系统辨识 分类

合集下载

系统辨识算法

系统辨识算法

系统辨识算法一、引言系统辨识是指通过对系统输入输出数据进行观测和分析,从而建立数学模型以描述和预测系统行为的过程。

系统辨识算法是在给定输入输出数据的基础上,利用数学方法和计算机模拟技术,对系统的结构和参数进行估计和辨识的算法。

系统辨识算法在控制工程、信号处理、机器学习等领域具有广泛的应用。

二、系统辨识方法系统辨识方法可以分为参数辨识和非参数辨识两类。

1. 参数辨识参数辨识是指通过对系统模型中的参数进行估计,来描述和预测系统的行为。

常用的参数辨识方法有最小二乘法、最大似然估计法、递推最小二乘法等。

最小二乘法是一种基于最小化误差平方和的优化方法,通过优化目标函数来估计参数值。

最大似然估计法是一种基于概率统计理论的方法,通过似然函数最大化来估计参数值。

递推最小二乘法是一种基于递推迭代的方法,通过更新参数估计值来逼近真实参数值。

2. 非参数辨识非参数辨识是指通过对系统的输入输出数据进行分析,来估计系统的结构和参数。

常用的非参数辨识方法有频域分析法、时域分析法、小波分析法等。

频域分析法是一种基于信号频谱特性的方法,通过对输入输出信号的频谱进行分析,来估计系统的频率响应。

时域分析法是一种基于信号时域特性的方法,通过对输入输出信号的时序关系进行分析,来估计系统的时域特性。

小波分析法是一种基于小波变换的方法,通过对输入输出信号的小波变换系数进行分析,来估计系统的时频特性。

三、系统辨识应用系统辨识算法在实际工程中有着广泛的应用。

1. 控制工程系统辨识算法在控制系统设计中起到关键作用。

通过对控制对象进行辨识,可以建立准确的数学模型,从而设计出性能优良的控制器。

例如,在自适应控制中,可以利用系统辨识算法来实时辨识系统模型,从而根据实际系统特性调整控制器参数。

2. 信号处理系统辨识算法在信号处理领域有重要应用。

通过对信号进行辨识,可以提取信号的特征和结构,从而实现信号去噪、信号分析、信号识别等目标。

例如,在语音信号处理中,可以利用系统辨识算法来建立语音模型,进而实现语音识别和语音合成。

系统辨识第01章

系统辨识第01章

§1.1.5 系统辨识的分类
系统辨识的分类 根据描述系统的数学模型分:线性系统辨识与非线性系统辨识、 集中参数系统辨识与分布参数系统辨识; 根据系统结构分:开环系统辨识、闭环系统辨识; 根据参数估计方法分:离线辨识、闭环辨识; 根据系统辨识方法分:经典辨识方法与现代辨识方法
§1.1.5 系统辨识的分类
根据系统的输入和输出,在指定的一类系统中确定一个和被辨识 系统等价的系统。zadeh 的这段话不仅给系统辨识这个概念下了一 个完整的定义,而且也包含了辨识的三要素: 1 .输入输出数据;辨识的基础。 2 .模型类;指要寻找什磨类型的模型。 3 .等价准则。按照zadeh 的定义,辨识就是寻找一个与实际系 统完全等价的模型。
§1.1.3 系统辨识的应用
4.系统仿真。有了模型,可以在计算机上对系统进行仿真 研究,实验各种不同的策略,观测其结果,从而分析和制定策 略。如对于军事作战的制定,就可以采用现代化的仿真手段。 此外,一些不允许做试验的系统,如核反应研究,就可以通过 仿真来进行。再如对战斗机中飞行员座舱弹射装置的研究。 5.系统物理参数估计。如医务界对于体内参数的测定、矿 藏区域储藏的测定,可以通过系统辨识的方法来进行。
§1.1.4 建立数学模型建模方法
2 .测试法
系统输入输出信号一般是可以测量的。由于系统的动态特性必然 表现在这些输入输出数据中,因此利用输入输出数据所提供的信息就 可推算出系统的关系式,从而建立起系统的数学模型。这种建模方法 就叫做辨识,如图所示。
测试法建模示意图
§1.1.4 建立数学模型建模方法
经典辨识方法 1940年代开始的古典控制发展起来,以非参数模型为主 古典辨识方法分类 频率响应法(Frequency response) 瞬态响应法(Transient response) 阶跃响应法(Step response) 最小2乘类 (Least squares) 脉冲响应法 (Impulse response) 最小2 乘,广义最小2乘,扩展最小2乘 相关分析法(Correlation analysis) 辅助变量法 谱分析法(Spectrum analysis) 极大似然法(Maximum likelihood) 预报误差法(Prediction error) 在线递推辨识算法(Recursive algorithm) 递推最小2乘法 递推辅助变量法 递推预报误差法

8系统辨识原理及辨识模型简介

8系统辨识原理及辨识模型简介
8系统辨识原理及辨识模型简介
8.1系统辨识工具箱的主要功能包括: ① 参数模型辨识。主要模型有ARX、ARMAX、BJ模型,以 及状态空间和输入误差等模型类的辨识。 ② 非参数模型辨识。 ③ 模型的验证。对辨识模型的仿真,将真实输出数据与模 型预测数据比较,计算相应的残差。 ④ 基于递推算法的ARX、ARMAX模型的辨识。 ⑤ 各种模型类的建立和转换函数。 ⑥ 集成多种功能的图形用户界面。该界面以图形的交互方 式提供模型类的选择和建立、输入输出数据的加载和预处 理,以及模型的估计等。
(4) ARX模型 从ARX多项式建立ARX模型可以使用函数idarx,格式如下: m = idarx(A,B,Ts) m = idarx(A,B,Ts, 'Property1', Value1,...,'PropertyN',ValueN) 对于多输入输出的ARX模型有如下形式:
y(t ) A1 y(t 1) A2 y(t 2) Ana y(t na) B0u (t ) B1u (t 1) Bnbu (t nb) e(t )
例8.1 模拟一个具有1输入2输出的二阶ARX模 型并使用模拟数据估计该对象。 A=zeros(2,2,3); B=zeros(2,1,3); %生成符合输入输出 维数的3维空矩阵 A(:,:,1)=eye(2); A(:,:,2)=[1.5 0.1;-0.2 1.5]; A(:,:,3)=[0.7 -0.3;0.1 0.7]; B(:,:,2)=[ 1;-1]; B(:,:,3)=[ 0.5;1.2]; %为输入输出数据矩阵 赋值 m0=idarx(A,B,1); u=iddata([],idinput(300)); e=iddata([],randn (300,2)); y=sim(m0,[u,e]); m=arx( [y,u], [ [2 2;2 2],[2;2],[1;1]]);

模糊系统辨识

模糊系统辨识
n( k 1)
m
p1 0
2 p0 3 p0
11... n1... x1111... x1m n1... x k1 11... x km n1 12 ... n 2 ... x1112 ... x1m n 2 ... x k1 12 ... x km n 2 Y p1 k 2 pk 1m ... nm ... x111m ... x1m nm ... x k1 1m ... x km nm
i 2)隶属函数 Ak — 前件参数 i 3)后件参数 pk 在前件中,如果 xi 等于 xi 的整个论域,(即 Ai ),此项可 U 略去, i 无限定,成为无条件。譬如:
If x1 为small, x2 big, T hen y x1 x2 2 x3
式中 x3 即为无条件满足。在前提中 x3 可不必列出。
1)可以用较少的规则来逼近函数; 2)可以用语言变量来表达。 模糊辨识的一种方法及步骤 针对Takagi—Sugeno(T—S)模型,辨识步骤:
⑴ 选择前件变量
⑵ 前件参数辨识 ⑶ 后件参数辨识
前件变量的组合
搜索法
前件参数的辨识 后件参数的辨识
非线性规划法
算法的框架
最小二乘法
★后件参数辨识 考虑一般化系统,由n条规则组成: R1 1 1
i ( i1 , i 2 ,..., im ) 给定, i 1,2,..., n
2 n 1 2 n 2 n P ( p1 , p0 ,..., p0 , p1 , p1 ,..., p1 , ...... p1 , pk ,..., pk ) 0 k
可以用最小二乘法进行计算。 输入与输出的关系用矩阵形式表示:

03系统辨识及其在软测量技术中的应用

03系统辨识及其在软测量技术中的应用

3.2.1 一般最小二乘法
• 最小二乘求解:
最小二乘估计是在残差平方和准则函数极小意思下的最优 估计,即按照准则函数: 来确定估计值 。求J对 的偏导数并令其等于0,得:
即:
上式称为正则方程,当 计值:
非奇异时,可得最小二乘估
3.2.2 加权最小二乘法
• 如果准则函数取为加权函数,即:
其中
称为加权因子,对所有的k,
• 系统辨识是一种建立和确定模型的方法
模型是关于实际过程的本质的部分信息缩减成有用的 描述形式,是一种按照过程所作的近似描述
◆ ◆
建立数学模型的方法: - 机理建模法(白箱)
- 实验测试法(黑箱)——系统辨识
- 机理建模与实验测试相结合的方法(灰箱)
3.1.1 系统辨识的定义
• 系统辨识的定义(Zadeh1962):

3.1.3 系统辨识方法分类
• 不同辨识目的对模型和辨识的要求:
3.1.4 数学模型的分类
• 数学模型的分类方法有很多,通过对数学模型的分类, 有助于按照具体的应用目的确定一个合适的模型:
◆ ◆ ◆ ◆
从概率的角度分:确定性模型、随机性模型
按模型与时间的关系分:静态模型、动态模型
按时间刻度分:连续时间模型、离散时间模型 按参数与时间的关系分:定常模型、时变模型

3.1.3 系统辨识方法分类
• 在线辨识和离线辨识:
离线辨识要求被辨识对象从整个系统中分离出来,然 后将大量的输入输出数据存储起来,并按照一定的辨识 算法进行数据处理。

在线辨识通常不需要给被辨识对象施加特殊的输入, 而直接利用实际运行条件下被辨识对象的输入输出信息, 它不需要存储从过去到现在的全部输入输出信息,而是 在某个初始估计下启动,然后按照递推算法,随着新信 息的不断获得而不断修正估计值。

动力学系统辨识

动力学系统辨识

系统是由内部相互联系、相互制约、相互作用的要素构成,具有整体功能和综合行为的统一体,整体性是系统最基本的特性,同时系统接受外部因素的制约和作用。

系统建模就是建立表征系统状态参数之间以及与外作用之间的相互作用的数学表达式的过程。

系统建模是系统分析和研究的基础,能够反映系统本质特性的模型建立后,可以借助数学分析,数值模拟,计算仿真等手段开展系统分析,从而实现对系统的合理设计和有效控制。

系统建模有两类方法:理论建模和实验建模。

理论建模是指从已知的定理,原理和定律出发,对系统的内在规律进行系统分析和研究从而建立起系统的数学模型。

实验建模是直接从系统运行或试验中测量到数据,应用系统辨识方法建立系统模型。

系统辨识的作用是研究如何建立系统数学模型。

辨识三要素:数据、模型类和准则。

辨识就是按照一个准则在一组模型类中寻找一个与数据拟合得最好的模型。

辨识准则有:最小二乘准则:最小方差准则、最大似然准则、贝叶斯准则、H无穷准则等辨识算法。

对于给定的候选数学模型集,根据辨识准则建立辨识方程组之后,系统辨识问题就化成了一个极值优化计算问题。

对于线性系统,可应用最小二乘准则,对于非线性系统常采用迭代算法求解;也可用逐点递推逼近算法求解。

系统辨识分为离线辨识和在线辨识两种。

离线辨识也称事后处理,先将实验过程中输入一输出数据记录下来,实验结束后再进行辨识。

由于时间较充裕,记录的信息一般较多,可以适用较复杂的建模问题。

优点:估计模型参数精度高,缺点:要求存储量大,运算量大,计算时间长。

在线辨识,即在系统运行中边测量边辨识,一般将辨识结果直接用于系统控制,要求处理信息速度较快,通常采用递推算法,不断用新的测量数据修正当时的估计值。

由于计算机处理过程比较耗时,目前还主要用于简单模型的建摸。

优点:计算量小,适合实时控制和自适应控制。

缺点:辨识精度较差。

系统分析是己知系统的数学模型,研究系统对各种外作用的响应历程和表现特性:系统辨识则是反过来,从已经测量出的外作用和响应历程确定系统的数学模型;通常在控制论中称系统分析为正问题,系统辨识是反问题。

系统辨识的经典方法

系统辨识的经典方法

⎧T
⎨⎩τ
= 2(t2 − t1) = 2t1 − t2
对于以上结果,也可在
⎧⎪⎨tt34
≤τ,
= 0.8T

,
⎪⎩t5 = 2T +τ ,
y(t3 ) = 0 y(t4 ) = 0.55 y(t5 ) = 0.87
这几点上对实际曲线的拟合精度进行检验。
系统辨识的经典方法
频率响应法
频率响应法-1
; 阶跃响应法辨识原理
¾ 在系统上施加一个阶跃扰动信号,并测定出对象的响应随时间 而变化的曲线,然后根据该响应曲线,通过图解法而不是通过 寻求其解析公式的方法来求出系统的传递函数,这就是阶跃响 应法系统辨识。
¾ 如果系统不含积分环节,则在阶跃输入下,系统的输出将渐进 于一新的稳定状态,称系统具有自平衡特性,或自衡对象。
+ b1s + a1s
+ +
b0 a0
,
n>m
¾ 对应的频率特性可写成:
G(
jω)
=
bm ( an (
jω)m +" + b2 ( jω)2 + b1( jω)n +" + a2 ( jω)2 + a1(
jω) + b0 jω) + a0
=
(b0 − b2ω 2 (a0 − a2ω 2
+ b4ω 4 + a4ω 4
系统辨识的经典方法
肖志云
内蒙古工业大学信息工程学院自动化系
系统辨识的经典方法
1
引言
2
阶跃响应法
3
频率响应法
4
相关分析法

系统辨识

系统辨识

3.系统辨识
建模的方法:
机理建模:依据系统工作所服从的物理、化
学、生物的定理、定律,以及系统的结构数 据推导出数学模型。 -白箱建模 机理模型、解析模型。 系统辨识:通过观测实际系统的输入、输出 数据,从一类数学模型中选择一个特定的数 学模型,该模型在数学上等价于相应的实际 系统。 -黑箱建模 两者相结合,用机理分析确定模型结构,用 系统辨识方法确定模型参数。 -灰箱建模
系统辨识
吴刚
中国科学技术大学工业自动化研究所
2010年11月21日
引论
第一节 定义与分类
1.系统(system)
一般定义: 由相互联系、相互制约、相互作
用的各个部分组成的,具有一定整体功能和 综合行为的统一体。 工程系统中:由相互联系的元部件组成的具 有某种特定功能的整体。 如:晶体管、放大器、电机 伺服系统、调节器、惯性导航平台 磨煤机、水处理、锅炉、发电机 生产线、电网、互联网 企业、联合企业、经济协作区、国民经 济系统
7.先验知识
对模型结构、参数、数据的实际知识或信息
对实际系统的数学假定
主导时间常数
系统时延 系统通频带 系统非线性与时变特性 输入/输出信号变化幅值
噪声水平
8.参数估计的方法
离线辨识 在线辨识(实时辨识) 最小二乘法 极大似然法 辅助变量法 随机逼近法 互相关法
n
向后一步平移算子:
q X t X t 1 yt ai q yt bi q ut
i i i 1 i 1 n n
1
A(q ) yt B(q )ut 1 A(q ) 1 ai q 1 a1q an q
1 i 1 i 1 n n

系统辨识理论及应用教学设计

系统辨识理论及应用教学设计

系统辨识理论及应用教学设计引言系统辨识是现代自动控制系统和信号处理系统的重要理论和方法之一,主要用于处理信号和系统特性的测量和建模。

在工程实践中,系统辨识可以应用于航空、航天、船舶、机械、电力、核能、自动化等领域。

本文将介绍系统辨识的原理和应用,以及在教学中如何进行有效的教学设计。

系统辨识的原理定义系统辨识是指通过对系统输入和输出数据进行分析,建立符合系统特性的数学模型的过程。

系统辨识分类根据系统模型的不同,系统辨识可以分为线性模型、非线性模型、时变模型、多变量模型等。

其中,线性辨识是最常用的方法,最基本的思想是建立一个线性方程来描述系统的特性。

线性系统模型线性系统辨识的基本概念和方法包括输入和输出信号的采集和处理、系统模型的结构和参数的选择等。

例如,在控制系统中,通过测量输入和输出信号,可以建立线性模型,如一阶模型、二阶模型、三阶模型等,以描述系统的特性和行为。

非线性系统模型非线性系统模型的辨识过程涉及到非线性方程的求解,通常需要使用优化算法和迭代算法来计算模型参数。

非线性辨识的典型应用包括非线性系统建模、数据分析和预测等。

例如,在金融领域,可以使用非线性模型来描述和预测股市、汇率等变量。

系统辨识工具现代系统辨识工具包括MATLAB、Simulink、LabVIEW等软件,它们提供了一系列的函数、工具箱和模块,方便用户进行数据预处理、模型结构选择、参数估计和模型检验等操作。

系统辨识的应用系统辨识在各种工程领域都有广泛的应用,主要包括:控制系统和自动化在控制系统和自动化领域,系统辨识可以帮助人们建立自适应控制、模型预测控制和优化控制等系统模型,从而提高系统的鲁棒性和控制性能。

通信和信号处理在通信和信号处理领域,系统辨识可以用于建立通信信道模型、数字滤波器模型、语音识别和音频处理等系统模型,从而提高信号质量和语音识别率。

金融和经济学在金融和经济学领域,系统辨识可以应用于金融市场预测、财务风险评估、经济预测和金融投资等方面。

系统辨识 分类

系统辨识 分类

集员系统辨识 4.2.1 集员系统辨识
2.应用 在实际应用中,飞行器系统是一个较复杂的非线性系统,噪 声统计分布特性难以确定,要较好地描述未知参数的可行解, 用统计类的辨识方法辨识飞行器动参数很难达到理想效果。 采用集员辨识可解决这种问题。首先用迭代法给出参数的中 心估计,然后对参数进行集员估计(即区间估计)。这种方法能 处理一般非线性系统参数的集员辨识,已经成功地应用于飞行 器动参数的辨识。
4.2 现代辨识方法
随着智能控制理论研究的不断深入及其在控制领域的广 泛应用,从逼近理论和模型研究的发展来看,非线性系统建模 已从用线性模型逼近发展到用非线性模型逼近的阶段。由于 非线性系统本身所包含的现象非常复杂,很难推导出能适应 各种非线性系统的辨识方法,因此非线性系统的辨识还没有 构成完整的科学体系。下面简要介绍几种方法。 ① 集员系统辨识法 ② 多层递阶系统辨识法 ③ 神经网络系统辨识法 ④ 遗传算法系统辨识法 ⑤ 模糊逻辑系统辨识法 ⑥ 小波网络系统辨识法
4.2.1 集员系统辨识
1.简介 在1979年集员辨识首先出现于Fogel撰写的文中,1982 年Fogel和Huang又对其做了进一步的改进。集员辨识是假 设在噪声或噪声功率未知但有UBB(Unknown But Bounded) 的情况下,利用数据提供的信息给参数或传递函数确定一个 总是包含真参数或传递函数的成员集(例如椭球体、多面体、 平行六边体等)。不同的实际应用对象,集员成员集的定义也 不同。集员辨识理论已广泛应用到多传感器信息融合处理、 软测量技术、通讯、信号处理、鲁棒控制及故障检测等方 面。
4.2.3 神经网络系统辨识法
3.特点 与传统的基于算法的辨识方法相比较,人工神经网络 用于系统辨识具有以下优点: ① 不要求建立实际系统的辨识格式,可以省去对系统 建模这一步骤; ② 可以对本质非线性系统进行辨识; ③ 辨识的收敛速度仅与神经网络的本身及所采用的学 习算法有关; ④ 通过调节神经元之间的连接权即可使网络的输出来 逼近系统的输出; ⑤ 神经网络也是系统的一个物理实现,可以用在在线 控制。 因此,人工神经网络在非线性系统辨识中的应用具有 很重要的研究价值和广泛的应用前景。

系统辨识课件-经典的辨识方法

系统辨识课件-经典的辨识方法

T1 S2 T3 U2 0 U4

S 2 T3 T3 S4 S 4 T5 0 U4 U4 0 0 U6
ˆ b0 S 0 ˆ T b1 1 ˆ S2 b2 ˆ 0 a ˆ 1 U 2 a 2 0 ˆ a3
2 T ˆ ( )u (t )d g ( )u (t )d lim ( ) z (t ) g dt 0 T 0 T 0
1 T ˆ lim ( ) z (t ) g ( )u (t )d u (t )dtd 0 0 g ( ) 0 T T 0 1 T ˆ ( )u (t )d u (t )dt 0 lim ( ) z (t ) g 0 0 T T
4.2 阶跃响应法 4.2.1 阶跃响应的辨识 通过手动操作,使过程工作在所需测试的负荷下,稳定运行一段时间 ,快速改变过程的输入量,并用记录仪或数据采集系统同时记录过程输入 和输出的变化曲线。
4.2.2 阶跃响应求过程的传递函数 ● 归一化: u (t ) u(t ) / U0 U 0 为输入信号幅度 输入:
0 1 An 2

0 0 A1
b1 0 A1 b2 0 A2 bm 1 An 0
● 传递函数阶次的确定: 判别各阶面积是否大于零
● Laplace极限定理求过程的传递函数 设:
K 1 lim h1 (t )
hr (t ) [ K r 1 hr 1 ( )]d
0

系统辨识 第1章 系统辨识概论

系统辨识  第1章 系统辨识概论

进行预报
可作一步、二步、短期、中期甚至长期预报
1.1.2 系统辨识的应用领域
进行规划
可能进行各种方案的最优规划
进行仿真研究 估计物理参数 生产过程的故障诊断
–许多复杂生产过程,比如飞机、核反应堆、大型工厂动力 装置及大型转动机械装置等 ,希望经常监视和检测可能出 现的故障,以便及时排除故障。 –通过系统辨识建立这些生产过程或设备的数学模型,并且 不断收集系统的信息,推断过程的动态特性的变化情况。 –然后,根据过程特性的变化情况来判断故障是否已经发生、 何时发生、故障类型和大小、故障的位置等。
e( k )
B( z 1 )
1.3.3 系统辨识步骤 • 辨识步骤
–进行测试获取数据 –模型结构辨识 –模型参数辨识 –模型校验
1.3.3 系统辨识步骤
辨识目的及先验知识 实 验 设 计 输 入 输 出 数 据 检 测 数 据 预 处 理 确定模型结构和准则 模型参数的估计 模型验证 满意 最终模型
出版社, 2011.4
第1章 绪论 1.1 系统辨识的发展 1.2 系统模型及建模方法 1.3 辨识的定义、内容和步骤
1.4 系统辨识的分类
1.5 本课程主要内容
1.1.1 系统辨识的发展历程
• 三十年代以前
主要利用概率统计理论中的统计回归方法等来处理在从事 生产实践、社会活动的研究中遇到的大量的数据资料
k 1 k 1 N N 2
B( z 1 ) y (k ) u ( k ) A( z 1 ) k 1
N
2
w(k)
uk) ym(k)
B( z 1 ) A( z 1 )
1.3.2 系统辨识三要素
输入误差准则

系统辨识

系统辨识
系统辨识的主要方法及应用场合
1
目录
1 2 3 4
• 系统辨识存在问题及方法分类
• 现代系统辨识简介 • 总结 • 参考文献
2
选择合理的辨识方案

各种辨识方法都有一定的适用范围和不同的计算工 作量。
辨识 目的
合理的 辨识 方案
3
先验 知识
系统辨识
未知的 数学模 型
先验知 识少
非线性
内部关 联错综
15
小波网络的系统辨识中的特点
1. 可构成函数基 小波变换类似于Fourier变换,可将信号按函数基的 形式展开。 2.在时域和频域内具有局域化的能力 小波分析理论即是Fourier分析理论的一大突破, 小波变换由于采用了自适应窗口,可以在低频部分具有 较高的频率分辨率和较低的时间分辨率,在高频部分具 有较高的时间分辨率和较低的频率分辨率,因而在时频 两域上可同时进行局部分析。 3. 可以进行多尺度分析 信号在不同尺度下的小波变换反映了信号在不同 尺度空间中的信息,描述了小波的分频性能。
5
基于神经网络的系统辨识
神经网络特点 1.能够充分逼近任意复杂的非线性系统; 2.能够学习适应不确定性系统的动态特性; 3.所有定量或定性的信息都分布储存于网络内的各 个神经元,所以有很强的鲁棒性和容错性; 4.采用并行分布处理方法,使得快速进行大量运算成 为可能。 这些特点显示了神经网络在求解非线性和不确定性 系统控制方面的巨大潜力,将神经网络引入控制系统是 控制学科发展的必然趋势。
时变性
辨识模型常见的分类: 非参数的一参数的 连续的一离散的 时域的一频域的 单变量的一多变量的 静态的一动态的 线性的一非线性的 时变的一非时变的 确定的一随机的 集中参数的一分布参数的

(完整)系统辨识的常用方法

(完整)系统辨识的常用方法

系统辨识的常用方法系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型,是现代控制理论中的一个分支。

对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。

传统的系统辨识方法(1)脉冲响应脉冲响应一般是指系统在输入为单位冲激函数时的输出(响应)。

对于连续时间系统来说,冲激响应一般用函数h(t)来表示.对于无随机噪声的确定性线性系统,当输入信号为一脉冲函数δ(t)时,系统的输出响应 h(t)称为脉冲响应函数。

辨识脉冲响应函数的方法分为直接法、相关法和间接法。

①直接法:将波形较理想的脉冲信号输入系统,按时域的响应方式记录下系统的输出响应,可以是响应曲线或离散值。

②相关法:由著名的维纳—霍夫方程得知:如果输入信号u(t)的自相关函数R(t)是一个脉冲函数kδ(t), 则脉冲响应函数在忽略一个常数因子意义下等于输入输出的互相关函数,即 h(t)=(1/k)Ruy(t)。

实际使用相关法辨识系统的脉冲响应时,常用伪随机信号作为输入信号,由相关仪或数字计算机可获得输入输出的互相关函数Ruy(t),因为伪随机信号的自相关函数 R(t)近似为一个脉冲函数,于是h(t)=(1/k)Ruy(t).这是比较通用的方法。

也可以输入一个带宽足够宽的近似白噪声信号,得到h (t)的近似表示。

③间接法:可以利用功率谱分析方法,先估计出频率响应函数H(ω),然后利用傅里叶逆变换将它变换到时域上,于是便得到脉冲响应h(t)。

(2)最小二乘法最小二乘法(LS)是一种经典的数据处理方法, 但由于最小二乘估计是非一致的、有偏差的, 因而为了克服它的不足, 形成了一些以最小二乘法为基础的辨识方法:广义最小二乘法(GLS)、辅助变量法(IVA)和增广矩阵法(EM),以及将一般的最小二乘法与其它方法相结合的方法,有相关分析——-最小二乘两步法(COR —LS)和随机逼近算法.(3)极大似然法极大似然法(ML)对特殊的噪声模型有很好的性能,具有很好的理论保证;但计算耗费大, 可能得到的是损失函数的局部极小值。

系统辨识

系统辨识

《系统辨识》学习总结姓名:xxx专业:xxxxxxxxx学号:xxxxxxxxxxx1、 系统辨识定义为了分析系统的行为特性、理解系统的运动规律、设计系统的控制策略或估计系统的状态,通常需要知道系统的数学模型。

但是,在多数情况下系统的数学模型是不知道的,或者数学模型的参数会随着系统运行环境的变化而变化。

系统辨识正是研究建立系统数学模型的一种理论和方法,帮助人们在研究表征系统复杂因果关系时尽可能准确地确立系统特性的定量依存关系。

系统辨识是一种实验统计的方法,通过测取系统在输入作用下的输出响应,或正常运行的输入和输出数据记录,进过必要的数据处理和数学计算,估计出系统的数学模型。

之所以能这么做的理由是基于系统的动态特性被认为必然变现在变化着的输入和输出数据之中,辨识只不过是利用数学的方法从数据序列中提炼出系统的数学模型而已。

利用辨识方法建立的数学模型一般是系统输入输出特性在某种准则意义下的一种近似,近似的程度取决于人们对系统先验知识的认识和对数据集合性质的了解以及所选用的辨识方法。

2、 辨识方法分类一般来说,辨识方法分两类:一类是非参数模型辨识方法,另一类是参数模型辨识方法。

非参数模型辨识方法(经典辨识方法)获得的模型是非参数模型,在假定系统是线性的前提下,不必事先确定模型的结构,因而这类方法可适用于任意复杂的系统。

参数模型辨识方法(现代辨识方法)必须假定模型结构,通过极小化模型与系统之间的误差准则函数来估计模型的参数。

如果模型结构无法事先确定,需要先辨识模型结构参数(比如阶次、延迟、Kornecker 不变量等),然后再估计模型的参数。

现代的辨识方法就其基本原理来说,又可分成三种类型:一类是最小二乘类辨识方法,另一类是梯度校正辨识方法,第三类是概率密度逼近辨识方法。

3、 最小二乘辨识方法3.1最小二乘批处理算法设时不变SISO 动态系统的数学模型为11()()()()()A z z k B z u k n k --=+(0.1) 其中,()u k ,()z k 为模型的输入和输出变量;()n k 是模型噪声;延迟因子1z -的多项式1()A z -和1()B z -。

系统辨识复习整理

系统辨识复习整理

1.系统辨识的概念系统辨识是利用系统运行或实验过程中获取的系统输入-输出数据求得系统数学模型(传递函数)的方法和技术。

2.过程的概念通常泛指具有时间或空间上的跨度的对象。

具体的如:工程系统、生物系统或社会经济系统都可以称为过程3.模型的概念指过程运动规律的本质描述。

4.模型按照描述形式分类(1)直觉模型指过程的特性以非解析的形式直接存储在人脑中靠人的直觉控制过程地进行。

(2)物理模型实际过程的一种物理模拟。

(3)图表模型以图形式或表格的形式来表现过程的特性,也成为非参数模型。

(4)数学模型用数学结构的形式来反映实际过程的行为特点。

5.根据模型的特性,数学模型可以分为线性和非线性模型系统线性与关于参数空间线性本质线性与本质非线性动态和静态模型确定性和随机性模型宏观(积分方程)和微观(微分方程)模型等6.建立过程数学模型的两种主要方法(1)机理分析法通过分析过程的运动规律、应用一些已知的规律、定理和与原理建立过程的数学模型,这种方法也称为理论建模(2)测试法——辨识方法利用输入输出数据所提供的信息来建立过程的数学模型白箱——理论建模黑箱——辨识建模灰箱——理论建模与辨识建模结合7.辨识的定义辨识有三个要素- 数据、模型类和准则,辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型8.系统辨识的步骤(1)根据辨识目的,利用先验知识,初步确立模型结构 (2)采集数据(3)进行模型参数和结构辨识 (4)验证获得最终模型9. 随机过程无穷多个随机函数的总体称为随机过程。

两层含义:随机过程ξ(t)在任一时刻都是随机变量; 随机过程ξ(t)是大量样本函数的集合。

10. 各种随机过程计算公式 二维分布函数:二维概率密度函数:2212122121212(,;,)(,;,)F x x t t f x x t t x x ∂=∂⋅∂一维和n 维类推数学期望:反映了随机过程取值的集中位置)()()}({1t a x P x t E Ki i i ==∑=ξ(离散))()()}({t a dx x xf t E ==⎰∞∞-ξ(连续)方差:反映了随机过程的集中程度[]{}22[()]()()D t Et a t σξξ==-2[()()]()t a t f x dx ξ∞-∞=-⎰自协方差:用来衡量任意两个时刻上获得的随机变量的统计相关特性 )]}()()][()({[),(221121t a t t a t E t t B --=ξξ11222121212[()][()](,;,)x a t x a t f x x t t dx dx ∞∞-∞-∞=--⎰⎰自相关函数:⎰⎰∞∞-∞∞-==2121212212121),;,()]()([),(dx dx t t x x f x x t t E t t R ξξ二者关系:121212(,)(,)[()][()]B t t R t t E t E t ξξ=-⋅互协方差函数:)]}()()][()({[),(221121t a t t a t E t t B ηξξηηξ--=F 2(x 1,x 2; t 1,t 2)=P {ξ(t 1)≤x 1, ξ(t 2)≤x 2}互相关函数:)]()([),(2121t t E t t R ηξξη=特别的:()0R ξητ=表示两个随机过程是不相关(正交的随机过程)11. 平稳随机过程对于任意的正整数n 和任意实数t 1,t 2,...,t n ,τ,随机过程ξ(t)的n 维概率密度函数满足12121212(,,,;,,,)(,,,;,,,)n n n n n n f x x x t t t f x x x t t t τττ=+++则称ξ(t)为平稳随机过程(严平稳随机过程或狭义平稳随机过程)若随机过程ξ(t)的数学期望和方差与时间无关,自相关函数仅是τ的函数,则称它为宽平稳随机过程或广义平稳随机过程。

系统辨识 分类28页PPT

系统辨识 分类28页PPT
系统辨识 分类
16、自己选择的路、跪着也要把它走 完。 17、一般情以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系系统统辨辨识识的的具具体体方方法法
一4.1经经典典的的辨辨识识方方法法
1.经典的辨识方法 :
思路:首先获得系统的非参数模型(频率响应,阶跃 响应,脉冲响应),然后通过特定的方法将非参数模型转化 成参数模型(如传递函数)。包括下述几类方法:
① 阶跃响应辨识方法 ② 脉冲响应辨识方法 ③ 频率响应辨识方法 ④ 相关分析辨识方法 ⑤ 谱分析辨识方法 ⑥ 最小二乘法 ⑦ 极大似然法
① 集员系统辨识法
② 多层递阶系统辨识法
③ 神经网络系统辨识法
④ 遗传算法系统辨识法
⑤ 模糊逻辑系统辨识法
⑥ 小波网络系统辨识法
42.2.1.1集集员员系系统统辨辨识识
1.简介
在1979年集员辨识首先出现于Fogel撰写的文中,1982 年Fogel和Huang又对其做了进一步的改进。集员辨识是假 设在噪声或噪声功率未知但有UBB(Unknown But Bounded) 的情况下,利用数据提供的信息给参数或传递函数确定一个 总是包含真参数或传递函数的成员集(例如椭球体、多面体、 平行六边体等)。不同的实际应用对象,集员成员集的定义也 不同。集员辨识理论已广泛应用到多传感器信息融合处理、 软测量技术、通讯、信号处理、鲁棒控制及故障检测等方 面。
42.2.1.1集集员员系系统统辨辨识识
3.特点
对于实际复杂系统,由于所建数学模型的未建模动态和 统计特性未知噪声的存在,常用的参数辨识方法而不能达到 故障检测与隔离的效果,采用集员辨识法则能够达到较好的 效果。所给检测方法可快速且有效地检测出传感器故障、 参数跳变故障和参数缓变故障等。
42.2.1.1集集员员系系统统辨辨识识
2.应用
在实际应用中,飞行器系统是一个较复杂的非线性系统,噪 声统计分布特性难以确定,要较好地描述未知参数的可行解, 用统计类的辨识方法辨识飞行器动参数很难达到理想效果。 采用集员辨识可解决这种问题。首先用迭代法给出参数的中 心估计,然后对参数进行集员估计(即区间估计)。这种方法能 处理一般非线性系统参数的集员辨识,已经成功地应用于飞行 器动参数的辨识。
41.1.3.3极极大大似似然然辨辨识识
1.辨识原理: 极大似然法应用于随机系统辨识,它根据观测数据一
般都具有随即统计特性这一实际情况,引入 随机变量(观 测输出量)的条件概率密度或条件概率分布p(yΙθ),构造一 个以观测数据和未知参数为自变量的似然函数L(YNΙθ),并通 过极大似然函数来获得系统模型的参数估计量ˆML 。
2.特点:
最小二乘法(LS)是一种经典的和最基本的,也是应用最广 泛的方法。但是,最小二乘估计是非一致的,是有偏差的,所以 为了克服他的缺陷,而形成了一些以最小二乘法为基础的系 统辨识方法:广义最小二乘法(GLS)、辅助变量法(IV)、增广 最小二乘法(ELS)和广义最小二乘法(GLS),以及将一般的最 小二乘法与其他方法相结合的方法,有最小二乘两步法 (COR-LS)和随机逼近算法等。
的方法将脉冲响应转化成参数模型(如传递函数)。
单位 脉冲 信号
(t)
(1) 0
(t) t
LTI系统
h(t ) h(t )
0
脉冲 响应
t
M序列
计算脉冲响应
系统 输出
41.1.1.1脉脉冲冲响响应应辨辨识识
2.从系统的输入数据和输出数据中得到系统的传递函数
输入输 出数据
相关 函数
脉冲响 应函数
传递 函数
41.1.2.2最最小小二二乘乘法法辨辨识识
1.辨识原理 假设实际系统为:
y(k) a1y(k 1) an y(k n) b0u(k) b1u(k 1)
bnu(k n) (k)
实际被控对象:y 估计输出:yˆ ˆ 定义残差:e y yˆ y ˆ
2.方法 ① 构造一个似然函数,次似然函数以数据和未知参数 为自变量。 ② 由极大似然函数求得未知参数。
4二.2现现代代辨辨识识方方法法
随着智能控制理论研究的不断深入及其在控制领域的广 泛应用,从逼近理论和模型研究的发展来看,非线性系统建模 已从用线性模型逼近发展到用非线性模型逼近的阶段。由于 非线性系统本身所包含的现象非常复杂,很难推导出能适应 各种非线性系统的辨识方法,因此非线性系统的辨识还没有 构成完整的科学体系。下面简要介绍几种方法。
一4.1经经典典的的辨辨识识方方法法
2.主要应用范围: ①寻求描述单变量线性定常系统的频率特性或传递函数; ②建立系统的非参数模型,用曲线或一组采样值来表示
系统的特性; ③在实验的基础上求出系统的参数模型,再用微分方程、
频率响应函数或传递函数来描述系统。
4一.1经经典典的的辨辨识识方方法法
3.系统辨识方法还存在着一定的不足: ①利用最小二乘法的系统辨识法一般要求输入信号已知,
并且必须具有较丰富的变化,然而,这一点在某些动态系统 中,系统的输入常常无法保证;
②极大似然法计算耗费大,可能得到的是损失函数的局 部极小值;
③经典的辨识方法对于某些复杂系统在一些情况下无能 为力。
41.1.1.1脉脉冲冲响响应应辨辨识识
1.辨识原理: 思路:通过相关法获得系统的脉冲响应,然后通过特定




y




















y(n N 1) y(N ) u(n N ) u(N )
(2n+1)× 1
y(n N ) (2n+1)× 1
(2n+1)× 1
41.1.2.2最最小小二二乘乘法法辨辨识识

aˆ2 bˆ0





bˆn


y(n)
y(1)
u(n 1) u(1)

y(n 1)

y(n 1) y(2)
u(n 2) u(2)


y(n

2)






使最小二乘指标最小:J eT e
J / ˆ ˆ (T )1T y
41.1.2.2最最小小二二乘乘法法辨辨识识
一次完成最小二乘算法(适合离线辨识;要求数据量大; 辨识精度高)
推导得出模型参数:ˆ (T )1T y
aˆ1





ˆ
相关文档
最新文档