经济学第八章 虚拟变量回归
计量经济学
第八章
虚拟变量回归
1
第八章 虚拟变量回归
本章主要讨论:
●虚拟变量
●虚拟解释变量的回归
2
本章的教学目标





(1)深刻理解定性因素在计量经济分析中的 背景和含义; (2)明确虚拟变量在建立和估计计量经济模 型中的意义和作用; (3)熟练掌握引入和应用虚拟变量的基本思 想和方法; (4)能够运用虚拟变量模型作相应的经济实 证分析方面的应用; (5)掌握Eviews软件中相关内容的操作方法。
这表明三个时期居民储蓄增加额的回归方程在统计 意义上确实是不相同的。1996年以前收入每增加1 亿元,居民储蓄存款的平均增加0.1445亿元;在 2000年以后,则为0.4133亿元,已发生了很大变化。
20
上述模型与城乡居民储蓄存款与国民总收入之间 的散布图是吻合的,与当时中国的实际经济运行 状况也是相符的。 需要指出的是,在上述建模过程中,主要是从教 学的目的出发运用虚拟变量法则,没有考虑通货 膨胀因素。而在实证分析中,储蓄函数还应当考
单位:亿元
城乡居民 人民币储 蓄存款增 额 (YY) 2121.8 2517.8 3444.1 6315.3 8143.5 8858.5
年 份
城乡居民 国民总收 人民币储 蓄存款年 入 (GNI) 底余额 (Y) 3624.1 4038.2 4517.8 4860.3 5301.8 5957.4 210.6 281 399.5 532.7 675.4 892.5
(1,0) 天气阴 如:(D1 ,D2)= (0,1) 天气雨 (0,0) 其 他
29
虚拟变量数量的设置规则
1.若定性因素具有 m 个 (m 2) 相互排斥属性(或 几个水平),当回归模型有截距项时,只能引入

计量经济学第八章关于虚拟变量的回归.

计量经济学第八章关于虚拟变量的回归.
年 薪 Y 女教授
类的截距。
2
2:级差截距系数
教龄X
1
0
薪金与性别:估计结果
1,若是男性 Di 0,若是女性
ˆ 17.969 1.371X 3.334D Y i i i se : (0.192) (0.036) (0.155) t : (93.61) (38.45) (21.455) r 2 0.993
一、虚拟变量的性质

例:教授薪金与性别、教龄的关系

男教授平均薪金和女 教授平均薪金水平相 差2,但平均年薪对 教龄的变化率是一样 的
Yi=1+2Di+Xi+I (1) 1,若是男性 D 其中:Yi=教授的薪金, Xi=教龄, Di=性别 0,若是女性 i 女教授平均薪金:E(Yi | X i , Di 0) 1 X i 被赋予0值的 男教授平均薪金:E(Yi | X i , Di 1) (1 2) X i 类别是基底(基 准),1是基底 男教授

比较英国在第二次大战后重建时期和重建后时期的总 储蓄-收入关系是否发生变化。数据如表。 Yt 1 2 Dt 1 X t 2 ( Dt X t ) t
D=1,重建时期
级差截距:区分两 个时期的截距 级差斜率系数:区分 两个时期的斜率 =0,重建后时期
D=1 D=0
E(Yt | Dt 0, X t ) 1 1 X t E(Yt | Dt 1, X t ) (1 2 ) ( 1 2 ) X t
男教授平均薪金水平比 女教授显著高$3.334K (男:21.3,女:17.969)
1,若是女性 Di 0,若是男性
ˆ 21.303 1.371X 3.334D Y i i i se : (0.182) (0.036) (0.155) t : (117.2) (38.45) (21.455)

计量经济学庞浩-第三版-课件

计量经济学庞浩-第三版-课件
4
在实际的经济分析中,这些定性因素有时具有不可忽 视的重要作用。例如,研究居民收入水平时,职业、 性别、文化程度、就业的地域等因素,通常是值得考 虑的影响因素。 因此,在计量经济学的建模中有必要将定量因素和定 性因素同时纳入回归模型之内。
5
本章要研究的主要问题是: 1.如何将作为解释变量的定性因素引入回归模型? 2.这些定性解释变量在回归模型中有何特殊的作用?
(2)解释变量分别为一个定性变量(两种属性) 和一个定量解释变量;
22
(3)解释变量分别为一个定性变量(两种以上属 性)和一个定量解释变量;
(4)解释变量分别为两个定性变量(各自分别是 两种属性)和一个定量解释变量;
思考:
四种加法方式引入虚拟变量会产生什么效应?
23
(1)一个两种属性定性解释变量而 无定量变量的情形
计量经济学
第八章 虚拟变量回归
1
引子:定性因素对房地产价格有显著影响吗
不断走高的房地产价格已经成为人们关注的重点。很 多研究认为,影响商品房价格的因素有多个方面。 有关研究表明1,影响商品房价格的因素可分为两类: 一类是比较容易量化的定量因素。例如:成本费用因 素、房地产供求因素、经济因素、人口因素等。 另一类则是不易量化的定性因素。例如:社会因素、 区域因素、个别因素、房地产投机因素、自然因素等。 这些因素的基本特征则是不易量化的定性因素。
38
(1)结构变化分析
结构变化的实质是检验所设定的模型在样本期内 是否为同一模型。显然,平行回归、共点回归、 不同的回归三个模型均不是同一模型。 平行回归模型的假定是斜率保持不变(加法类型, 包括方差分析); 共点回归模型的假定是截距保持不变(乘法类型, 又被称为协方差分析); 不同的回归的模型的假定是截距、斜率均为变动 的(加法、乘法类型的组合)。

庞浩计量经济学课件第八章 虚拟变量回归

庞浩计量经济学课件第八章 虚拟变量回归

二、虚拟变量的设置规则
1.虚拟变量个数的设置规则 若定性因素有m个相互排斥的类型(或属性、水 平),则: 在有截距项的模型中,只能引入m-1个虚拟变 量,否则会陷入“虚拟变量陷阱”(即:出 现完全的多重共线性); 在无截距项的模型中,可以引入m个虚拟变量, 不会导致完全的多重共线性。
4
例如:研究城乡居民的可支配收入对居民住房消费支 出的影响 C Y D u i 1 1 i 2 i i
21
分段线性回归
适合于社会经济现象会在解释变量达到某个临界值时 发生突变,考虑下述模型: Yt 1 1 X t 2 ( X t X * ) Dt ut 0, X t X * Dt * 1, X t X
当X t X *时, Yt 1 1 X t ut 当X t X 时, Yt 1 1 X t 2 ( X t X * ) ut
18
二、用虚拟变量表示不同斜率的回归—— 乘法类型
回归模型的比较——结构变化检验
分段线性回归
19
回归模型的比较——结构变化检验
研究改革开放前后(1950-2004),储蓄与收入的关系: Yi 1 2 Di 1 X i 2 ( Di X i ) ui
( 1950 1977 ) 0, 改革开放前 Di ( 1978 2004 ) 1, 改革开放后
Yi 1 2 Di 1 X i ui
0, 租房户 Di 1, 有房户
15
i 1 2 3 4 5 6 7 8 9 10
Y 1.0 1.3 0.7 0.8 0.5 2.4 0.3 3.2 2.8 0.0
X 20.0 24.0 12.0 16.0 11.0 32.0 10.0 40.0 32.0 7.0

计量经济学第八章完整课件

计量经济学第八章完整课件
多元线性回归分析
多元线性回归模型
多元线性回归模型是用来描述因变量和多个自 变量之间线性关系的模型。
模型的一般形式为:Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
其中,Y是因变量,X1, X2, ..., Xp是自变量, β0, β1, ..., βp是模型的参数,ε是误差项。
回归分析的应用领域
经济学、金融学、社会学、生物学等。
回归分析的分类
1 2
一元线性回归分析
研究一个因变量与一个自变量之间的线性关系。
多元线性回归分析
研究一个因变量与多个自变量之间的线性关系。
3
非线性回归分析
研究因变量与自变量之间的非线性关系。
回归分析的步骤
确定研究问题
01
明确研究目的,确定因变量和自变量。
主成分分析
将多个高度相关的解释变量组合成少数几个主成分,用主成分代 替原始变量进行回归分析。
岭回归
通过在回归系数上加上一个小的正则项,解决多重共线性问题, 使估计的系数更加稳定。
THANKS
感谢观看
模型修正
对模型进行修正,以消除异方差性的影响。例如,可 以使用加权最小二乘法等方法对模型进行修正。
04
自相关性与处理
自相关性的定义
01
自相关性是指时间序列数据中,当前值与过去值之 间存在相关性。
02
在计量经济学中,自相关性是指一个随机误差项的 各期值之间存在相关性。
03
自相关性可能导致模型估计的不准确,因此需要对 其进行检验和处理。
相关性检验
通过计算解释变量之间的相关系数,判断是否存在 高度相关性。相关系数接近1或-1,表明存在多重 共线性。

第八章(虚拟变量回归)_图文

第八章(虚拟变量回归)_图文

5.社会因素:包括社会治安、城市化水平、消费心理等;
6.行政(政策)因素:包括土地与住房制度、房地产价格政策等;
7.区域因素:包括所处地段的市政基础设施、交通状况等;
8.个别因素:包括朝向、结构、材料、功能设计、施工质量等;
9.房地产投机因素:投机者在房地产市场中的投机活动;
10.自然因素:包括自然环境、地质、地形、地势及气候等。
使用虚拟变量需注意的问题
v 虚拟变量陷阱:若定性变量有m个类别,则引入 m个虚拟变量将会产生完全多重共线性问题,避 免方法:
Ø 只引入(m-1)个虚拟变量 Ø 引入m个虚拟变量但去掉截距项
v 哪种方法更好:包含截距项更方便,可以很容易 地检验某个组与基准组之间是否存在显著差异以 及差异程度。
2、避免落入“ 虚拟变量陷阱”
•男职工本科以上学历的平均薪金:
1.解释变量只有一个分为两种类型的定性变量无 定量变量的回归
这种模型又称方差分析模型
其中:Y为公立学校教师工资,
D=0为农村学校;D=1为城镇学校
分析条件期望:
基础类型:
比较类型:
为差异截距系数,通过对系数 可检验
的 t 检验:
在其他因素不变的条件下,城乡教师的工资是否有显2著323
D=0 表示某种属性或状态不出现或不存在 5
虚拟变量的作用
● 作为属性因素的代表,如性别 ● 作为某些非精确计量的数量因素的代表,
如受教育程度(高中及以下、专科、本科及以上) ● 作为某些偶然因素或政策因素的代表,
如 伊拉克战争、“911事件”、四川汶川大地震 ● 时间序列分析中作为季节(月份)的代表 ● 分段回归——研究斜率、截距的变动 ● 比较两个回归模型的差异 ● 虚拟被解释变量模型:

计量经济学第二版第8章-虚拟变量ppt课件

计量经济学第二版第8章-虚拟变量ppt课件

表1 我国各地区城乡居民收入 单位:元、人
地区 城镇居民
农村居民
人均可支配收入
人均纯收入
北 京 26738.48
11668.59
天 津 21402.01
8687.56
河 北 14718.25
5149.67
山 西 13996.55
4244.10
内蒙古 15849.19
4937.80
辽 宁 15761.38
➢ 了解线性概率模型、Logit模型和Probit模型的基 本思想和估计方法。
精品课件
引例:男女大学生的消费差异
在校大学生的消费行为越来越受到社会的关 注,学生家长也很关心自己的子女上大学的 花费问题。由共青团、全国学联共同发布的 《2004中国大学生消费与生活形态研究报告》 显示,当代大学生在消费结构方面呈现多元 化趋势。大学生除了日常生活费开支以外, 还有人际交往、网络通信、书报、衣着类、 化妆品类、电脑类、旅游类、食品类、学习 用品类、各类考证类等多重消费。
Yi=(a+α2)+ bxi+εi 研究生(D1=0,D2=1)
三类年薪函数的差异情况如下图所示:
上图直观地描述了三类 年薪函数的差异情况, 通过检验、 α1 、α2的 显著性,可以判断学历 层次对职员的年薪是否 有显著影响。
年薪
α1
精品课件
α2 -α1
研究生 本科 大专以下
工龄
虚拟变量数量的设置规则
4478.35
四 川 13839.40
4462.05
贵 州 12862.53
3005.41
云 南 14423.93
3369.34
西 藏 13544.41
3531.72

虚拟变量回归课件

虚拟变量回归课件

例1
(1)
D
=
1 0
男 女
( 2)D=1 0
改 革 开 放 以 后 改 革 开 放 以 前
(3)D1 =0 1
天气阴 其 他(4)D2
=1 0
天气雨 其他
问题:
为何只选0、1,选2、3、4行吗?为什么?
虚拟变量回归
14
属性的状态(水平)数与虚拟变量 数量的关系
定性因素的属性既可能为两种状态,也可能为多种 状态。例如,性别(男、女两种)、季节(4种状 态),地理位置(东、中、西部),行业归属,所 有制,收入的分组等。
虚拟变量回归
11
二、虚拟变量设置规则
虚拟变量的设置规则涉及三个方面: 1.“0”和“1”选取原则 2.属性(状态、水平)因素与设置虚拟变量
数量的关系 3.虚拟变量在回归分析中的角色以及作用等
方面的问题
虚拟变量回归
12
“0”和“1”选取原则
虚拟变量取“1”或“0”的原则,应从分析问题的 目的出发予以界定。
虚拟变量回归
16
一个例子(虚拟变量陷阱)
研究居民住房消费支出 Yi 和居民可支配收入 Xi 之间的
数量关系。回归模型的设定为:Y i= 0 + 1 X i+ u i( 1 )
现在要考虑城镇居民和农村居民之间的差异,如何办?
为了对 “城镇居民”、“农村居民”进行区分,分析
各自在住房消费支出 Yi上的差异,设 D1i = 1 为城镇;
非数值性的因素。 基本思想: 直接在回归模型中加入定性因素存在诸多的困难 (那些困难?),是否可将这些定性因素进行量 化,以达到定性因素能与定量因素有着相同作用 之目的。
虚拟变量回归
10

虚拟变量回归模型课件.ppt

虚拟变量回归模型课件.ppt
第7章 单方程回归模型的几个专门问题
7.1 虚拟变量
7.1.1 虚拟变量的概念及作用
1.虚拟变量的内涵 在计量经济学中,我们把反映定性(或属性)因素变化,取值为0和1的人工变量称为 虚拟变量(Dummy Variable),或称为哑变量、虚设变量、属性变量、双值变量、类型变量、 定性变量、二元型变量、名义变量等,习惯上用字母D表示。例如
第2页,共32页。
虚拟变量
为什么要引入“虚拟变量” ?? 许多经济变量是可以定量度量的或者说是可以直接观测的
如商品需求量、价格、收入、产量等
但是也有一些影响经济变量的因素无法定量度量或者说无法直接观测
如职业、性别对收入的影响,战争、自然灾害对GDP的影响,季节 对某些产品(如冷饮)销售的影响等。
第3页,共32页。
第29页,共32页。
临界指标的虚拟变量的引入
在经济发生转折时期,可通过建立临界指 标的虚拟变量模型来反映。
第30页,共32页。
第31页,共32页。
当截距与斜率发生变化时,则需要同时引入加法与乘 法形式的虚拟变量。
OLS法得到该模型的回归方程为
则两时期进口消费品函数分别为:
当t<t*=1978年, Dt = 0
•女职工本科以上学历的平均薪金: E(Yt | Xt , D1 = 0, D2 = 1) = (b 0 + b3 ) + b1 Xt
•男职工本科以上学历的平均薪金:
E(Yt | Xt , D1 = 1, D2 = 1) = (b0 + b 2 + b3 ) + b1 Xt
第23页,共32页。
2、乘法方式
第8页,共32页。
这种“量化”通常是通过引入“虚拟变量”来完成的。根据这些

计量经济学第八章答案(第二版_庞皓_科学出版社)

计量经济学第八章答案(第二版_庞皓_科学出版社)

第八章答案8.1 Sen 和Srivastava (1971)在研究贫富国之间期望寿命的差异时,利用101个国家的数据,建立了如下的回归模型:2.409.39ln3.36((ln 7))i i i i Y X D X =-+--(4.37) (0.857) (2.42) R 2=0.752其中:X 是以美元计的人均收入;Y 是以年计的期望寿命;Sen 和Srivastava 认为人均收入的临界值为1097美元(ln10977=),若人均收入超过1097美元,则被认定为富国;若人均收入低于1097美元,被认定为贫穷国。

括号内的数值为对应参数估计值的t-值。

1)解释这些计算结果。

2)回归方程中引入()ln 7i i D X -的原因是什么?如何解释这个回归解释变量? 3)如何对贫穷国进行回归?又如何对富国进行回归? 4)从这个回归结果中可得到的一般结论是什么? 练习题8.1参考解答: 1. 结果解释依据给定的估计检验结果数据,对数人均收入对期望寿命在统计上并没有显著影响,截距和变量()ln 7i i D X -在统计上对期望寿命有显著影响;同时,()()2.40 3.3679.39 3.36ln ((ln 7)) 1 2.409.39ln 0 i i i i i i i X D X D Y X D ⎧-+⨯+---==⎨-+=⎩富国时穷国时 表明贫富国之间的期望寿命存在差异。

2. 回归方程中引入()ln 7i i D X -的原因是从截距和斜率两个方面考证收入因素对期望寿命的影响。

这个回归解释变量可解释为对期望寿命的影响存在截距差异和斜率差异的共同因素。

3. 对穷国进行回归时,回归模型为12ln 1097i i i i i i Y X Y X αα=+≤,其中,为美元时的寿命; 对富国进行回归时,回归模型为12ln 1097i i i i i i Y X Y X ββ=+>,其中,为美元时的寿命;4. 一般的结论为富国的期望寿命药高于穷国的期望寿命,并且随着收入的增加,在平均意义上,富国的期望寿命的增加变化趋势优于穷国,贫富国之间的期望寿命的确存在显著差异。

计量经济学:第八章虚拟变量回归

计量经济学:第八章虚拟变量回归

计量经济学:第⼋章虚拟变量回归第⼋章虚拟变量回归第⼀节虚拟变量的概念⼀、问题的提出计量经济学模型对变量的要求——可观测、可计量。

但在现实经济问题中,存在定性影响因素,⽐如1、属性(品质)因素的表达。

在经济活动中,有的经济变量的变动要受到属性因素(或品质因素)的影响。

如收⼊在形成过程中,不同的性别所得到的收⼊是不⼀样的;在城乡、不同地区等收⼊存在差距;再⽐如,在我国,经济的发展⽔平对于不同的区域有不同的表现。

2、异常值现象。

当经济运⾏过程中,可能会受到突发事件的影响,那么,其值有可能出现异常,偏离正常轨迹很远,对这类现象需要加以修正。

3、季节因素的影响。

有的经济现象存在明显的季节特征,如啤酒的消费。

那么,在建模过程中,季节变动这⼀因素怎样考虑?4、离散选择现象的描述。

如公共交通与私⼈交通的选择、商品购买与否的决策、求职者对职业的选择等。

第1、2、3种情况属于解释变量为定性变量,第4情况为被解释变量属于定性变量。

称前⼀种情况为虚拟解释变量,后⼀种为虚拟被解释变量。

本章主要介绍虚拟解释变量的内容。

⼆、虚拟变量的定义1、定义。

设变量D 表⽰某种属性,该属性有两种类型,即当属性存在时D 取值为1;当属性不存在时D 取值为0。

记为=不具有该属性具有某种属性01D2、虚拟变量引⼊的规则。

(1)在模型⾥存在截距项的条件下,如果⼀个属性存在m 个相互排斥类型(⾮此即彼),则在模型⾥引⼊m-1个虚拟变量。

否则,会出现完全的多重共线性。

但要注意,在模型⽆截距项的情况下,如果⼀个属性存在m 个类型,即便引⼊m 个变量,不会出现多重共线性问题。

(请思考为什么?)(2)虚拟变量取值为0,意味着所对应的类型是基础类型。

⽽虚拟变量取值为1,代表与基础类型相⽐较的类型,称为⽐较类型。

例如“有学历”D 为1,“⽆学历”D 为0,则“⽆学历”就是基础类型,“有学历”为⽐较类型。

(3)当属性有m 个类型时,不能把虚拟变量的取值设成如下情况D=0,第⼀个类型;D=1,第⼆个类型;……D=m-1,第m 个类型。

计量经济学第八章虚拟变量回归

计量经济学第八章虚拟变量回归
Yi b0b1Dii
其中, Yi 某公司职员年薪
1 男性 Di 2 0 女 这个模型和前面的回归模性型没有什么太大的差异,只不过 用一个虚拟变量D代替了X。这个模型能使我们发现性别是否 会造成公司职员薪水差异,这里假定了其他变量如年龄、学历 等都相同,而且随机误差项也服从线性回归模型的基本假定。
假设在原模型中设定两个虚拟变量:
Y i b 0 b 1 D 1 i b 2 D 2 i b 3 X ii
1 男性
1 女性
D1i 2 0 其他 D2i 2 0 么数据矩阵如下
Yi
b0
D1
D2
Xi
Y1
1
1(男)
0
X1
Y2
1
1(男)
t
(9.03)
(8.32)
(-6.59)
1 中高收入家庭
Di 2 0 低收入家庭
模型的估计参数都通过了显著性检验,说明我国城镇居 民中高收入和低收入家庭对彩电的消费需求,在截距和斜率 上都存在明显差异。
低收Y ˆ 入 i5.6 家 71 庭 1 0 .031X 1 i 8
中高 Y ˆ i ( 收 5 .6 71 入 3 .1 8 1) 3 7 家 3 0 .0 + 1 庭 1 0 .0 1 ( ) 0 8 X i 8
• 这种人为设定的变量就称作虚拟变量(Dummy Variable)
学历 性别 季节
1 大学毕业 2 0 其他
1 男性 2 0 女性
1 夏季 2 0 其他季

企业规模
1 大型企业 2 0 其他
户口
1 城镇 2 0 农村
3
8.1.2 虚拟变量的引入方式
• 1.加法模型:仅仅反映定性变量对截距的影响。

第八章虚拟变量回归课件

第八章虚拟变量回归课件

9.房地产投机因素:投机者在房地产市场中的投机活动;
10.自然因素:包括自然环境、地质、地形、地势及气候等。
(资料来源:徐静; 武乐杰, 房地产价格影响因素的解释结构模型分析, 金融
经济, 2009年 10期)
第八章虚拟变量回归
2
在影响房地产价格的众多因素中,有定量的因素:
成本因素、房地产供求因素、经济因素、人口因素等;
Y t 0 1 X 1 t k X k 1 t D 1 t 2 D 2 t 3 D 3 t 4 D 4 t t
其矩阵形式为:
Y(XD, )α βμ
第八章虚拟变量回归
如果只取六个观测值,其中春季与夏季取了两次, 秋、冬各取到一次观测值,则式中的:
1 1
X 11 X 12
X k1 Xk2
被解释变量本身是定性变量
第八章虚拟变量回归
6
二、虚拟变量模型
虚拟变量模型:包含有虚拟变量的模型称虚拟变量模型 三种类型: 1、 解释变量中只包含虚拟变量
作用:假定其他因素都不变,只研究某种定性因素在某定
量变量上是否表现出显著差异
2、 解释变量中既含定量变量,又含虚拟变量
作用:研究定量变量和虚拟变量同时对被解释变量的影响
也有定性的因素:
社会因素、行政因素、区位因素、个别因素、投机因
素、 自然因素等。
在研究房地产价格影响机理时,需要分析那些不易量化
的定性因素对房地产价格是否真的有显著影响。
能否把定性的因素也引入计量经济模型中呢? 怎样才能
在模型中有效地表示这些定性因素的作用呢?
第八章虚拟变量回归
3
引子2 男女大学生的消费真的有差异吗?
例如:D=0 如果是女性(基础类型)

第八章第二节 虚拟解释变量的回归

第八章第二节  虚拟解释变量的回归

冬季、城市居民 Yi (0 2) X i i
冬季、农村居民 Yi 0 X i i
(比较的基础 — 冬季、农村)
20 15 10 5 0
1234567
补充案例研究:为了解工作妇女是否受到歧视,可
以用美国统计局的“当前人口调查”中的截面数据, 研究男女工资有没有差别。这项多元回归分析研究 所用到的变量有:
第二节 虚拟解释变量的回归 加入虚拟变量的两种基本途径:加法类型、乘法类型。 一、加法类型 设定的虚拟变量以相加的形式出现 作用:改变了设定模型的截距水平,称为截距变动模型。
(一)加法类型的虚拟变量模型
1、一个定性变量(两种属性):Yi f (Di ) i
例:Yi 0 1Di i
R2 0.398 F 21.9
注意上述模型,男女差异还是显著的。这个回归模型告 诉我们,在其他条件不变的情况下,雇员的工资率随年龄的
增长而增加,但增加的速度是递减的。
(二)一个定量变量X、多个虚拟变量(定性变量)的模型
Yt 0 1D1t D2t Dkt X t ut
下面分别对三个作用进行讨论: (一)回归模型的比较(结构变化检验)
通过对模型的参数检验,可以检验模型是否有不同的结构。 即
定性变量D的引入,是否影响不同类型(属性)模型的平均水平(截距
项)?
定性变量D的引入,是否影响不同类型(属性)模型的相对变化(斜率 系数)?
例如,在研究改革开放前后储蓄——收入总量关系时,所设 定的模型为:
例如,不同人群组的衣着消费函数
Yi 1 2 D2i 3D3i X i ui
(1)
其中:Y(i 服装年均支出费);X(i 收入水平)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当X t X *时, Yt 1 1 X t ut 当X t X *时, Yt (1 2 X * ) (1 2 ) X t ut
23
说 明
1. 2 的显著性说明了在所设定的解释变量临界水 平X*处是否存在突变。 2.2段线性回归设置1个虚拟变量; k段线性回归设置k-1个虚拟变量。
10
解释变量只有一个分为两种相互排斥类型 的定性变量,而无定量变量的回归
假定文化程度、职业、性别等不变,研究农村居 民与城镇居民的年平均可支配收入是否有差异。
Yi 1 1 Di ui
0, 农村居民 Di 1, 城镇居民
1 表示农村居民的年平均可支配收入;
1 表示城镇居民与农村居民年平均可支配收入的 差异。 城乡居民年均可支配收入之间是否有差距,可通 过的 Di 显著性判断。 11
8
第二节 虚拟解释变量的回归
在计量经济模型中,加入虚拟解释变量,有两种 基本类型:加法类型和乘法类型。 一、用虚拟变量表示不同截距的回归——加法类 型 二、用虚拟变量表示不同斜率的回归——乘法类 型
9
一、用虚拟变量表示不同截距的回归—— 加法类型
解释变量只有一个分为两种相互排斥类型的定性
变量,而无定量变量的回归 解释变量包含一个定量变量和一个分为两种类型 定性变量的回归 解释变量包含一个定量变量和一个两种以上类型 的定性变量的回归 解释变量包含一个定量变量和两个定性变量的回 归
大专及以上:Yi (1 3 ) 1 X i ui
解释变量包含一个定量变量和两个定性变 量的回归
研究城乡居民卷烟需求量受居民可支配收入和性别的 影响: Yi 1 2 D2i 3 D3i 1 X i ui
0, 农村居民 D2i 1, 城镇居民 0, 女性 D3i 1, 男性
Yi 1 2 Di 1 X i ui
0, 租房户 Di 1, 有房户
15
i 1 2 3 4 5 6 7 8 9 10
Y 1.0 1.3 0.7 0.8 0.5 2.4 0.3 3.2 2.8 0.0
X 20.0 24.0 12.0 16.0 11.0 32.0 10.0 40.0 32.0 7.0
第八章
第一节 第二节 第三节 第四节
虚拟变量回归
虚拟变量 虚拟解释变量的回归 虚拟被解释变量 案例分析
1
第一节 虚拟变量
一、虚拟变量的基本概念
二、虚拟变量的设置规则 三、虚拟变量的作用
2
一、虚拟变量的基本概念
定量因素:指那些可直接测度的数值型因素。 定性因素:也称为属性因素,指不能直接测度的,说 明某种属性或状态存在与否的非数值型因素。 虚拟变量:也称为属性变量、双值变量、类型变量、 定性变量、二元型变量等。指人工构造的取值为0和 1的作为属性因素代表的变量,一般用字母D或DUM来 表示。(D=0,表示某种属性或状态不出现或不存在; D=1,表示某种属性或状态出现或存在) 例如:wagei 1 1educi 2 Di ui 0, 表示女性 Di 3 1, 表示男性
21
分段线性回归
适合于社会经济现象会在解释变量达到某个临界值时 发生突变,考虑下述模型: Yt 1 1 X t 2 ( X t X * ) Dt ut 0, X t X * Dt * 1, X t X
当X t X *时, Yt 1 1 X t ut 当X t X 时, Yt 1 1 X t 2 ( X t X * ) ut
二、虚拟变量的设置规则
1.虚拟变量个数的设置规则 若定性因素有m个相互排斥的类型(或属性、水 平),则: 在有截距项的模型中,只能引入m-1个虚拟变 量,否则会陷入“虚拟变量陷阱”(即:出 现完全的多重共线性); 在无截距项的模型中,可以引入m个虚拟变量, 不会导致完全的多重共线性。
4
例如:研究城乡居民的可支配收入对居民住房消费支 出的影响 C Y D u i 1 1 i 2 i i
0, 其他 D2 i 1, 初中 0, 其他 0, 其他 D4i D3 i 1, 大专及以上 1, 高中
Yi 1 1 X i 2 D2i 3 D3i 4 D4i ui
7
三、虚拟变量的作用
虚拟变量可以作为下列因素的代表: 属性因素 非精确计量的数量因素 偶然因素或政策因素 时间序列分析中的季节(或月份)因素 用于分段回归
0, 表示农村居民 Di 1, 表示城镇居民
若引入两个虚拟变量,则:
Ci 1 1Yi 2 D2i 3 D3i ui
0, D2i 1,
其他 城镇居民
0, D3i 1,
其他 农村居民
5
2.虚拟变量0和1的选取原则
虚拟变量取“0”,通常代表基础类型; 虚拟变量取“1”,通常代表与基础类型相比较 的类型。
城镇居民的消费函数: Ci (1 2 ) 1 X i ui
E(Ci | Di 1) (1 2 ) 1 X i
12
解释变量包含一个定量变量和一个两种以 上类型的定性变量的回归
研究居民的年医疗保健费用支出受可支配收入和居民 受教育程度的影响(受教育程度可分为:高中以下、 高中、大专及以上三个级别):
*
( 1 2 X * ) ( 1 2 ) X t ut
22
案 例
某公司为了激励公司的销售人员,按其销售额的 一定比例计提奖励,但是销售额在某一目标水 平X*以下和以上时,计提奖励的比例不同。
Yt 1 1 X t 2 ( X t X * ) Dt ut 0, X t X * Dt * 1 , X X t
解释变量包含一个定量变量和一个分为两 种类型定性变量的回归
研究城乡居民的消费函数: Ci 1 2 Di 1 X i ui
农村居民的消费函数:
Ci 1 1 X i ui
E(Ci | Di 0) 1 1 X i
0, 农村居民 Di 1, 城镇居民
24
3段分段线性回归举例
研究中国的货币流通量,从建国到现在历经了三 个时期: 从建国初期到1960年,增加速度比较快; 从1961年到1978年,由于处于经济困难和文化 革命时期,增加速度明显减缓; 从1978年改革开放往后,进入社会主义市场经 济时期,增加速度明显增加。 试建立中国的货币流通量的趋势模型。
16
4
3
Y
2
1
0 0 10 20 X
17
30
40
50
ˆ 0.3204 0.8273D 0.0675X Y i i i t ( 5.2) (16.9) (11.0) R 2 0.99
ˆ 0.3204 0.0675X 租房户: Y i i
ˆ 0.5069 0.0675X 有房户: Y i i
改革开放前: Yi 1 1 X i ui 改革开放后: Yi (1 2 ) ( 1 2 ) X i ui
20
以乘法方式引入虚拟变量做回归模型比较 的优点
用一个回归替代了多个回归,简化了分析过程;
可以方便地对模型结构的差异做各种假设检验;
合并了的回归增加了自由度,提高了参数估计 的精确性。
农村女性: Yi 1 1 X i ui 农村男性: Yi (1 3 ) 1 X i ui 城镇女性: Yi (1 2 ) 1 X i ui
城镇男性: Yi (1 2 3 ) 1 X i ui
14
案例
随机调查美国旧金山地区20个家庭的储蓄情况, 拟建立年储蓄额对年收入的回归模型,通过样 本的散点图发现,这20个家庭中,有房户和租 房户的储蓄额有较明显的区别,故在模型中加 入一个定性变量,以区别有房户和租房户。
例如:研究政府某项经济政策的施行与否对被解 释变量的影响
( 该项经济政策未施行 ) 0, 基 础 类 型 Di ( 该项经济政策施行了 ) 1, 比 较 类 型
6
练 习
将定性因素“学历”(分为:大专及以上、高中、 初中、小学及以下)作为解释变量引入下面的 模型中。 Yi 1 1 X i ui
25ቤተ መጻሕፍቲ ባይዱ
本章小结
虚拟变量的概念 虚拟变量的设置规则 加法类型引入虚拟变量 乘法类型引入虚拟变量
26
D 0 0 0 0 0 1 0 1 1 0
i 11 12 13 14 15 16 17 18 19 20
Y 0.3 0.0 1.0 2.0 0.4 0.7 1.5 1.6 0.6 0.6
X 9.0 6.0 18.0 20.0 12.0 14.0 15.0 16.0 15.0 14.0
D 0 0 0 1 0 0 1 1 0 0
Yi 1 2 D2i 3 D3i 1 X i ui
0, 其他 D2 i 1, 高中
0, 其他 D3i 1, 大专及以上
高中以下: Yi 1 1 X i ui 高中:
Yi (1 2 ) 1 X i ui
13
18
二、用虚拟变量表示不同斜率的回归—— 乘法类型
回归模型的比较——结构变化检验
分段线性回归
19
回归模型的比较——结构变化检验
研究改革开放前后(1950-2004),储蓄与收入的关系: Yi 1 2 Di 1 X i 2 ( Di X i ) ui
( 1950 1977 ) 0, 改革开放前 Di ( 1978 2004 ) 1, 改革开放后
相关文档
最新文档