七年级数学代数式求值——整体代入(一)(人教版)(专题)(含答案)

合集下载

期末复习重要考点05 《代数计算解答题》(七大考点题型+限时测评)(原卷版)(1)

期末复习重要考点05  《代数计算解答题》(七大考点题型+限时测评)(原卷版)(1)

(人教版)七年级上册数学期末复习重要考点05《代数计算解答题》七大重要考点题型【题型1 有理数的混合运算】1.(2023秋•桦南县期末)计算:(1)﹣10﹣|1﹣8|÷(﹣2)×(﹣2);(2)3×23−(−3+2)3+8÷(−14 ).2.(2022秋•凉州区校级期末)计算:(2)﹣14+(﹣3)×[(﹣4)2+2]﹣(﹣2)3÷4.3.(2022秋•城厢区期末)计算:(1)|﹣4|﹣(﹣2)﹣(﹣10﹣4);(2)﹣12022÷2+(−12)3×16﹣|0.5﹣1|.4.(2022秋•台山市期末)计算(1)−24×(−56+38−112);(2)−1100−(1−0.5)×13×[3−(−3)2].5.(2022秋•绥阳县期末)计算:(1)﹣32﹣(+11)+(﹣9)﹣(﹣16);(2)−12022+14÷[1−(34)2]−|−5|.6.(2022秋•河源期末)计算:964(2)﹣22+(﹣3)2×(−23)﹣42÷|﹣4|.7.(2023秋•邹平市校级期末)计算:(1)53÷4−57×512−17÷(−225);(2)﹣42+[(﹣3)2﹣(5﹣23)×(﹣1)2017].8.(2023秋•宿迁期中)计算:(1)2+(﹣6)﹣(﹣4);(2)﹣2.5÷(−58)×(−14);(3)(−76+34−23)×(﹣12);(4)﹣12−13×[4﹣(﹣2)3].【题型2 整式的加减】1.(2022秋•曲阳县期末)计算题(1)4(2x2﹣3x+1)﹣2(4x2﹣2x+3)(2)1﹣3(2ab+a)+[1﹣2(2a﹣3ab)]2.(2023秋•明水县期末)化简题:(1)(5a2+2a﹣1)﹣4(3﹣8a+2a2)(2)3x2﹣[7x﹣(4x﹣3)﹣2x2]3.(2022秋•凤山县期中)化简:(1)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(2)(﹣5x2﹣2y+3)﹣3(﹣2y﹣x2+1).4.化简:(1)(5a2﹣2a)﹣(a2﹣5a+1);(2)2(2x+y﹣1)﹣5(x﹣2y)﹣3y+2.5.化简:(1)﹣a +(2a ﹣2)﹣(3a +5);(2)3x 2−[5x −(12x −3)+2x 2].6.化简:(1)7a +3a 2﹣2a ﹣a 2+3;(2)(4x 2﹣5xy )﹣(13y 2+2x 2)+2(3xy −14y 2).7.化简:(1)(6m 2﹣4m ﹣3)+(2m 2﹣4m +1);(2)5(2x ﹣7y )﹣3(4x ﹣10y ).【题型3整式的化简求值---直接代入求值】1.(2023秋•大东区期末)先化简再求值:3(a 2b +ab 2)﹣2(a 2b ﹣1)﹣2ab 2﹣2,其中a =﹣1,b =2.2.(2023秋•长春期末)先化简,再求值:3x 2+2xy ﹣4y 2﹣2(3y 2+xy ﹣x 2),其中x =−12,y =1.3.(2023秋•敦化市期末)先化简,再求值:4(3a2b﹣ab2)﹣2(﹣ab2+3a2b),其中a=﹣1,b=1 2.4.(2022秋•甘谷县校级期末)当x=−12,y=−3时,求代数式3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)]的值.5.(2023秋•砀山县期中)先化简,再求值:﹣2m2n+2(3mn2﹣m2n)﹣4(mn2﹣2m2n),其中m=1,n=﹣2.【题型4整式的化简求值---先求值再代入求值】1.(2023秋•丰城市校级月考)先化简,再求值:2x﹣3(x﹣x2y)+5(x﹣2x2y)+6x2y,其中x,y满足(x﹣1)2+|y ﹣4|=0.2.(2023秋•朝阳区校级期中)先化简,再求值:3(2x 2﹣3xy ﹣5x ﹣1)+6(﹣x 2+xy ﹣1),其中|x +2|+(y −23)2=0.3.(2022秋•柘城县期末)化简求值:已知:(x ﹣3)2+|y +13|=0,求3x 2y ﹣[2xy 2﹣2(xy −32x 2y )+3xy ]+5xy 2的值.4.(2022秋•海林市期末)先化简再求值:12a +2(a +3ab −13b 2)−3(32a +2ab −13b 2),其中a 、b 满足|a ﹣2|+(b +3)2=0.5.(2022秋•潼南区期末)先化简,再求值:已知x,y满足|x﹣1|+(y+5)2=0,求代数式3(x2−xy+16y2)−2(2xy+x2−14y2)的值.【题型5整式的化简求值---整体代入求值】1.(2022秋•汕尾期末)先化简,再求值:已知2a﹣b=﹣2,求代数式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.2.已知x+y=5,xy=﹣3,求代数式4(x﹣y+xy)﹣2(x﹣3y+xy)﹣5的值.3.(2022秋•济阳区期末)已知x2+y2=5,xy=﹣4,求5(x2﹣xy)﹣3(xy﹣x2)+8y2的值.4.(2023秋•长岭县期末)先化简,再求值:3(2a2b+ab2)﹣(3ab2﹣a2b),其中a=﹣1,ab=2.5.(2022秋•东宝区校级期中)根据条件,求代数式的值.(1)若a ﹣2b =5,求6﹣2a +4b 的值;(2)已知m +n =﹣3,mn =2,求−6(13n −mn)+4(mn −12m)的值.6.(2022秋•汶上县期末)阅读材料:“整体思想”是中学数学解题中的一种重要的思想方法,如把某个多项式看成一个整体进行合理变形,它在多项式的化简与求值中应用极为广泛.例:化简4(a +b )2﹣2(a +b )2+(a +b )2.解:原式=(4﹣2+1)(a +b )2=(a +b )2参照本题阅读材料的做法进行解答:(1)若把(a ﹣b )6看成一个整体,合并3(a ﹣b )6﹣5(a ﹣b )6+7(a ﹣b )6的结果是 ;(2)已知x 2﹣2y =1,求3x 2﹣6y ﹣2022的值;(3)已知a ﹣2b =2,2b ﹣c =﹣5,c ﹣d =9,求(a ﹣c )+(2b ﹣d )﹣(2b ﹣c )的值.【题型6 绝对值的化简】1.(2022秋•安乡县期中)有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.(1)求|a﹣1|+|b﹣1|;(2)化简:|a+b|+|a﹣c|﹣|b|+|b﹣c|.2.(2023秋•吉州区期中)已知,数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”连接:b﹣c0,2a﹣c0,b﹣1 0;(2)化简:|b﹣c|+|2a﹣c|﹣|b﹣1|.3.(2023秋•赤峰期中)有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点到原点的距离相等.(1)用“>”“<”或“=“填空:a+b0;a﹣c0;b﹣c0.(2)|b﹣1|+|a﹣1|=;(3)化简|a+b|+|a﹣c|﹣|b|+|b﹣c|.4.(2023秋•东西湖区期中)已知,数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”连接:a +1 0,b ﹣c 0,2a ﹣c 0,b ﹣1 0;(2)化简:|a +1|+|b ﹣c |+|2a ﹣c |﹣|b ﹣1|.5.(2022秋•珠海校级期中)有理数a ,b ,c 在数轴上的位置如图所示,且表示数a 的点、数b 的点与原点的距离相等.(1)用“>”“<”或“=”填空:c 0,a +b 0,c ﹣a 0,c ﹣b 0;(2)|a ﹣1|﹣|c ﹣1|= ;(3)化简:|a +b |+|c ﹣a |﹣|b |+|c ﹣b |﹣|c |.【题型7 解一元一次方程】1.(2023秋•彰武县期末)解方程:(1)3(2x ﹣1)=15;(2)x−73−1+x 2=1.2.(2022秋•高平市校级期末)解方程:(1)2(x ﹣3)=1﹣3(x +1);(2)3x +x−12=3−x−13.3.(2023秋•杜尔伯特县期末)解方程:(1)3﹣5(x +1)=2x(2)x+23−2x−35=1.4.(2023秋•绥棱县期末)解下列方程:(1)3x ﹣6=4﹣2x ;(2)2x+13−5x−16=1.5.(2023秋•南木林县校级期末)解方程:(1)x ﹣7=10﹣6(x +0.5);(2)x+24−2x−36=1.6.(2022秋•谷城县期末)解方程:(1)6x ﹣7=4x ﹣5;(2)25x +x−12=3(x−1)2−85x .7.(2022秋•峨山县期末)解方程:(1)3x +5=15﹣2x ;(2)x+14−2x+16=1.8.(2022秋•柘城县期末)解方程:(1)5(3﹣2x )﹣12(5﹣2x )=11;(2)3x +x−12=3−2x−13.9.(2022秋•中江县期末)解方程(1)3x ﹣7(x ﹣1)=3﹣2(x +3)(2)x+10.4−0.2x−10.7=110.(2022秋•巴中期末)计算或解方程.(1)−12022−(−512)×411+(−2)3÷|−32+1|;(2)(−36)×(13+56−34);(3)5(x +8)﹣5=6(2x ﹣7);(4)x−0.30.4=0.1x+0.010.05+2.1.(2023秋•娄底期中)计算;(1)42﹣(﹣38)+(﹣27)﹣64;(2)−14+274×(13−1)÷(−3)2.2.(2022秋•秀英区校级期末)计算:(1)15+(﹣8)﹣(﹣4)﹣5;(2)(−512+34−16)×(−48);(3)−12−|0.5−23|÷13×[−2−(−3)2].3.(2023秋•襄州区校级期中)计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(−81)÷94×49÷(−16);(3)(134−78+712)÷(−124);(4)−14+[23×(−6)−(−3)2]÷2.4.(2023秋•汉川市期中)化简下列各式:(1)5a+(4b﹣3a)﹣(﹣3a+b).(2)2(a2b+ab2)+2ab2﹣2(a2b﹣1)﹣2.5.(2023秋•监利市期中)计算:(1)﹣a3+2a2﹣3a2﹣4a3.(2)(5x2y−4xy2)−2(12x2y−3.5xy2+xy).6.(2022秋•泰山区校级期末)化简:(1)﹣3xy﹣2y2+5xy﹣4y2(2)2(5a 2﹣2a )﹣4(﹣3a +2a 2)7.(2022秋•滕州市期末)解方程:(1)6﹣2(x ﹣1)=2(x ﹣1);(2)x −2x+56=1−2x−32.8.(2022秋•滨湖区期末)解方程:(1)5(x +8)﹣32=﹣6(2x ﹣7);(2)3x+14−2x−36=1.9.(2022秋•涧西区校级期末)解下列方程:(1)2x−30.5=2x 3−1;(2)4x−1.50.5−5x−0.80.2=1.2−x 0.1.10.(2023秋•监利市期中)先化简,再求值:12(4x 2y −6xy 2)−3(x 2y −2xy 2)−xy 2,其中x =﹣1,y =2.11.(2022秋•潮阳区期末)有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b ﹣c 0,b ﹣a 0,c ﹣a 0.(2)化简:|b ﹣c |+|b ﹣a |﹣|c ﹣a |﹣|a |.12.(2022秋•达州期末)有理数a 、b 、c 在数轴上的位置如图.(1)用“>”或“<”填空:a 0,a ﹣b 0,b ﹣c 0,c ﹣a 0;(2)化简:|a ﹣b |﹣2|b ﹣c |+|c ﹣a |﹣2|a |.13.(2022秋•东阿县期末)先化简,再求值:(1)3ab ﹣[2a 2b ﹣(4b 2+2a 2b )﹣2ab ],其中|a ﹣2|+(b +1)2=0;(2)2(x 2y +xy )﹣3(x 2y ﹣xy )﹣4x 2y ,其中x =1,y =﹣1.14.(2023秋•自流井区校级期中)先化简,再求值:已知|a +1|+(b ﹣2)2=0,求3ab 2−[5a 2b +2(ab 2−12)+ab 2]+6a 2b 的值.15.(2023秋•宣化区期中)“整体思想”是中学数学学习中的一种重要思想,它在多项式的化简与求值中应用极为广泛,例如把(a +b )看成一个整体:4(a +b )+3(a +b )=(4+3)(a +b )=7(a +b ),请应用整体思想解答下列问题:(1)化简:5(m +n )2﹣7(m +n )2+3(m +n )2;(2)已知a ﹣2b =2,2b ﹣c =﹣5,c ﹣d =9,求(a ﹣c )+(2b ﹣d )﹣(2b ﹣c )的值.16.(2022秋•交城县期末)已知关于a ,b 的单项式25a m +n b 2与单项式﹣a 6b m +1是同类项. (1)求m ,n 的值;(2)求整式3(m 2﹣2mn +n 2)﹣[4m 2﹣2(12m 2+mn −32n 2)]的值.17.(2023秋•富县期中)我们知道:3x+4x﹣x=(3+4﹣1)x=6x,类似的,若我们把(a﹣b)看成一个整体,则有3(a﹣b)+4(a﹣b)﹣(a﹣b)=(3+4﹣1)(a﹣b)=6(a﹣b).上面这种解决问题的方法渗透了数学中的“整体思想”,“整体思想”是中学数学解题中的一种重要的思想方法,其应用极为广泛.请你运用上述方法,解答下面的问题:(1)把(a+b)2看成一个整体,则2(a+b)2﹣8(a+b)2+3(a+b)2=;(2)若x2+2y=4,求代数式﹣3x2﹣6y+17的值;(3)已知a﹣3b=3,2b﹣c=﹣5,c﹣d=9,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.18.(2023秋•临沭县期中)【教材呈现】如图是人教版七年级上册数学教材76页的部分内容.把(a+b)和(x+y)各看成一个整体,对下列各式进行化简:(1)4(a+b)+2(a+b)﹣(a+b);(2)3(x+y)2﹣7(x+y)+8(x+y)2+6(x+y)把(a+b)和(x+y)各看作一个整体,对下列各式进行化简:(1)4(a+b)+2(a+b)﹣(a+b);【问题解决】对(1)中的式子进行化简,写出化简过程;【简单应用】(2)①已知a2+a=1,则2a2+2a+2023=.②已知a+b=﹣3,求5(a+b)﹣7a﹣7b+11的值;【拓展提高】(3)已知a2﹣2ab=﹣5,﹣ab+2b2=3,求式子3a2﹣7ab+2b2的值.。

七年级数学代数式求值——整体代入(二)(人教版)(专题)(含答案)

七年级数学代数式求值——整体代入(二)(人教版)(专题)(含答案)
答案:C
解题思路:
解:由题意,当x=-1时,


当x=1时,
故选C.
试题难度:三颗星知识点:整式的加减的应用——整体代入
6.若 ,则 的值为( )
A.1 B.-1
C.5 D.-5
答案:D
解题思路:
解:
故选D.
试题难度:三颗星知识点:整式的加减的应用——整体代入
7.若 , ,则代数式 的值为( )
A.11 B.4
2.当x=-3时,代数式 的值为7,则当x=3时,这个代数式的值为( )
A.-3 B.-7
C.7 D.-17
答案:D
解题思路:
解:由题意,当 时,


当 时,
故选D.
试题难度:三颗星知识点:整式的加减的应用——整体代入
3.当x=2时,代数式 的值为3,则当x=-2时,代数式 的值为( )
A.-5 B.0
4.当x=1时,代数式 的值为3,则当x=-1时,代数式 的值为( )
A.2 B.1
C.9 D.7
答案:C
解题思路:
解:由题意,当 时,

当 时,
故选C.
试题难度:三颗星知识点:整式的加减的应用——整体代入
5.当x=-1时,代数式 的值为5,则当x=1时,代数式 的值为( )
A.2 B.-2
C.10 D.-10
代数式求值——整体代入(二)(人教版)(专题)
一、单选题(共10道,每道10分)
1.当x=1时,代数式 的值为100,则当x=-1时,这个代数式的值为( )
A.-98 B.-99
C.-100 D.98
答案:A
解题思路:
解:由题意,当x=1时,

整式的化简求值(整式的乘除)-整体代入法专题练习(解析版)

整式的化简求值(整式的乘除)-整体代入法专题练习(解析版)

整式的化简求值(整式的乘除)-整体代入法专题练习一、选择题1、如果代数式3x2-4x的值为6,那么6x2-8x-9的值为().A. 12B. 3C. 32D. -3答案:B解答:6x2-8x-9=2(3x2-4x)-9=2×6-9=3.2、已知a2-3=2a,那么代数式(a-2)2+2(a+1)的值为().A. -9B. -1C. 1D. 9答案:D解答:原式=a2-4a+4+2a+2=a2-2a+6∵a2-3=2a,∴a2-2a=3,∴原式=3+6=9.选D.3、若代数式x2-13x的值为6,则3x2-x+4的值为().A. 22B. 10C. 7D. 无法确定答案:A解答:∵x2-13x=6,∴3x2-x+4=3(x2-13x)+4=3×6+4=18+4=22.选A.4、如果3a2+5a-1=0,那么代数式5a(3a+2)-(3a+2)(3a-2)的值是().A. 6B. 2C. -2D. -6答案:A解答:5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2·1+4=6.5、已知a-b=1,则代数式-2a+2b-3的值是().A. -1B. 1C. -5D. 5答案:C解答:-2a+2b-3=-2(a-b)-3=-2×1-3=-5,选C.6、已知代数式3x2-4x的值为9,则6x2-8x-6的值为().A. 3B. 24C. 18D. 12答案:D解答:∵3x2-4x=9,∴6x2-8x=18,∴6x2-8x-6=12,选D.7、如果a2+4a-4=0,那么代数式(a-2)2+4(2a-3)+1的值为().A. 13B. -11C. 3D. -3答案:D解答:由a2+4a-4=0可得:a2+4a=4,原式=a2-4a+4+8a-12+1=a2+4a-7=4-7=-3.选D.8、已知2x-3y+1=0且m-6x+9y=4,则m的值为().A. 7B. 3C. 1D. 5答案:C解答:∵2x-3y+1=0,∴2x-3y=-1,又∵m-6x+9y=4,∴m-3(2x-3y)=4,∴m+3=4,∴m=1.9、已知a+b=3,ab=1,则a2b+ab2的值为().A. 3B. 2C. -3D. 1答案:A解答:a2b+ab2=ab(a+b)=1×3=3.选A.10、如果x2+x=3,那么代数式(x+1)(x-1)+x(x+2)的值是().A. 2B. 3C. 5D. 6答案:C解答:原式=x2-1+x2+2x=2x2+2x-1.∵x2+x=3,∴2x2+2x-1=2(x2+x)-1=2×3-1=5.选C.11、若a+b=1,则a2-b2+2b的值为().A. 4B. 3C. 1D. 0答案:C解答:∵a+b=1,∴a2-b2+2b=(a+b)(a-b)+2b=1×(a-b)+2b=a+b=1.12、如果a2-2a-1=0,那么代数式(a-3)(a+1)的值是().A. 2B. -2C. 4D. -4答案:B解答:(a-3)(a+1)=a2-2a-3,∵a2-2a=1,∴原式=-2.选B.13、若-a2b=2,则-ab(a5b2-a3b+2a)的值为().A. 0B. 8C. 12D. 16答案:D解答:-ab(a5b2-a3b+2a)=-a6b3+a4b2-2a2b=-(a2b)3+(a2b)2-2a2b,∵-a2b=2,∴a2b=-2.∴原式=-(-2)3+(-2)2-2×(-2)=8+4+4=16.14、若x+y=1,x3+y3=13,则x5+y5的值是().A. 1181B.3181C.11243D.31243答案:A解答:由题目条件易得(x+y)2=1,x2-xy+y2=13,由此可得xy=29,x2+y2=59,∴x5+y5=(x2+y2)(x3+y3)-x2y2(x+y)=542781=1181.15、已知代数式x+2y的值是3,则代数式2x+4y+1的值是().A. 1B. 4C. 7D. 不能确定答案:C解答:∵x+2y=3,∴2x+4y+1=2(x+2y)+1,=2×3+1,=6+1,=7.选C.二、填空题16、已知a-b=2,则多项式3a-3b-2的值是______.答案:4解答:3a-3b-2=3(a-b)-2=4.17、当a=3,a-b=-1时,a2-ab的值是______.答案:-3解答:a2-ab=a(a-b)=-a=-3.18、已知t满足方程14+5(t-12017)=12,则3+20(12017-t)的值为______.答案:2解答:∵t满足方程14+5(t-12017)=12,∴t-12017=120,∴12017-t=-120,∴3+20(12017-t)=3+20×(-120)=3+(-1)=2.19、已知x,则代数式x2-4x+3的值是______.答案:4解答:∵x,∴x∴x2-4x+3=(x-2)2-1=5-1=4.20、如果x-y,那么代数式(x+2)2-4x+y(y-2x)的值是______.答案:6解答:(x+2)2-4x+y(y-2x)=x2+4+4x-4x+y2-2xy=x2+y2-2xy+4=(x-y)2+4=2+4=6.21、若代数式2x2-4x-5的值为7,则x2-2x-2的值为______.答案:4解答:∵2x2-4x-5=7,∴2x2-4x=12,∴x2-2x=6,∴x2-2x-2=6-2=4.22、若3x3-kx2+4被3x-1除后余3,则k的值为______.答案:10解答:3x3-kx2+4-3=3x3-kx2+1,令3x3-kx2+1=0,故x=13为该方程的解,代入解得,k=10.23、已知x2+2x=3,则代数式(x+1)2-(x+2)(x-2)+x2的值为______.答案:8解答:原式=x2+2x+1-(x2-4)+x2=x2+2x+5=3+5=8.三、解答题24、已知x2-2x-7=0,求(x-2)2+(x+3)(x-3)的值.答案:9.解答:原式=x2-4x+4+x2-9=2x2-4x-5.∵x2-2x-7=0,∴x2-2x=7.∴原式=2(x2-2x)-5=2×7-5=9.25、已知x2+4x-5=0,求代数式2(x+1)(x-1)-(x-2)2的值.答案:-1.解答:原式=2(x2-1)-(x2-4x+4)=2x2-2-x2+4x-4=x2+4x-6.∵x2+4x-5=0,∴x2+4x=5.∴原式=x2+4x-6=-1.26、若实数a满足a2-2a-1=0,计算4(a+1)(a-1)-2a(a+2)的值.答案:-2.解答:原式=4a2-4-2a2-4a=2a2-4a-4.∵a2-2a=1,∴原式=2-4=-2.27、已知x2-2x=3,求2x(x+2)-8x+7的值.答案:13.解答:2x(x+2)-8x+7=2x2+4x-8x+7=2x2-4x+7=2(x2-2x)+7,∵x2-2x=3,∴原式=2×3+7=13.28、化简求值:已知a2+7a+6=0,求(3a-2)(a-3)-(2a-1)2的值.答案:11.解答:(3a-2)(a-3)-(2a-1)2=3a2-9a-2a+6-(4a2-4a+1)=3a2-9a-2a+6-4a2+4a-1=-a2-7a+5.由a2+7a+6=0得,a2+7a=-6把a2+7a=-6代入,原式=-(a2+7a)+5=6+5=11.29、已知m2-5m-14=0,求(m-1)(2m-1)-(m+1)2+1的值.答案:原代数式的值为15.解答:(m-1)(2m-1)-(m+1)2+1=2m2-m-2m+1-(m2+2m+1)+1=2m2-m-2m+1-m2-2m-1+1=m2-5m+1.当m2-5m=14时,原式=(m2-5m)+1=14+1=15.∴原代数式的值为15.30、已知xy=-3,满足x+y=2,求代数式x2y+xy2的值.答案:-6.解答:∵xy=-3,x+y=2,∴x2y+xy2=xy(x+y)=-3×2=-6.31、关于x的三次多项式a(x4-x3+7x)+b(38x3-x)+x4-5,当x取2时多项式的值为-8,求当x取-2时该多项式的值.答案:-2.解答:原式=(a+1)x4+(38b-a)x3+(7a-b)x-5,原式是关于x的三次多项式,即a+1=0,∴a=-1.原式=(38b+1)x3+(7-b)x-5当x=2时,原式=(38b+1)×8+2(7-b)-5=-8,(38b+1)×8+2(7-b)=-3,当x=-2时,原式=(38b+1)×(-8)+(7-b)×(-2)-5=3-5=-2.。

数学人教版(2024版)七年级初一上册 3.2 代数式的值 课件02

数学人教版(2024版)七年级初一上册 3.2 代数式的值 课件02

果可以说:当n=10时,代数式18+2(n-1)的值是36;当n=15时,代数式
18+2(n-1)的值是46;等等.
一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出
的结果,叫做代数式的值.
讲授新课
求代数式的值的步骤:
(1)写出条件:当……时;
(2)抄写代数式;
(3)代入数值;
(4)计算.
解:专卖店A:购买足球数不超过10个时,所需要的费用为130x元;
超过10个时,所需要的费用为130×10+100(x-10)=(100x+300)元;
专卖店B:所需要的费用为110x元;
当堂检测
7.某校体育社团计划购买一些足球,该社团负责人去两家足球专卖店对足
球的价格进行了了解:
专卖店A:购买足球数不超过10个时,每个130元;超过10个时,超过的
(1)x = 15,y = 12;
解: 当 x = 15,y = 12时,
原式 = 2×15+3 × 12
= 66;
(2)x = 1,y
1
= .
2
解:当 x = 1,y
原式 = 2 ×
7
= .
2
1
= 时,
2
1
1+3×
2
讲授新课
典例精析
例2.根据下列 a,b

2
的值,分别求代数式a - 的值:

(1)a = 4,b = 12;
部分每个100元.
专卖店B:无论购买多少个,每个110元.
(2)若体育社团要购买20个足球,去哪家专卖店比较合算?请说明理由.
解:专卖店A:当x=20时,100x+300=100×20+300=2300元,

人教版七年级上册数学期中模拟卷(一)含答案解析

人教版七年级上册数学期中模拟卷(一)含答案解析

人教版七年级上册期中模拟卷一考试范围:第1-2章 ;考试时间:120分钟;姓名:注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题 1.(2022·河南·商水县希望初级中学七年级阶段练习)下列等式正确的是( ) A .99-=- B .133-= C .77--=D .()22-+=-A .2365x y -π的系数是65-B .233x y 的次数是6C .2.46万精确到百分位D .222x xy y ++是二次三项式A .一个有理数不是正数就是负数B .最小的整数是0C .有理数包括正有理数、零和负有理数D .数轴上的点都表示有理数【答案】C【分析】根据有理数的定义对各选项分析判断求解.【详解】解:A 、一个有理数,不是正数,有可能是负数或零,故本选项错误; B 、整数分为正整数,0,负整数,所以没有最小的整数,故本选项错误; C 、有理数包括正有理数、零和负有理数,故本选项正确;D 、有理数可以用数轴上的点表示,但数轴上的点不一定都表示有理数,故本选项错误. 故选:C .【点睛】本题考查了有理数的定义,是基础题,熟记概念是解题的关键.4.(2021·黑龙江·哈尔滨市萧红中学校七年级阶段练习)用四舍五入法对0.1508按不同要求取近似数,其中错误的是( ) A .0.2(精确到0.1) B .0.16(精确到0.01) C .0.151(精确到千分位) D .0.15(精确到百分位)【答案】B【分析】根据近似数的精确度对各选项进行判断.【详解】解:A .0.15080.2≈(精确到0.1),所以A 选项的计算正确; B .0.15080.15≈(精确到0.01),所以B 选项的计算错误; C .0.15080.151≈(精确到千分位),所以C 选项的计算正确; D .0.15080.15≈(精确到百分位),所以D 选项的计算正确. 故选:B .【点睛】本题考查了近似数:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.5.(2022·湖南·长沙市开福区青竹湖湘一外国语学校七年级阶段练习)下列各对数中,是互为相反数的是( ) A .()0.01--与1100⎛⎫- ⎪⎝⎭B .12-与(0.5)+-C .(5)-+与(5)+-D .13-与0.3的x值为18,我们发现第1次输出的结果为9,第2次输出的结果为12,……则第2022次输出的结果为()A.3B.6C.9D.18形的数量是()A.2019B.2020C.3032D.30338.(2020·浙江杭州·七年级期末)若230-+-=,则b a=()a bA.9B.9-C.8D.8-+-+-时运算律用9.(2021·山西·介休市第三中学校七年级阶段练习)计算3(2)5+(7)4545得恰当的是()A .13323(2)5(7)4545⎡⎤⎡⎤+-++-⎢⎥⎢⎥⎣⎦⎣⎦B .133235274455⎡⎤⎛⎫⎛⎫⎛⎫++-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦C .12333(7)(2)54554⎡⎤⎡⎤++-+-+⎢⎥⎢⎥⎣⎦⎣⎦D .3312(2)53(7)5445⎡⎤⎡⎤-+++-⎢⎥⎢⎥⎣⎦⎣⎦滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .2πB .4-πC .4+1-πD .41-π-【答案】D【分析】先求出滚动两周的距离,然后根据数轴上的点与实数一一对应,可得B 点表示的数.【详解】解:滚动两周的距离为221=4ππ⨯⨯, ∵点B 表示的数是41-π-, 故选:D .【点睛】本题考查了数轴上的动点问题,求出滚动两周的距离是解题的关键.第II 卷(非选择题)二、填空题11.(2021·山东·青岛爱迪学校七年级期中)若单项式23m n x y ﹣与单项式22n n x y 的和是25m n x y ﹣,则m +n =_____. 【答案】8【分析】根据题意可知单项式23m n x y ﹣与单项式22n n x y 是同类项,根据同类项的特点,列出方程组,解方程即可求解.【详解】解:∵单项式23m n x y ﹣与单项式22n n x y 的和是25m n x y ﹣, ∵单项式23m n x y ﹣与单项式22n n x y 是同类项,∵22m n n n -=⎧⎨=⎩,解得62m n =⎧⎨=⎩,∵m +n =6+2=8. 故答案为:8.【点睛】本题考查了同类项的定义以及整式的加法等知识,掌握同类项的定义是解答本题的关键.同类项:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项. 12.(2022·黑龙江·兰西县红星乡第一中学校期中)若a ,b 互为相反数,m ,n 互为倒数,则2020(a +b )﹣9mn 的值为 _____. 【答案】﹣9【分析】根据互为相反数、互为倒数的概念得到a +b =0,mn =1,代入2020(a +b )﹣9mn 计算即可得到答案.【详解】解:∵a 与b 互为相反数, ∵a +b =0, ∵m 和n 互为倒数, ∵mn =1,∵2020(a +b )﹣9mn =2020×0﹣9×1 =0﹣9 =﹣9, 故答案为:﹣9.【点睛】本题考查互为相反数及互为倒数的概念、有理数的计算,熟练掌握知识点是解题的关键.13.(2021·江苏·涟水县第四中学七年级阶段练习)如果代数式225a a +=,则代数式2243a a +-=_____.【答案】7【分析】首先提公因式把2243a a +-变形为()2223a a +-,然后将225a a +=整体代入求值即可得到答案.【详解】解:()22243223a a a a +-=+-,∴将225a a +=代入可得,原式2537=⨯-=,故答案为:7.【点睛】本题考查了求代数式的值,运用整体代入求值法:整体代入求值法是将已知条件适当变形,然后作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法. 14.(2021·江苏·无锡市华庄中学七年级期中)点A 在数轴上表示数﹣3,点B 距离点A 有2个单位长度,则点B 表示的数为___________. 【答案】﹣1或﹣5#-5或-1【分析】设点B 表示的数为x ,再由数轴上两点间的距离公式即可得出结论. 【详解】解:设点B 表示的数为x ,则 |x +3|=2,解得x =﹣1或x =﹣5. 故答案为:﹣1或﹣5.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.三、解答题15.(2021·辽宁·大连市第八十中学七年级阶段练习)把下列各数在数轴上表示,并从小到大的顺序用<连接起来.+(-4),122,0, 1.5--,-(-5).1(1)4.7(8.9)7.4(6)---+-; (2)311(1)2824-⨯÷.(1)222322(3())a a a a a +---; (2)2237(43)2[]x x x x ----. 【答案】(1)5a (2)2533--x x【分析】(1)直接去括号进而合并同类项得出答案; (2)直接去括号进而合并同类项得出答案. (1)解:222322(3())a a a a a +---2223223a a a a a -+=+-5a =;(2)解:2237(43)2[]x x x x ---- 22374[]32x x x x =-+-- 2237432=-+-+x x x x 2533=--x x .【点睛】此题考查整式的加减,掌握整式的加减混合运算法则是解题关键.18.(2022·全国·七年级课时练习)用黑白两种颜色的正六边形地面砖中力所示的规律,拼成若干图案.(1)第1个图形中有白色地砖 块; 第2个图形中有白色地砖 块; 第3个图形中有白色地砖 块; 第4个图形中有白色地砖 块;(2)求第n 个图案中有白色地砖的块数,并求出n =100时白色地砖的块数. 【答案】(1)6;10;14;18; (2)402块.【分析】(1)观察前3个图形的变化即可得结论; (2)结合(1)得到规律,进而运用规律即可得结论. (1)解:第1个图形中有白色地砖6块,即4×1+2=6; 第2个图形中有白色地砖10块,即4×2+2=10; 第3个图形中有白色地砖14块,即4×3+2=14. 第4个图形中有白色地砖4×4+2=18(块); 故答案为:6;10;14;18; (2)解:根据(1)可知:第n 个图案中,白色地砖共(4n +2)块. 所以n =100时,白色地砖共4×100+2=402(块).【点睛】本题考查了规律型:图形的变化类,解决本题的关键是根据图形的变化寻找规律,总结规律,运用规律.19.(2020·安徽安庆·七年级期中)小丽放学回家后准备完成下面的题目:化简()()226+8+652x x x x ---,发现系数“□”印刷不清楚 (1)她把“□”猜成3,请你化简()()2236+8+652x x x x ---(2)她妈妈说:你猜错了.我看到该题的答案是6.通过计算说明原题中“□”是几? 【答案】(1)226x -+ (2)5【分析】(1)去括号,合并同类项即可;(2)设“□”为a ,去括号化简,可知化简结果与二次项无关,即可求解. (1)解:()()2268652x x x x 3-++--22368652x x x x =-++--226x =-+;(2) 设“□”为a ,即有:()()()2226865256ax x x x a x -++--=-+,∵化简的结果为6,∵()256a x -+的结果与二次项无关,即二次项的系数为0,∵50a -=,即5a =, 答:“□”是5.【点睛】本题主要考查了整式的加减以及合并同类项的知识,灵活运用合并同类项的知识是解答本题的关键.20.(2021·内蒙古·霍林郭勒市第五中学七年级阶段练习)某电路检修小组在东西方向的一道路上检修用电线路,检修车辆从该道路P 处出发,如果规定检修车辆向东行驶为正,向西行驶为负,某一天施工过程中七次车辆行驶记录如下(单位:千米):(1)问检修小组收工时在P 的哪个方位?距P 处多远?(2)若检修车辆每千米耗油0.2升,每升汽油需6元,问这一天检修车辆所需汽油费多少元? 【答案】(1)检修小组收工时在P 的正东方,距P 处2千米 (2)50.4元【分析】(1)通过计算这七次车辆行驶记录结果的和就能得到答案;(2)计算出该天检修车辆走的路程之和,再乘以每千米耗油量和每升汽油的价格. (1)解:389104622-+-++--=(千米),答:检修小组收工时在P 的正东方,距P 处2千米.(2) 解:()60.2|3||8||9||10||4||6||2|⨯⨯-+++-+++++-+-()60.238910462=⨯⨯++++++=6×0.2×42=50.4(元).答:这一天检修车辆所需汽油费50.4元.【点睛】此题考查正负号的实际应用、绝对值的应用以及有理数的混合运算,理解正负号的意义是解题的关键.21.(2022·全国·七年级专题练习)观察下列等式:112⨯=1−12,123⨯=12−13,134⨯=13−14 将以上三个等式两边分别相加得:112⨯+123⨯+134⨯=1−12+12−13+13−14=1−14=34 (1)猜想写出()11n n += ; (2)直接写出下列各式的计算结果112⨯+123⨯+134⨯+…+()11n n += ; (3)探究计算1123⨯⨯+1234⨯⨯+1345⨯⨯+…+1201820192020⨯⨯.11111111223341n n111n =-+ 1n n =+; (3)解题的关键.22.(2021·河北唐山·七年级期中)已知:222232,432A a b ab abcB a b ab abc=--=--(1)求A B+的结果:(2)说明2A B-的结果和c的取值无关,并求1,62a b=-=时,2A B-的值(1)按图示规律完成下表:(2)按照这种方式搭下去,搭第n 个图形需要多少根火柴棒?(3)搭第2020个图形需要多少根火柴棒?(2)搭第n 个图形需要火柴棒根数为:5(1)41n n n --=+.(3)当2020n =时,414202018081n +=⨯+=,所以搭第2020个图形需要8081根火柴棒.【点睛】考查了规律型:图形的变化.注意:∵本题是规律性题目,要求具备较高的观察总结能力,合理利用所学知识求解.∵在做题过程中要合理利用转换思想,可以简化求解.。

初一上册数学代数式求值试题

初一上册数学代数式求值试题

初一上册数学代数式求值试题及答案一、选择题(共12小题)1.已知m=1,n=0,则代数式m+n的值为( )A.﹣1B.1C.﹣2D.2【考点】代数式求值.【分析】把m、n的值代入代数式进行计算即可得解.【解答】解:当m=1,n=0时,m+n=1+0=1.故选B.【点评】本题考查了代数式求值,把m、n的值代入即可,比较简单.2.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为( )A.54B.6C.﹣10D.﹣18【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣2x﹣8=0,即x2﹣2x=8,∴3x2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.故选B.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3.已知a2+2a=1,则代数式2a2+4a﹣1的值为( )A.0B.1C.﹣1D.﹣2【考点】代数式求值.【专题】计算题.【分析】原式前两项提取变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.4.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A.4,2,1B.2,1,4C.1,4,2D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;B、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;D、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.5.当x=1时,代数式4﹣3x的值是( )A.1B.2C.3D.4【考点】代数式求值.【专题】计算题.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=1时,原式=4﹣3=1,故选A.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.已知x=1,y=2,则代数式x﹣y的值为( )A.1B.﹣1C.2D.﹣3【考点】代数式求值.【分析】根据代数式的求值方法,把x=1,y=2代入x﹣y,求出代数式x ﹣y的值为多少即可.【解答】解:当x=1,y=2时,x﹣y=1﹣2=﹣1,即代数式x﹣y的值为﹣1.故选:B.【点评】此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.7.已知x2﹣2x﹣3=0,则2x2﹣4x的值为( )A.﹣6B.6C.﹣2或6D.﹣2或30【考点】代数式求值.【专题】整体思想.【分析】方程两边同时乘以2,再化出2x2﹣4x求值.【解答】解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.【点评】本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.按如图的运算程序,能使输出结果为3的x,y的值是( )A.x=5,y=﹣2B.x=3,y=﹣3C.x=﹣4,y=2D.x=﹣3,y=﹣9【考点】代数式求值;二元一次方程的解.【专题】计算题.【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【解答】解:由题意得,2x﹣y=3,A、x=5时,y=7,故A选项错误;B、x=3时,y=3,故B选项错误;C、x=﹣4时,y=﹣11,故C选项错误;D、x=﹣3时,y=﹣9,故D选项正确.故选:D.【点评】本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.9.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是( )A.3B.0C.1D.2【考点】代数式求值.【专题】整体思想.【分析】把(m+n)看作一个整体并代入所求代数式进行计算即可得解.【解答】解:∵m+n=﹣1,∴(m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣1)2﹣2×(﹣1)=1+2=3.故选:A.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.10.已知x﹣2y=3,则代数式6﹣2x+4y的值为( )A.0B.﹣1C.﹣3D.3【考点】代数式求值.【分析】先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.【解答】解:∵x﹣2y=3,∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0故选:A.【点评】本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.11.当x=1时,代数式 ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是( )A.7B.3C.1D.﹣7【考点】代数式求值.【专题】整体思想.【分析】把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.【解答】解:x=1时, ax3﹣3bx+4= a﹣3b+4=7,解得 a﹣3b=3,当x=﹣1时, ax3﹣3bx+4=﹣ a+3b+4=﹣3+4=1.故选:C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.12.如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为( )A.3B.27C.9D.1【考点】代数式求值.【专题】图表型.【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【解答】解:第1次,×81=27,第2次,×27=9,第3次,×9=3,第4次,×3=1,第5次,1+2=3,第6次,×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2014是偶数,∴第2014次输出的结果为1.故选:D.【点评】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.二、填空题(共18小题)13.若4a﹣2b=2π,则2a﹣b+π=2π.【考点】代数式求值.【分析】根据整体代入法解答即可.【解答】解:因为4a﹣2b=2π,所以可得2a﹣b=π,把2a﹣b=π代入2a﹣b+π=2π.【点评】此题考查代数式求值,关键是根据整体代入法计算.14.若2m﹣n2=4,则代数式10+4m﹣2n2的值为18 .【考点】代数式求值.【分析】观察发现4m﹣2n2是2m﹣n2的2倍,进而可得4m﹣2n2=8,然后再求代数式10+4m﹣2n2的值.【解答】解:∵2m﹣n2=4,∴4m﹣2n2=8,∴10+4m﹣2n2=18,故答案为:18.【点评】此题主要考查了求代数式的值,关键是找出代数式之间的关系.15.若a﹣2b=3,则9﹣2a+4b的值为 3 .【考点】代数式求值.【专题】计算题.【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.已知3a﹣2b=2,则9a﹣6b= 6 .【考点】代数式求值.【分析】把3a﹣2b整体代入进行计算即可得解.【解答】解:∵3a﹣2b=2,∴9a﹣6b=3(3a﹣2b)=3×2=6,故答案为;6.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.17.若a2﹣3b=5,则6b﹣2a2+2015= 2005 .【考点】代数式求值.【分析】首先根据a2﹣3b=5,求出6b﹣2a2的值是多少,然后用所得的结果加上2015,求出算式6b﹣2a2+2015的值是多少即可.【解答】解:6b﹣2a2+2015=﹣2(a2﹣3b)+2015=﹣2×5+2015=﹣10+2015=2005.故答案为:2005.【点评】此题主要考查了代数式的求值问题,采用代入法即可,要熟练掌握,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.按照如图所示的操作步骤,若输入的值为3,则输出的值为55 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序列式计算即可得解.【解答】解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.【点评】本题考查了代数式求值,读懂题目运算程序是解题的关键.19.若a﹣2b=3,则2a﹣4b﹣5= 1 .【考点】代数式求值.【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.【解答】解:2a﹣4b﹣5=2(a﹣2b)﹣5=2×3﹣5=1.故答案是:1.【点评】本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a﹣2b)的值,然后利用“整体代入法”求代数式的值.20.已知m2﹣m=6,则1﹣2m2+2m= ﹣11 .【考点】代数式求值.【专题】整体思想.【分析】把m2﹣m看作一个整体,代入代数式进行计算即可得解.【解答】解:∵m2﹣m=6,∴1﹣2m2+2m=1﹣2(m2﹣m)=1﹣2×6=﹣11.故答案为:﹣11.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.21.当x=1时,代数式x2+1= 2 .【考点】代数式求值.【分析】把x的值代入代数式进行计算即可得解.【解答】解:x=1时,x2+1=12+1=1+1=2.故答案为:2.【点评】本题考查了代数式求值,是基础题,准确计算是解题的关键.22.若m+n=0,则2m+2n+1= 1 .【考点】代数式求值.【分析】把所求代数式转化成已知条件的形式,然后整体代入进行计算即可得解.【解答】解:∵m+n=0,∴2m+2n+1=2(m+n)+1,=2×0+1,=0+1,=1.故答案为:1.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.23.按如图所示的程序计算.若输入x的值为3,则输出的值为﹣3 .【考点】代数式求值.【专题】图表型.【分析】根据x的值是奇数,代入下边的关系式进行计算即可得解.【解答】解:x=3时,输出的值为﹣x=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,准确选择关系式是解题的关键.24.按照如图所示的操作步骤,若输入x的值为2,则输出的值为20 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序写出算式,然后代入数据进行计算即可得解.【解答】解:由图可知,运算程序为(x+3)2﹣5,当x=2时,(x+3)2﹣5=(2+3)2﹣5=25﹣5=20.故答案为:20.【点评】本题考查了代数式求值,是基础题,根据图表准确写出运算程序是解题的关键.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是9 .【考点】代数式求值.【专题】应用题.【分析】观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.【解答】解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.【点评】依照规则,首先计算m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.26.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是 3 .【考点】代数式求值.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.27.若x2﹣2x=3,则代数式2x2﹣4x+3的值为9 .【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵x2﹣2x=3,∴2x2﹣4x+3=2(x2﹣2x)+3=6+3=9.故答案为:9【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.28.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为 5 .【考点】代数式求值.【专题】整体思想.【分析】先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.【解答】解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=5.故答案为:5.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.29.已知x(x+3)=1,则代数式2x2+6x﹣5的值为﹣3 .【考点】代数式求值;单项式乘多项式.【专题】整体思想.【分析】把所求代数式整理出已知条件的形式,然后代入数据进行计算即可得解.【解答】解:∵x(x+3)=1,∴2x2+6x﹣5=2x(x+3)﹣5=2×1﹣5=2﹣5=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.30.已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为9 .【考点】代数式求值.【专题】整体思想.【分析】把所求代数式整理成已知条件的形式,然后代入进行计算即可得解.【解答】解:∵x2﹣2x=5,∴2x2﹣4x﹣1=2(x2﹣2x)﹣1,=2×5﹣1,=10﹣1,=9.故答案为:9.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.。

初中数学专题训练——整体代入法综合练习及试题解析

初中数学专题训练——整体代入法综合练习及试题解析

专题03 整体代入法【规律总结】整体代入法,在求代数式值中应用求代数式的值最常用的方法,即把字母所表示的数值直接代入,计算求值。

有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难求出字母的值或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入,求值时方便又快捷,这种整体代入的技法经常用到。

【典例分析】例1、在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD−AB=2时,S2−S1的值为()A. 2aB. 2bC. 2a−2bD. −2b【答案】B【解析】解:S1=(AB−a)⋅a+(CD−b)(AD−a)=(AB−a)⋅a+(AB−b)(AD−a),S2=AB(AD−a)+(a−b)(AB−a),∴S2−S1=AB(AD−a)+(a−b)(AB−a)−(AB−a)⋅a−(AB−b)(AD−a)=(AD−a)(AB−AB+b)+(AB−a)(a−b−a)=b⋅AD−ab−b⋅AB+ab=b(AD−AB)=2b.故选:B.利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.本题考查了整式的混合运算:“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.例2、若m是方程2x2−3x−1=0的一个根,则6m2−9m+2015的值为______.【答案】2018【解析】解:由题意可知:2m2−3m−1=0,∴2m2−3m=1∴原式=3(2m2−3m)+2015=2018故答案为:2018根据一元二次方程的解的定义即可求出答案.本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.例3、解下列各题:(1)若n满足(n−2023)(2021−n)=−6,求(n−2023)2+(2021−n)2的值.(2)已知:m2=n+2,n2=m+2(m≠n),求:m3−2mn+n3的值.【答案】解:(1)∵(n−2023)(2021−n)=−6,∴原式=(n−2023+2021−n)2−2(n−2023)(2021−n)=(−2)2−2×(−6)=4+12=16;(2)∵m2=n+2①,n2=m+2(m≠n)②,∴m2−n=2,n2−m=2,∵m≠n,∴m−n≠0,∴①−②得m2−n2=n−m∴(m−n)(m+n)=−(m−n),∵m−n≠0,∴m+n=−1∴原式=m3−mn−mn+n3=m(m2−n)+n(n2−m)=2m +2n =2(m +n) =2×(−1) =−2.【解析】本题主要考查的是代数式求值,完全平方公式,运用了整体代入法的有关知识. (1)将给出的代数式进行变形为(n −2023+2021−n)2−2(n −2023)(2021−n),然后整体代入求值即可;(2)先根据m 2=n +2,n 2=m +2(m ≠n),求出m +n =−1,然后将给出的代数式进行变形,最后整体代入求解即可.【好题演练】一、选择题1. 已知a +b =12,则代数式2a +2b −3的值是( )A. 2B. −2C. −4D. −312【答案】B【解析】解:∵2a +2b −3=2(a +b)−3, ∴将a +b =12代入得:2×12−3=−2 故选:B .注意到2a +2b −3只需变形得2(a +b)−3,再将a +b =12,整体代入即可 此题考查代数式求值的整体代入,只需通过因式解进行变形,再整体代入即可.2. 若α、β为方程2x 2−5x −1=0的两个实数根,则2α2+3αβ+5β的值为( )A. −13B. 12C. 14D. 15【答案】B 【解析】 【分析】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−b a,x 1x 2=ca .也考查了一元二次方程解的定义.根据一元二次方程解的定义得到2α2−5α−1=0,即2α2=5α+1,则2α2+3αβ+5β可表示为5(α+β)+3αβ+1,再根据根与系数的关系得到α+β=52,αβ=−12,然后利用整体代入的方法计算. 【解答】解:∵α为2x 2−5x −1=0的实数根, ∴2α2−5α−1=0,即2α2=5α+1,∴2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1, ∵α、β为方程2x 2−5x −1=0的两个实数根, ∴α+β=52,αβ=−12,∴2α2+3αβ+5β=5×52+3×(−12)+1=12.故选B .3. 如果a 2+2a −1=0,那么代数式(a −4a ).a 2a−2的值是( )A. −3B. −1C. 1D. 3【答案】C 【解析】 【分析】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.根据分式的减法和乘法可以化简题目中的式子,然后根据a 2+2a −1=0,可以得到a 2+2a =1,从而可以求得所求式子的值. 【解答】解:(a −4a )⋅a 2a−2=a 2−4a⋅a 2a−2=(a+2)(a−2)a⋅a 2a−2=a 2+2a ,由a 2+2a −1=0得a 2+2a =1,故原式=1. 故选C .4.已知1x −1y=3,则代数式2x+3xy−2yx−xy−y的值是()A. −72B. −112C. 92D. 34【答案】D【解析】解:∵1x−1y=3,∴y−xxy=3,∴x−y=−3xy,则原式=2(x−y)+3xy(x−y)−xy=−6xy+3xy−3xy−xy=−3xy−4xy=34,故选:D.由1x −1y=3得出y−xxy=3,即x−y=−3xy,整体代入原式=2(x−y)+3xy(x−y)−xy,计算可得.本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.5.已知x1,x2是方程x2−3x−2=0的两根,则x12+x22的值为()A. 5B. 10C. 11D. 13【答案】D【解析】【分析】本题考查了完全平方公式以及根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca,利用根与系数的关系得到x1+x2=3,x1x2=−2,再利用完全平方公式得到x12+x22=(x1+x2)2−2x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=3,x1x2=−2,所以x12+x22=(x1+x2)2−2x1x2=32−2×(−2)=13.故选:D.6.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A. 31元B. 30元C. 25元D. 19元【答案】A【解析】【分析】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.设每支玫瑰x元,每支百合y元,根据总价=单价×数量结合小慧带的钱数不变,可得出关于x,y的二元一次方程,整理后可得出y=x+7,再将其代入5x+3y+10−8x中即可求出结论.【解答】解:设每支玫瑰x元,每支百合y元,依题意,得:5x+3y+10=3x+5y−4,∴y=x+7,∴5x+3y+10−8x=5x+3(x+7)+10−8x=31.故选A.二、填空题7.已知ab=a+b+1,则(a−1)(b−1)=______.【答案】2【解析】【分析】本题考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用,属于基础题.将ab=a+b+1代入原式=ab−a−b+1,合并即可得.【解答】解:当ab=a+b+1时,原式=ab−a−b+1=a+b+1−a−b+1=2,故答案为:2.8.将抛物线y=ax2+bx−1向上平移3个单位长度后,经过点(−2,5),则8a−4b−11的值是______.【答案】−5【解析】解:将抛物线y=ax2+bx−1向上平移3个单位长度后,表达式为:y=ax2+bx+2,∵经过点(−2,5),代入得:4a−2b=3,则8a−4b−11=2(4a−2b)−11=2×3−11=−5,故答案为:−5.根据二次函数的平移得出平移后的表达式,再将点(−2,5)代入,得到4a−2b=3,最后将8a−4b−11变形求值即可.本题考查了二次函数的平移,二次函数图象上点的坐标特征,解题的关键是得出平移后的表达式.9.若a+b=1,则a2−b2+2b−2=______.【答案】−1【解析】解:∵a+b=1,∴a2−b2+2b−2=(a+b)(a−b)+2b−2=a−b+2b−2=a+b−2=1−2=−1.故答案为:−1.由于a+b=1,将a2−b2+2b−2变形为a+b的形式,整体代入计算即可求解.本题考查了平方差公式,注意整体思想的应用.10.若实数x满足x2−2x−1=0,则2x3−7x2+4x−2017=______.【答案】−2020【解析】【分析】把−7x2分解成−4x2与−3x2相加,然后把所求代数式整理成用x2−2x表示的形式,然后代入数据计算求解即可.本题考查了提公因式法分解因式,利用因式分解整理出已知条件的形式是解题的关键,整体代入思想的利用比较重要.【解答】解:∵x2−2x−1=0,∴x2−2x=1,2x3−7x2+4x−2017=2x3−4x2−3x2+4x−2017,=2x(x2−2x)−3x2+4x−2017,=6x−3x2−2017,=−3(x2−2x)−2017=−3−2017=−2020,故答案为−2020.11.已知|x−y+2|+√x+y−2=0,则x2−y2的值为________.【答案】−4【解析】【分析】本题考查了非负数的性质,解题关键是掌握几个非负数的和等于0,那么这几个非负数都等于0.由非负数的性质得出x、y的值,再代入所求代数式求解即可.【解答】解:∵|x−y+2|+√x+y−2=0,∴x−y+2=0,x+y−2=0,即x−y=−2,x+y=2,∴x 2−y 2=(x +y)(x −y)=2×(−2)=−4, 故答案为−4.12. 已知m +n =3mn ,则1m +1n 的值为______.【答案】3 【解析】 【试题解析】 【分析】本题考查了分式的化简求值,利用通分将原式变形为m+nmn 是解题的关键. 原式通分后可得出m+nmn ,代入m +n =3mn 即可求出结论. 【解答】 解:原式=1m +1n =m+n mn ,又∵m +n =3mn , ∴原式=m+n mn=3.故答案为:3.三、解答题13. 已知x =√2+1,y =√2−1,分别求下列代数式的值;(1)x 2+y 2; (2)yx +xy .【答案】解:(1)∵x =2+1=√2−1,y =2−1=√2+1, ∴x −y =−2,xy =2−1=1,∴x 2+y 2=(x −y)2+2xy =(−2)2+2×1=6;(2)∵x 2+y 2=6,xy =1, ∴原式=x 2+y 2xy=61=6.【解析】本题考查二次根式的化简求值,分母有理化,解题的关键是运用完全平方公式以及整体思想,本题属于基础题型.(1)先将x 、y 进行分母有理化,得到x =√2−1,y =√2+1,再求出x −y 与xy 的值,然后根据完全平方公式得出x 2+y 2=(x −y)2+2xy ,再整体代入即可; (2)将所求式子变形为x 2+y 2xy,再整体代入即可.14. 阅读材料,然后解方程组.材料:解方程组{x −y −1=0, ①4(x −y)−y =5. ②由①得x −y③,把③代入②,得4×1−y =5. 解得y =−1.把y =−1代入③,得x =0. ∴{x =0y =−1这种方法称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用这种方法解方程组{2x −3y −2=0,①2x−3y+57+2y =9.②.【答案】解:由①得:2x −3y =2③, 将③代入②得:1+2y =9,即y =4, 将y =4代入③得:x =7, 则方程组的解为{x =7y =4.【解析】由第一个方程求出2x −3y 的值,代入第二个方程求出y 的值,进而求出x 的值,即可确定出方程组的解.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15. 阅读材料,善于思考的小军在解方程组{2x +5y =3①4x +11y =5②时,采用了一种“整体代换”的解法:解:将方程②变形:4x +10y +y =5即2(2x +5y)+y =5③ 把方程①代入③得2×3+y =5 ∴y =−1把y =−1代入①得x =4 ∴方程组的解为{x =4y =−1 请你解决以下问题:(1)模仿小军的“整体代换”法解方程组{3x −2y =5 ①9x −4y =19②(2)已知x 、y 满足方程组{5x 2−2xy +20y 2=822x 2−xy +8y 2=32,求x 2+4y 2的值; 【答案】解:(1)由②得:3x +6x −4y =19,即3x +2(3x −2y)=19③, 把①代入③得:3x +10=19,即x =3, 把x =3代入①得:y =2, 则方程组的解为{x =3y =2;(2)由5x 2−2xy +20y 2=82得:5(x 2+4y 2)−2xy =82,即x 2+4y 2=82+2xy5,由2x 2−xy +8y 2=32得:2(x 2+4y 2)−xy =32,即2×82+2xy5−xy =32,整理得:xy =4, ∴x 2+4y 2=82+2xy5=82+85=18.【解析】此题考查了解二元一次方程组,弄清阅读材料中的“整体代入”方法是解本题的关键.(1)模仿小军的“整体代换”法,求出方程组的解即可;(2)方程组第一个方程变形表示出x 2+4y 2,第二个方程变形后代入求出xy 的值,进而求出x 2+4y 2的值.16. (1)已知x 3⋅x a ⋅x 2a+1=x 31求a 的值;(2)若n 为正整数,且x 2n =4,求(3x 3n )2−4⋅(x 2)2n 的值。

整式化简求值经典题型(九大题型)(解析版)—七年级数学上册(人教版2024新教材)

整式化简求值经典题型(九大题型)(解析版)—七年级数学上册(人教版2024新教材)

整式求值经典题型(九大题型)【题型1 直接代入】【题型2 整体代入-配系数】【题型3整体代入-奇次项为相反数】【题型4 整体构造代入】【题型5不含无关】【题型6 化简求值】【题型7 绝对值化简求值】【题型8 非负性求值】【题型9 定义求值】【题型1 直接代入】【典例1】根据下列a,b的值,分别求代数式a2―4ba的值.(1)a=5,b=25(2)a=―3,b=2【变式1-1】设a的相反数是2,b是绝对值最小的数,c是倒数等于自身的有理数,则a―b+c的值为()A.32B.―1C.―1或―3D.32或―12【答案】C【分析】本题考查了代数式的求值:先通过合并把代数式化简,然后把满足条件的字母的值代入(或整体代入)计算.也考查了倒数、相反数以及绝对值的含义.【详解】解:由题可得:a=―2,b=0,c=±1,当a=―2,b=0,c=1时,原式=―2―0+1=―1;当a=―2,b=0,c=―1时,原式=―2―0+(―1)=―3;综上,a―b+c的值为―1或―3,故选:C.【变式1-2】若|x|=4,|y|=3,且x+y>0,则x―y的值是()A.1或7B.1或―7C.―1或7D.―1或―7,且x+y<0,则xy的值为.【变式1-3】已知|x|=4,|y|=12故答案为:±2.【题型2 整体代入-配系数】【典例2】当代数式x3+3x+1的值为2022时,代数式2x3+6x―3的值为()A.2022B.4037C.4039D.2019【答案】C【分析】本题考查求代数式的值,由代数式x3+3x+1的值为2022,求出x3+3x=2021,再把2x3+6x―3变形为2(x3+3x)―3,然后利用整体代入求值即可,熟练掌握运算法则及整体代入是解题的关键.【详解】解:∵代数式x3+3x+1的值为2022,∴x3+3x+1=2022,∴x3+3x=2021,∴2x3+6x―3=2(x3+3x)―3=2×2021―3=4039,故选:C.【变式2-1】若代数式2x2+3x的值是5,则代数式4x2+6x―9的值是()A.10B.1C.―4D.―8【变式2-2】已知2y2+y―2的值为3,则4y2+2y+1值为()A.10B.11C.10或11D.3或1【答案】B【分析】本题考查代数式求值,解题的关键是掌握整体代入求值的方法.根据题意得2y2+y=5,整体代入4y2+2y+1求值.【详解】解:∵2y2+y―2=3,∴2y2+y=5,∴4y2+2y+1=22y2+y+1=2×5+1=11.故选:B.【变式2-3】若a2+3a―4=0,则2a2+6a―3=.【答案】5【分析】本题考查了代数式的值.正确变形,整体代入计算即可.【详解】解:∵a2+3a=4,∴2a2+6a=8,∴2a2+6a―3=8―3=5,故答案为:5.【变式2-4】已知x2+5x―3的值是4,则多项式2x2+10x―4的值是.【答案】10【分析】本题考查已知式子的值求代数式的值,先求出x2+5x的值,再作为整体代入2x2+10x―4即可求解.【详解】解:∵x2+5x―3=4,∴x2+5x=7,∴2x2+10x―4=2(x2+5x)―4=2×7―4=10,故答案为:10.【题型3整体代入-奇次项为相反数】【典例3】当x=1时,代数式ax5+bx3+cx―7的值为12,则当x=―1时,求代数式ax5+bx3+cx―7的值.【答案】―26【分析】此题考查了代数式求值,掌握整体代入的方法是解决问题的关键.将x=1代入代数式值为12,列出关系式,将x=―1代入所求式子,把得出的代数式代入计算即可求出值.【详解】解:将x=1代入ax5+bx3+cx―7得:a+b+c―7=12,即a+b+c=19,当x=―1时,ax5+bx3+cx―7=―a―b―c―7=―(a+b+c)―7=―19―7=―26.【变式3-1】当x=3时,代数式ax2025+bx2013―1的值是8,则当x=―3时,这个代数式的值是()A.―10B.8C.9D.―8【答案】A【分析】本题主要考查了代数式的求值.熟练掌握整体代入方法是解题关键.将x=3代数式ax2025+bx2013―1中得:32025a+32013b=9,再将x=―3代入ax2025+bx2013―1中得:―(32025a+32013b)―1,之后整体代入计算即可.【详解】∵当x=3时,代数式ax2025+bx2013―1的值是8,∴32025a+32013b―1=8,∴32025a+32013b=9.当x=―3时,ax2025+bx2013―1=a×(―3)2025+b×(―3)2013―1=―(32025a+32013b)―1=―9―1=―10.故选:A.【变式3-2】当x=―2时,代数式ax3+bx―4的值是―2026,当x=2时,代数式ax3+bx―4的值为.【答案】2018.【分析】由已知得出―8a―2b―4=―2026,即8a+2b=2022,代入到x=2时所得的代数式计算可得.【详解】当x=―2时,代数式为―8a―2b―4=―2026,即8a+2b=2022,则x=2时,代数式为8a+2b―4=2022―4=2018.故答案为2018.【点睛】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.【题型4 整体构造代入】【典例4】若a―5=3b,则(a+2b)―(2a―b)的值为.【答案】―5【分析】本题主要考查了整式的化简求值,先把所求式子去括号,然后合并同类项,再求出―a+3b=―5,最后利用整体代入法求解即可.【详解】解:(a+2b)―(2a―b)=a+2b―2a+b=―a+3b,∵a―5=3b,∴―a+3b=―5,∴原式=―5,故答案为:―5.【变式4-1】已知m―n=3,p+q=2,则(m+p)―(n―q)的值为.【题型5不含无关】【典例5】已知多项式M=2x2―3xy+2y―2x2+x―xy+1.(1)先化简,再求M的值,其中x=1,y=2;(2)若多项式M与字母y的取值无关,求x的值.【答案】(1)―2(2)2【分析】本题考查了整式的化简求值以及无关型题型:(1)先去括号,合并同类项,再将x=1,y=2代入求值;(2)将多项式变形为M=(―x+2)y―2x―2,若多项式M与字母y的取值无关,则―x+2=0,由此可解.【详解】(1)解:M=2x2―3xy+2y―2x2+x―xy+1=2x2―3xy+2y―2x2―2x+2xy―2=―xy+2y―2x―2,将x=1,y=2代入,得:M=―1×2+2×2―2×1―2=―2+4―2―2=―2;(2)解:由(1)得M=―xy+2y―2x―2=(―x+2)y―2x―2,若多项式M与字母y的取值无关,则―x+2=0,解得x=2.【变式5-1】综合与实践杨老师在黑板上布置了一道题,求代数式:x2―4y2―x2+6xy+9y2+6xy的值.(1)请思考该代数式与哪个字母无关? 知道哪个字母的值就能求出此代数式的值?【变式应用】(2)若多项式3(mx―1)+m2―3x的值与x的取值无关,求m的值.【能力提升】(3)如图1,小长方形的长为a,宽为b.用7张小长方形按照图2所示的方式不重叠地放在大长方形ABCD 内,将大长方形中未被覆盖的两个部分涂上阴影,设右上角阴影部分的面积为S1,左下角阴影部分的面积为S2.当AB的长变化时,a与b满足什么关系,S1―S2的值能始终保持不变?【答案】(1)该代数式与字母x无关,知道字母y的值就能求出此代数式的值(2)m=1(3)a=2b【分析】本题主要考查了整式加减中的无关型问题:(1)先化简多项式,再根据计算后的结果即可求解;(2)先化简多项式,再根据多项式的值与x的取值无关,可得3m―3=0,即可求解;(3)设AB=x,观察图形得:S1=a(x―3b)=ax―3ab,S2=2b(x―2a)=2bx―4ab,可得S1―S2= (a―2b)x+ab,再由当AB的长变化时,S1―S2的值始终保持不变,即可求解.【详解】解:(1)x2―4y2―x2+6xy+9y2+6xy=x2―4y2―x2―6xy―9y2+6xy=―13y2,∴该代数式与字母x无关,知道字母y的值就能求出此代数式的值;(2)3(mx―1)+m2―3x=3mx―3+m2―3x=(3m―3)x―3+m2,∵关于x的多项式3(mx―1)+m2―3x的值与x的取值无关,∴3m―3=0,∴m=1;(3)设AB=x,观察图形得:S1=a(x―3b)=ax―3ab,S2=2b(x―2a)=2bx―4ab,∴S1―S2=ax―3ab―(2bx―4ab)=ax―3ab―2bx+4ab=(a―2b)x+ab,∵当AB的长变化时,S1―S2的值始终保持不变,∴a―2b=0,∴a=2b.【变式5-1】(1)若关于x的多项式m(2x―3)+2m2―4x的值与x的取值无关,求m值;(2)已知A=―2x2―2(2x+1)―x(1―3m)+x,B=―x2―mx+1,且A―2B的值与x的取值无关,求m的值;(3)7张如图1的小长方形,长为a,宽为b,按照图2方式不重叠地放在大长方形ABCD内,大长方形中未被覆盖的两个部分都是长方形.设右上角的面积为S1,左下角的面积为S2,当AB的长变化时,S1―S2的值始终保持不变,求a与b的等量关系.【题型6 化简求值】【典例6】已知代数式A =6x 2+3xy +2y ,B =3x 2―2xy +5x .(1)求A ―2B ;(2)当x =1,y =2时,求A ―2B 的值.【答案】(1)A ―2B =7xy +2y ―10x ;(2)8【分析】本题考查了整式的加减-化简求值,一般先把所给整式去括号合并同类项,再把所给字母的值或代数式的值代入计算.(1)把A =6x 2+3xy +2y ,B =3x 2―2xy +5x 代入A ―2B ,然后去括号合并同类项即可;(2)把x =1,y =2代入(1)化简的结果计算即可.【详解】(1)解:把A =6x 2+3xy +2y ,B =3x 2―2xy +5x 直接代入A ―2B 得:6x 2+3xy +2y ―23x 2―2xy +5x=6x 2+3xy +2y ―6x 2+4xy ―10x =7xy +2y ―10x ;即A ―2B =7xy +2y ―10x ;(2)解:由(1)知A ―2B =7xy +2y ―10x ,把x =1,y =2代入7xy +2y ―10x 得7xy +2y ―10x=7×1×2+2×2―10×1=14+4―10=8.【变式6-1】先化简再求值(1)―mn 2+(3m 2n ―mn 2)―2(2m 2n ―mn 2),其中m =―2,n =―1.(2)2(x 2y +xy 2)―32(43xy 2+23x 2y ―23)―2,其中(4y +x)2+|x +2|=0.【变式6-2】化简求值:2a2b―ab2―2(2a2b―ab2)―ab2,其中|a―1|+|b+3|=0.(1)求a,b的值(2)化简并求出代数式的值.【答案】(1)a=1,b=―3(2)6a2b―4ab2,―54【分析】本题考查整式加减中的化简求值,熟练运用整式运算法则是解题关键.(1)根据绝对值的非负性即可求解;(2)先去括号,然后和合并同类项,得出最简式后,把a、b的值代入计算即可.【详解】(1)解:∵|a―1|+|b+3|=0,∴a―1=0,b+3=0,∴a=1,b=―3;(2)解:2a2b―ab2―2(2a2b―ab2)―ab2=2a2b―(ab2―4a2b+2ab2)―ab2=2a2b―ab2+4a2b―2ab2―ab2=6a2b―4ab2,当a=1,b=―3时,原式=6×12×(―3)―4×1×(―3)2=―18―36=―54.【变式6-3】先化简,再求值:4xy ―x 2―2y 2+3x 2―2xy ,(其中x =2,y =1)【变式6-4】已知A =3x 2―4x ,B =x 2+x ―2y 2(1)当x =―2时,试求出A 的值;(2)当x =12,y =13时,请求出A ―3B 的值.【题型7 绝对值化简求值】【典例7】有理数a、b、c在数轴上表示如图所示:(1)填空:|a|=_______,|b|=_______,|c|=_______(2)化简|a+b|―|b―c|+|b+c|;【答案】(1)―a,―b,c(2)―a+b【分析】本题考查了绝对值和数轴,整式的加减运算;注意数轴上a、b、c的位置,以及他们与原点的距离远近.(1)判断题干绝对值符号里面a、b、c的符号;(2)根据有理数的加减运算,判断a+b,b―c,b+c的符号,再去绝对值化简,合并同类项即可.【详解】(1)解:根据数轴可得a<0,b<0,c>0,∴|a|=―a,|b|=―b,|c|=c,故答案为:―a,―b,c.(2)解:根据数轴可得a<b<0<c,|b|<|c|,∴a+b<0,b―c<0,b+c>0,∴|a+b|―|b―c|+|b+c|=―a―b―(c―b)+b+c=―a―b―c+b+b+c=―a+b.【变式7-1】有理数a,b,c,在数轴上位置如图:(1)c―a______0;a+b______0;b―c______0.(2)化简:|c―a|―|a+b|+|b―c|.【答案】(1)<,<,<(2)2a【分析】本题考查用数轴表示有理数,化简绝对值:(1)根据点在数轴上的位置,判断式子的符号即可;(2)根据(1)中式子的符号,化简绝对值即可.【详解】(1)解:由数轴可知:b<c<0<a,|b|>a,∴c―a<0,a+b<0,b―c<0,故答案为:<,<,<;(2)∵c―a<0,a+b<0,b―c<0,∴|c―a|―|a+b|+|b―c|=a―c+a+b+c―b=2a.【变式7-2】如图,数轴上的点A,B,C分别表示有理数a,b,c.(1)比较大小:a 0,b ―2(填“>”、“ <”或“=” );(2)化简:|a|―|b+2|―|a+c|.【答案】(1)<;>(2)c―b―2【分析】此题主要考查了有理数大小的比较,数轴和绝对值的性质,整式的加减运算,解题的关键是掌握以上知识点.(1)根据数轴求解即可;(2)首先由数轴得到a<―2<b<0<c<1,然后推出b+2>0,a+c<0,然后化简绝对值合并即可.【详解】(1)解:由题意可知,a<0,b>―2;故答案为:<;>;(2)解:∵a<―2<b<0<c<1,∴b+2>0,a+c<0,∴|a|―|b+2|―|a+c|=―a―(b+2)―(―a―c)=―a―b―2+a+c=c―b―2.【题型8 非负性求值】【典例8】如果,|a―2|+(b+1)2=0,则(a+b)2015的值为()A.1B.2C.3D.―1【答案】A【分析】本题考查了非负数的性质,以及求代数式的值.根据非负数的性质求出a和b的值是解答本题的关键.先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.【详解】解:∵|a―2|+(b+1)2=0,∴a―2=0,b+1=0,∴a=2,b=―1,∴(a+b)2015=(2―1)2015=1.故选:A.【变式8-1】已知|x―3|+(y+2)2=0则xy的值为()A.6B.―6C.5D.―5【答案】B【分析】本题考查了非负数的性质,代数式求值,掌握相关知识点是解题关键.根据绝对值和平方的非负性,求出x、y的值,再代入计算求值即可.【详解】解:∵|x―3|+(y+2)2=0,∴x―3=0,y+2=0,∴x=3,y=―2,∴xy=3×(―2)=―6,故选:B.【变式8-2】若|y―2024|+|x+2023|=0,则x+y的值是()A.―1B.1C.0D.2【答案】B【分析】本题主要考查了绝对值的非负性质,代数值求值等知识,根据绝对值的非负性质得出y―2024=0,x+2023=0,进而求出x,y的值,然后代入x+y计算即可.【详解】解:∵|y―2024|+|x+2023|=0,|y―2024|≥0,|x+2023|≥0,∴y―2024=0,x+2023=0,∴y=2024,x=―2023,∴x+y=―2023+2024=1,故选:B.【题型9 定义求值】【典例9】对于有理数a、b,定义一种新运算:a⊗b=ab+|a|―b(1)计算5⊗4的值(2)若m是最大的负整数,n的绝对值是3,计算m⊗n【答案】(1)21(2)―5或7.【分析】本题主要考查了绝对值,有理数的混合运算,以及代数式求值,理解新定义运算法则是解题关键.(1)根据已知新定义运算法则计算即可;(2)根据有理数的分类和绝对值的意义,得到m=―1,n=±3,再根据新定义运算法则分别计算求值即可.【详解】(1)解:5⊗4=5×4+|5|―4=20+5―4=21;(2)解:∵m是最大的负整数,n的绝对值是3,∴m=―1,|n|=3,∴n=±3,当m=―1,n=3时,m⊗n=(―1)⊗3=(―1)×3+|―1|―3=―3+1―3=―5;当m=―1,n=―3时,m⊗n=(―1)⊗(―3)=(―1)×(―3)+|―1|―(―3)=3+1+3=7;∴m⊗n的值为―5或7.【变式9-1】用“⊙”定义一种新运算:规定a⊙b=ab2―a,例如:1⊙2=1×22―1=3.(1)求(―8)⊙(―2)的值;(2)化简:(2m―5n)⊙(―3).【答案】(1)―24(2)16m―40n【分析】本题主要考查了有理数的混合运算,整式加减运算,新定义下的运算,解题的关键是掌握新定义的运算法则.(1)根据新定义列式计算即可;(2)根据新定义的运算法则列出算式求解即可.【详解】(1)解:(―8)⊙(―2)=(―8)×(―2)2―(―8)=―8×4+8=―32+8=―24;(2)解:(2m―5n)⊙(―3)=(2m―5n)×(―3)2―(2m―5n)=9(2m―5n)―(2m―5n)=18m―45n―2m+5n=16m―40n.【变式9-2】定义:对于任意相邻负整数a,b,规定:a△b=1ab.(1)理解定义:例:(―1)△(―2)=1(―1)×(―2)=12;练习:(―2)△(―3)=;(2)探究规律:某数学兴趣小组发现:可将a△b转换为减法.你发现了吗?是什么?(温馨提示:你可再举几个例子试试,然后用含a与b的代数式将a△b转换为减法.)(3)应用规律:运用发现的规律求(―1)△(―2)+(―2)△(―3)+(―3)△(―4)+⋯+(―2023)△(―2024)的值.【变式9-3】给出定义如下:我们称使等式a ―b =ab +1的成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如:2―13=2×13+1,5―23=5×23+1,那么数对 2,5,“共生有理数对” .(1)判断,正确的打“√”,错误的打“×”.①数对(―2,1)是“共生有理数对”;( )②数对3,“共生有理数对” .( )(2)请再写出一对符合条件的“共生有理数对”: ;(注意:不能与题目中已有的“共生有理数对”重复)(3)若(m ,n )是“共生有理数对”,则(―n,―m )是不是“共生有理数对”? 并说明理由.(4)若(a ,3)是“共生有理数对”,求a 的值.。

新人教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)

新人教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)

新⼈教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2024七上·曲阳期末)代数式a−b2的意义表述正确的是( )A.a减去b的平方的差B.a与b差的平方C.a、b平方的差D.a的平方与b的平方的差2.(3分)(2023七上·槐荫期中)下列各式符合代数式书写规范的是( )A.a9B.x﹣3元C.st D.227x3.(3分)(2021七上·永州月考)下列式子不是代数式的是( )A.xy+4B.a+bx C.-8+2=-6D.1x+54.(3分)(2023七上·雁峰月考)按如图所示的程序计算,若开始输入的值为x=3,则最后输出的结果是( )A.156B.231C.6D.215.(3分)(2023九上·大埔期末)十八世纪伟大的数学家欧拉最先用记号f(x)的形式来表示关于x的多项式,把x等于某数n时一的多项式的值用f(n)来表示.例如x=1时,多项式f(x)=2x2−x+3的值可以记为f(1),即f(1)=4.我们定义f(x)=ax3+3x2−2bx−5.若f(3)=18,则f(−3)的值为( )A.−18B.−22C.26D.326.(3分)(2023七上·高州期中)按如图所示的运算程序,若开始输入x的值为343,则第2023次输出的结果为( )A.7B.1C.343D.497.(3分)(2023八上·开州期中)若x+2y=6,则多项式2x+4y−5的值为( )A.5B.6C.7D.88.(3分)(2019七上·高县期中)“a与b两数平方的和”的代数式是( )A.a2+b2;B.a+b2;C.a2+b;D.(a+b)2;9.(3分)﹣|﹣a|是一个( )A.正数B.正数或零C.负数D.负数或零10.(3分)(2024·常州模拟)当x=2时,代数式ax3+bx+1的值为6,那么当x=−2时,这个代数式的值是( )A.1B.−5C.6D.−4⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)(2017七上·黄陂期中)笔记本每本a元,圆珠笔每本b元,买5本笔记本和8支圆珠笔共需 元12.(3分)(2022七上·江油月考)若x−1与2−y互为相反数,则(x−y)2022= .13.(3分)父亲的年龄比儿子大28岁.如果用×表示儿子现在的年龄,那么父亲现在的年龄为  岁.14.(3分)(2024八下·兴国期末)当x=1 .15.(3分)一组按规律排列的代数式:a+2b,a2−2b3,a3+2b5,a4−2b7,⋯,则第n个代数式为 .三、解答题(共5题,共37分)(共5题;共37分)16.(6分)若x+y=1,求x3+y3+3xy的值.17.(6分)(2020七上·增城期中)已知a,b互为相反数,c,d互为倒数,|m|=6,求a+b3﹣5cd+m的值.18.(6分)(2024七下·西城期末)将非负实数x“四舍五入”到个位的值记为x,当n为非负整数时,①若n−12≤x<n+12,则x=n:②若x=n,则n−12≤x<n+12.如0=0.49=0,0.64=1.49=1,2=2.(1)(1分)π=;(2)(1分)若t+1=32t,则满足条件的实数t的值是.18.(6分)如果四个不同的整数a,b,c,d满足(10-a)×(10-b)×(10-c)×(10-d)= 121,求a+b+c+d的值.19.(13分)(2023七下·顺义期中)已知x−y=3,求代数式(−x+y)(−x−y)+(y−1)2−x(x−2)的值.四、实践探究题(共3题,共38分)(共3题;共13分)21.(2分)(2024七下·陕西期中)在“趣味数学”的社团活动课上,学生小白给大家分享了一个自己发现的关于8的倍数和最近学习的平方差公式之间的有趣关系.小白同学的具体探究过程如下,请你根据小白同学的探究思路,解决下面的问题:(1)(4分)观察下列各式并填空:8×1=32−12;8×2=52−32;8×3=72−52;8×4=92−72;8×5= −92;8× =132−112;…(2)(4分)通过观察、归纳,请你用含字母n(n为正整数)的等式表示上述各式所反映的规律;(3)(4分)请验证(2)中你所写的规律是否正确.22.(9分)(2023七上·安吉期中)探索代数式a2-2ab+b2与代数式(a-b)2的关系.(1)(4.5分)当a=2,b=1时分别计算两个代数式的值.(2)(4.5分)当a=3,b=-2时分别计算两个代数式的值.(3)(1分)你发现了什么规律?(4)(1分)利用你发现的规律计算:20232-2×2023×2022+20222.23.(2分)(2023七上·宁江期中)某中学附近的水果超市新进了一批百香果,为了促销这种百香果,特推出两种销售方式方式一:购买不超过5斤百香果,每斤12元,超出5斤的部分,每斤打8折;方式二:每斤售价10元.(1)(4.5分)顾客买a(a>5)斤百香果,则按照方式一购买需要 元;按照方式二购买需要 元(请用含a的代数式表示).(2)(4.5分)于老师决定买35斤百香果,通过计算说明用哪种方式购买更省钱.答案解析部分1.【答案】A【知识点】代数式的实际意义2.【答案】C【知识点】代数式的书写规范【解析】【解答】A:a9 应写成9a,选项错误,不合题意;B:x-3元应写成(x-3)元,选项错误,不合题意;C:st符合代数式书写要求,选项正确,符合题意;D:227x中带分数应写成假分数,选项错误,不合题意;故答案为:C.【分析】本题考查代数式的书写要求:(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;(2)数字要写在前面;(3)带分数一定要写成假分数;(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;(5)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。

专题04 代数式求值的五种类型(解析版)2021-2022学年七年级数学上册(北师大版,成都专用)

专题04 代数式求值的五种类型(解析版)2021-2022学年七年级数学上册(北师大版,成都专用)

专题04 代数式求值的五种类型类型一、直接代入求值例.当3,1a b =-=-时,代数式242a b +的值是( ) A .132 B .132- C .52- D .52【答案】D【解析】a =-3,b =-1时,242a b +=()()23412-+⨯-=52, 故选:D .【变式训练1】已知2x =8,则2x +3的值为________.【答案】11【解析】∵2x =8,∵2x +3=8+3=11,故答案为:11.【变式训练2】当x 2=- 时,代数式2x 162x+- 的值等于______. 【答案】-0.3【解析】当2x =-时, 212(2)130.36262(2)10x x +⨯-+-===---⨯-. 故答案为:-0.3【变式训练3】若34a =,17b =-,那么21356a ab ++的值是_________. 【答案】1116【解析】将34a =,17b =-代入21356a ab ++中 21356a ab ++23311344756⎛⎫⎛⎫=+⨯-+ ⎪ ⎪⎝⎭⎝⎭9313162856=-+631226112-+=77112=1116= 故答案为:1116.类型二、利用数的非负性求值例.若a 、b 满足|a ﹣2|+(3﹣b )2=0,则a b =_____.【答案】9【解析】∵|a ﹣2|+(3﹣b )2=0,∵a =2,b =3,∵b a =32=9.故答案为9.【变式训练1】已知:2(2)10y x -++=,则2x y +=_________.【答案】0【解析】根据题意得,x+1=0,y -2=0,解得x=-1,y=2,所以2x+y=2×(-1)+2=-2+2=0.故答案为0.【变式训练2】已知()2120a b ++-=,则1b a +的值等于______.【答案】2【解析】∵()2120a b ++-=,且()210a +≥,20b -≥,∵10a +=,20b -=,∵1a =-,2b =,∵()2111112b a +=-+=+=;故答案为:2.类型三、整体代入求值例1.已知23x y -=,则代数式724x y -+的值为______.【答案】1【解析】∵23x y -=∵724x y -+=72(2)723761x y --=-⨯=-=故答案为:1例2.已知2237m n -+=-,则代数式21284n m -+的值等于__________.【答案】-24【解析】∵2237m n -+=-,∵212828n m -=-,∵21284n m -+= -28+4= -24.故答案为:-24.例3.当x=1时,代数式px 3+qx+1的值为2018,则当x=-1时,代数式px 3+qx+1 的值为__________.【答案】-2016【解析】将x=1代入px 3+qx+1∵p+q+1=2018,∵p+q=2017将x=−1代入px 3+qx+1∵−p−q+1=−(p+q)+1=−2017+1=−2016,故答案为-2016.例4.如果210x x +-=,那么代数式3223x x +-的值为______ .【答案】-2【解析】210x x +-=,21x x ∴+=,3223x x ∴+- 3223x x x =++- 23x x =+- 2=-.即:32232x x +-=-.故答案为:2-.【变式训练1】已知2323x x +-的值为6,则2223x x --的值为________.【答案】-1【解析】∵2323x x +-=6,∵22=33x x + ∵22222=2-+33x x x x ⎛⎫-- ⎪⎝⎭,∵将22=33x x +代入得:22222=2-+33x x x x ⎛⎫-- ⎪⎝⎭=2-3=-1故答案为:-1.【变式训练2】若23x y -=,则412x y +-的值是_____.【答案】7【解析】()412221x y x y +-=-+将23x y -=代入原式中,原式()2212317x y =-+=⨯+=故答案为:7.【变式训练3】当2020t =时,312xt yt -+=,则当2020t =-时,多项式32xt yt --的值为( )A .0B .3-C .1D .4-【答案】B 【解析】把t =2020代入多项式得:32020202012x y -+=,即3202020201x y -=,把t =-2020代入多项式得:3202020202x y -+-=()3202020202x y ---=12--=-3 故选:B .【变式训练4】已知250x x +-=,则()26xx +=__________.【答案】25【解析】∵250x x +-=,∵25x x =-,25x x +=,∵()26x x +()()56x x =-+230x x =--+()230x x =-++530=-+25= 故答案为:25.类型四、特殊值法代入求值例.已知:55432(2)x ax bx cx dx ex f +=+++++,求b d +的值为 _________.【答案】90【解析】令x =1,得:a +b +c +d +e +f =243①;令x =﹣1,得﹣a +b ﹣c +d ﹣e +f =1②,①+②得:2b +2d +2f =244, 即b +d +f =122,令x =0,得f =32,则b +d =b +d +f ﹣f =122﹣32=90,故答案为:90.【变式训练1】①已知,45290129(1)(2)x x a a x a x a x -+=+++⋅⋅⋅+,则2468a a a a +++=________. ②已知关于a 的多项式234n a a -+与3223ma a +-的次数相同,那么23n -=________.【答案】-24 -27或-12【解析】①令x =0,得450(01)(02)a -+=,则032a =,当x =1时,得450129(11)(12)a a a a -+=+++⋅⋅⋅+,则01290a a a a +++⋅⋅+=⋅①,当x =-1时,得450129(11)(12)a a a a ---+=-+-⋅⋅⋅-,则50129442(111)(12)6a a a a ---+=-+-=⋅⋅=-⋅②,①+②,得()40286221a a a ++=⋅+=⋅⋅,∵0288a a a ++⋅⋅⋅=+, 又∵032a =,∵246824a a a a ++=-+;②∵关于a 的多项式234n a a -+与3223ma a +-的次数相同, ∵当m ≠0时,n =3,则23n -=-27;当m =0时,n =2,则23n -=-12;故答案为:-24,-27或-12.【变式训练2】已知()6212111021211102101x x a x a x a x a x a x a -+=+++⋅⋅⋅+++,则1211210a a a a a +++++的值为_________,11971a a a a +++⋅⋅⋅+的值为________.【答案】1 -364【解析】令x =1得:()621211102101111a a a a a a +++⋅⋅⋅++-+==+,① 令x =-1得:()()6212111021601311a a a a a a ⎡⎤+-⋅⋅⋅+-+---+⎣-==⎦,② ①-②得:()611971213a a a a +++⋅⋅⋅+=-,∵11971364a a a a +++⋅⋅⋅+=-, 故答案为:1,-364.类型五、方程组法求代数式的值例.若24,348a b a b -=-=,则代数式-a b 的值为_______.【答案】2【解析】∵24a b -=①,348a b -=②,∵②-①:224a b -=,∵2a b -=.故答案为:2.【变式训练1】若a +2b =8,3a +4b =18,则2a +3b 的值为_____.【答案】13【解析】联立得:283418a b a b +=⎧⎨+=⎩①②, ①+②得:4a +6b =26,即2(2a +3b )=26,则2a +3b =13.故答案为:13.【变式训练2】已知214a bc +=,226b bc -=-,则22345a b bc +-=______.【答案】18【解析】∵a 2+bc =14,b 2-2bc =-6,∵a 2=14-bc ,b 2=-6+2bc ,∵3a 2+4b 2-5bc =3(14-bc )+4(-6+2bc )-5bc =42-3bc -24+8bc -5bc =18, 故答案为:18.。

代数式求值中的整体思想大题培优专练七年级数学上学期复习备考高分秘籍【人教版】(原卷版)

代数式求值中的整体思想大题培优专练七年级数学上学期复习备考高分秘籍【人教版】(原卷版)

2023-2024学年七年级数学上学期复习备考高分秘籍【人教版】专题2.7代数式求值中的整体思想大题培优专练一.解答题(共30小题)1.(2022秋•沁县期末)我们知道:4x+2x﹣x=(4+2﹣1)x=5x,类似地,若我们把(a+b)看成一个整体,则有4(a+b)+2(a+b)﹣(a+b)=(4+2﹣1)(a+b)=5(a+b).这种解决问题的方法渗透了数学中的“整体思想”.“整体思想”是中学数学解题中的一种重要的思想方法,其应用极为广泛.请运用“整体思想”解答下面的问题:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2;(2)已知:x2+2y=5,求代数式﹣3x2﹣6y+21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.2.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.3.(2022秋•利川市校级期末)【阅读理解】“整体思想”是一种重要的数学思想方法,在多项式的化简求值中应用极为广泛.比如,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a﹣b)看成一个整体,则4(a﹣b)﹣2(a﹣b)+(a﹣b)=(4﹣2+1)(a﹣b)=3(a﹣b).【尝试应用】(1)化简4(a+b)+2(a+b)﹣(a+b)的结果是.(2)化简求值,3(x+y)2+5(x+y)+5(x+y)2﹣3(x+y),其中x+y=1 2.【拓展探索】(3)若x2﹣2y=4,请直接写出﹣3x2+6y+10的值.4.(2022秋•启东市校级期末)(1)先化简,再求值:2(a2+ab)−3(23a2−ab),其中a=2,b=﹣3.(2)已知2x+y=3,求代数式3(x﹣2y)+5(x+2y﹣1)﹣2的值.5.(2022秋•香洲区期中)我们知道,4a﹣3a+a=(4﹣3+1)a=2a,类似地,我们把(x+y)看成一个整体,则4(x+y)﹣3(x+y)+(x+y)=(4﹣3+1)(x+y)=2(x+y).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.请尝试:(1)把(m﹣n)2看成一个整体,合并2(m﹣n)2﹣4(m﹣n)2+(m﹣n)2的结果是.(2)已知x2﹣4x=2,求3x2﹣12x﹣10的值;(3)已知a﹣2b=3,c﹣d=3,2b﹣c=﹣10,求(2b﹣d)﹣(2b﹣c)+(a﹣c)的值.6.(2022秋•鄞州区校级期中)理解与思考:在某次作业中有这样的一道题:“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?“小明是这样来解的:原式=2a+2b+8a+4b=10a+6b把式子5a+3b=﹣4两边同乘以2,得﹣10a+6b=﹣8.仿照小明的解题方法,完成下面的问题:(1)如果a2+a=0,则2a2+2a+2015=;(2)已知a﹣2b=﹣3,求3(a﹣b)﹣7a+11b+5的值;(3)已知a2+2ab=﹣2,ab﹣b2=﹣4,求2a2+72ab+12b2的值.7.(2022秋•公主岭市期中)[阅读理解]若代数式x2+x+3的值为7,求代数式2x2+2x﹣3的值.小明采用的方法如下:由题意得x2+x+3=7,则有x2+x=4,2x2+2x﹣3=2(x2+x)﹣3=2×4﹣3=5.所以代数式2x2+2x﹣3的值为5.[方法运用](1)若代数式x2+x+1的值为10,求代数式﹣2x2﹣2x+3的值.(2)当x=2时,代数式ax3+bx+4的值为9,当x=﹣2时,求代数式ax3+bx+3的值.[拓展应用]若a2﹣ab=26,ab﹣b2=﹣16,则代数式a2﹣2ab+b2的值为.8.(2022秋•郫都区校级期中)整体代换是数学的一种思想方法,在求代数式的值中,整体代换思想非常常用,例如x2+x=1,求x2+x+2022的值,我们将x2+x作为一个整体代入,则原式=1+2022=2023.仿照上面的解题方法,完成下面的问题:(1)若x2+2x﹣1=0,则x2+2x﹣2022=.(2)若a2+2ab=﹣5,b2+2ab=3,求2a2﹣3b2﹣2ab的值.9.(2021秋•虎林市期末)先化简,再求值.若m2+3mn=﹣5,则代数式5m2﹣[5m2﹣(2m2﹣mn)﹣7mn+7]的值.10.(2021秋•宜城市期末)阅读理解:如果式子5x+3y=﹣5,求式子2(x+y)+4(2x+y)的值.小花同学提出了一种解法如下:原式=2x+2y+8x+4y =10x+6y=2(5x+3y),把式子5x+3y=﹣5整体代入,得到原式=2(5x+3y)=2×(﹣5)=﹣10.仿照小花同学的解题方法,完成下面的填空:(1)如果﹣x2=x,则x2+x+1=;(2)已知x﹣y=﹣3,求3(x﹣y)﹣5x+5y+5的值;(3)已知x2+2xy=﹣2,xy﹣y2=﹣4,求4x2+7xy+y2的值.11.(2021秋•惠州期末)阅读材料;我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,尝试应用整体思想解决下列问题:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣(a﹣b)2+2(a﹣b)2.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;(3)已知a﹣2b=3,2b﹣c=5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.12.(2021秋•江陵县期末)化简求值:(1)3(2x2y﹣4xy2)﹣(﹣3xy2+x2y),其中x=−12,y=1;(2)先化简,再求值:已知a2﹣a﹣5=0,求(3a2﹣7a)﹣2(a2﹣3a+2)的值.13.(2021秋•鲤城区期末)阅读理解:整体代换是一种重要的数学思想方法.例如:计算2(2m+n)﹣5(2m+n)+(2m+n)时可将(2m+n)看成一个整体,合并同类项得﹣2(2m+n),再利用分配律去括号得﹣4m﹣2n.(1)若已知2m+n=2,请你利用整体思想求代数式1﹣6m﹣3n的值;(2)一正方形边长为2m+n,将此正方形的边长增加1之后,其面积比原来正方形的面积大9,求2m+n 的值.14.(2021秋•浉河区期末)阅读材料:“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+7(a﹣b)2的结果是;(2)拓广探索:已知x2+2y=−13,求﹣6y﹣3x2+2021的值.15.(2021秋•汕尾期末)先化简,再求值:已知2a﹣b=﹣2,求代数式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.16.(2021秋•通州区期末)先化简,再求值:已知a2﹣a=5,求(3a2﹣7a)﹣2(a2﹣3a+2)的值.17.(2021秋•吉林期末)数学中,运用整体思想方法在求整式的值时非常重要.例如:已知m2+3m=1,则2m2+6m+1=2(m2+3m)+1=2×1+1=3.请你根据上面材料解答以下问题:(1)若n2﹣2n=3,求2﹣n2+2n的值;(2)当x=1时,px3+qx﹣1=4,当x=﹣1时,求px3+qx﹣1的值;(3)当x=2021时,ax5+bx3+cx+2=k,当x=﹣2021时,直接写出ax5+bx3+cx+2的值(用含k的式子表示).18.(2021秋•海沧区校级期中)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,若把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是数学解题中一种非常重要的数学思想方法,它在多项式的化简与求值中应用极为广泛.(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果为;(2)已知x+2y=3,求代数式3x+6y﹣8的值;(3)已知xy+x=﹣6,y﹣xy=﹣2,求代数式2[x+(xy﹣y)2]﹣3[(xy﹣y)2﹣y]﹣xy的值.19.(2020秋•宽城区期末)数学中,运用整体思想方法在求代数式的值时非常重要.例如:已知a2+2a=2,则代数式2a2+4a+3=2(a2+2a)+3=2×2+3=7.请你根据以上材料解答以下问题:(1)若x2﹣3x=4,求1﹣x2+3x的值.(2)当x=1时,代数式px3+qx﹣1的值是5,求当x=﹣1时,代数式px3+qx﹣1的值.(3)当x=2020时,代数式ax5+bx3+cx+6的值为m,直接写出当x=﹣2020时,代数式ax5+bx3+cx+6的值.(用含m的代数式表示)20.(2022秋•大余县期末)先化简,再求值:已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B的值.21.(2022秋•射洪市期末)已知A=2x2+xy+3y﹣1,B=x2﹣xy.(1)当x=﹣1,y=3时,求A﹣2B的值;(2)若3A﹣6B的值与y的值无关,求x的值.22.(2022秋•滕州市校级期末)已知A=2a2﹣3ab+2a﹣1,B=3a2+ab﹣2,(1)化简3A﹣2B;(2)若3A﹣2B的值与a无关,求b的值.23.(2022秋•洪山区校级期末)已知A=x3+ax,B=2bx3﹣4x﹣1.(1)若多项式2A﹣B的值与x的取值无关,求a,b的值;(2)当x=2时,多项式2A﹣B的值为21,求当x=﹣2时,多项式2A﹣B的值.24.(2022秋•黄石期末)已知M=2x2﹣xy+y2,N=x2﹣2xy+y2.(1)化简:2M﹣N;(2)当x为最大的负整数,y取m2﹣3的最小值时,求2M﹣N的值.25.(2023•清苑区二模)已知整式2a2﹣3a+2 的值为P,a2﹣a﹣3 的值为Q.【发现】(1)当a=0时,P=2,Q=,P Q(填“>”“=”或“<”);当a=3时,P=,Q=3,P Q.【猜想与验证】(2)无论a为何值,P Q始终成立,并证明该猜想的结论.26.(2023春•新市区期末)先阅读下面例题的解答过程,再解答后面的问题.例:已知代数式6y+4y2的值为2,求2y2+3y+7的值.解:由6y+4y2=2得3y+2y2=1,所以2y2+3y+7=1+7=8.问题:(1)已知代数式2a2+3b的值为6,求a2+32b﹣5的值;(2)已知代数式14x+5﹣21x2的值为﹣2,求6x2﹣4x+5的值.27.(2023•龙凤区校级模拟)已知(2x﹣1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7.(1)求a0﹣a1+a2﹣a3+a4﹣a5+a6﹣a7的值.(2)求a0+a2+a4+a6的值.28.(2022秋•内乡县期末)已知有下列两个代数式:①a2﹣b2;②(a+b)(a﹣b).(1)当a=7,b=3时,代数式①的值是;代数式②的值是.(2)当a=﹣2,b=﹣5时,代数式①的值是;代数式②的值是.(3)观察(1)和(2)中代数式的值,你发现代数式a2﹣b2和(a+b)(a﹣b)的关系为.(4)利用你发现的规律,求20222﹣20212的值.29.(2022秋•拱墅区校级期中)(1)已知2y2+y﹣2的值为3,求4y2+2y+1的值.(2)已知当x=﹣1时,代数式2ax3﹣3bx+8的值为18,求9b﹣6a+2的值.30.(2022秋•祁阳县期末)图是湘教版七年级上册数学教材65页的部分内容.明明同学在做作业时采用的方法如下:由题意得3(a2+2a)+2=3×1+2=5,所以代数式3(a2+2a)+2的值为5.【方法运用】:(1)若代数x2﹣2x+3的值为5,求代数式3x2﹣6x﹣1的值;(2)当x=1时,代数式ax3+bx+5的值为8.当x=﹣1,求代数式ax3+bx﹣6的值;(3)若x2﹣2xy+y2=20,xy﹣y2=6,求代数式x2﹣3xy+2y2的值.。

七年级上培优专题——整体思想求值(附答案)

七年级上培优专题——整体思想求值(附答案)

七年级上培优专题——整体思想求值(附答案)题型切片(七个)对应题目题型目标利用同类项求未知数的值例1;练习1整式加减的化简求值例2;练习1化简并说明结果与字母取值无关例3;练习2整体思想之整体化简例4;练习3整体思想之代入求值例5:练习4整体思想之构造整体例6;练习5整体思想之赋值例7;练习6整式加减的实质:⑴去括号;⑵找同类项;⑶合并同类项.整式加减运算原则:有括号先去括号,有同类项先合并同类项.多重括号的整式加减混合运算中,常用的三种去括号方法:⑴由内向外逐层进行;⑵由外向内进行;⑶如果去括号法则掌握得熟练,还可以内外同时进行去括号.【例1】 ⑴若27m xy +-与33nx y -是同类项,则m =_______, n =________.⑵若3232583n m x y x y x y -=-,则22m n -=________.【例2】 ⑴化简:①()222323x x x x ⎡⎤---=⎣⎦ ;②()()3105223xy y x xy y x ++-+-=⎡⎤⎣⎦ .⑵化简求值:()⎪⎭⎫ ⎝⎛-+--+-22411444841x x x x ,其中21-=x .⑶已知:()2210x y ++-=,求()2222252342xy x y xy xy x y ⎡⎤-+--⎣⎦的值.【例3】 ⑴当k =时,代数式643643154105x kx y x x y --++中不含43x y 项.⑵ 有这样一道题“当22a b ==-,时,求多项式()()22233322a ab b a ab b -----+的值”,马小虎做题时把2a =错抄成2a =-时,王小明没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.整体思想就是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理.整体思想的解题方法在代数式的化简与求值有广泛的应用,整体代入、整体设元、整体处理等都是整体思想方法在解代数式的化简与求值中的具体运用.【例4】 ⑴计算5()2()3()a b b a a b -+---= .⑵化简:22233(2)(2)(1)(1)x x x x x +---+-+-= .⑶化简:()()()432330321223120573x y y x x y -+----+= .【例5】 ⑴已知代数式a b -等于3,则代数式()()25a b a b ---的值为 .⑵已知代数式2326y y -+的值为8,那么代数式2641y y -+的值为 .⑶若232x x --的值为3,则2239x x -+的值为_______.⑷已知代数式2346x x -+的值为9,则代数式2463x x -+的值为 .⑸已知32c a b =-,求代数式22523c a b a b c ----的值.【例6】 ⑴如果225a ab +=,222ab b +=-,则224a b -= .⑵己知:2a b -=,3b c -=-,5c d -=,求()()()a c b d c b -⨯-⨯-的值.【例7】 ⑴已知代数式25342()x ax bx cx x dx+++,当1x =时,值为1,求该代数式当1x =-时的值.⑵已知代数式4323ax bx cx dx ++++,当2x =时它的值为20;当2x =-时它的值为16, 求2x =时,代数式423ax cx ++的值.【选讲题】【例8】 李明在计算一个多项式减去2245x x -+时,误认为加上此式,计算出错误结果为221x x -+-,试求出正确答案.【例9】 设55432(21)x ax bx cx dx ex f -=+++++,求:⑴ f 的值;⑵ a b c d e f +++++的值; ⑶ a b c d e f -+-+-的值;⑷ a c e ++的值.训练1. 已知:m ,n 互为倒数,且20090m n ++=,求()()222010120101m m n n ++++的值.训练2. 已知()253425x ax bx cx M x dx e++=-++,当4x =-时,5M =,那么当4x =时,M = .训练3. 已知261211102121110210(1)x x a x a x a x a x a x a -+=++++++,求1210820a a a a a +++++的值.训练4. 已知有理数a 和b 满足多项式()25212b A a x xx bx b +=-+-++是关于x 的二次三项式.当7x <-时,化简:x a x b -+-利用同类项求未知数的值、整式加减的化简求值【练习1】 已知5+43a x y 与315b x y 是同类项,化简代数式()()2222352ab a a ab a ab ⎡⎤-----+⎣⎦并求该代数式的值.化简并说明结果与字母取值无关【练习2】 有这样一道题:“计算()()()32232332323223x x y xy x xy y x x y y ----++-+-的值”,其中“2013,1x y ==-”. 甲同学把“2013x =”错抄成了“2013x =-”,但他计算 的结果也是正确的,试说明理由,并求出这个结果.整体思想之整体化简【练习3】 把()a b -当作一个整体,合并22()5a b --2()b a -+2()a b -的结果是( )A .()2a b - B .()2a b -- C .()22a b -- D .0整体思想之代入求值【练习4】 ⑴如果36a b -=,那么代数式53a b -+的值是___________.⑵已知5=-y x ,代数式y x --2的值是_________.⑶已知24x y -+=,则代数式()2526360x y y x --+-的值为 . ⑷若23x x +的值为2,则2396x x +-的值为_____. ⑸若2320a a --=,则2526a a +-= .整体思想之构造整体【练习5】 如果1662=+xy x ,1242-=-xy y ,则222y xy x ++的值为 .整体思想之赋值【练习6】 ⑴已知当2x =-时,代数式31ax bx ++的值为6,那么当2x =时,代数式31ax bx ++的值是多少?⑵若533y ax bx ax =++-,当2x =-时,10y =,则2x =时,y = .是先有方程还是先有代数式?当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解方程的原理为中心问题的初等代数。

代数推理综合测试(整式)(人教版)(含答案)

代数推理综合测试(整式)(人教版)(含答案)

学生做题前请先回答以下问题问题1:整体代入的思考方向:①求值困难,考虑整体代入;②化简已知及所求,对比确定整体;③整体代入,化简.在“对比确定整体”时,我们对比的是什么?例:若代数式的值是6,求代数式的值.我们是怎么对比的?问题2:①若关于的代数式的值不受取什么值的影响,即与无关,只需_______,理由是__________________;②若关于的代数式的值不受取什么值的影响,即与无关,只需_______;③若关于的代数式的值不受取什么值的影响,即与无关,只需_______.以下是问题及答案,请对比参考:问题1:整体代入的思考方向:①求值困难,考虑整体代入;②化简已知及所求,对比确定整体;③整体代入,化简.在“对比确定整体”时,我们对比的是什么?例:若代数式的值是6,求代数式的值.我们是怎么对比的?答:对比系数;是的2倍,是的2倍,所以可把当成整体,问题2:①若关于的代数式的值不受取什么值的影响,即与无关,只需,理由是;②若关于的代数式的值不受取什么值的影响,即与无关,只需;③若关于的代数式的值不受取什么值的影响,即与无关,只需.答:①=0,0乘以任何数都得0;②=-1;③.代数推理综合测试(整式)(人教版)一、单选题(共10道,每道10分)1.把看成一个整体,合并同类项的结果为( )A. B.C. D.答案:B解题思路:故选B.试题难度:三颗星知识点:合并同类项2.设,把用含的代数式表示并化简的结果为( )A. B.C. D.答案:B解题思路:原式用含的代数式表示为.故选B.试题难度:三颗星知识点:整体代入3.若,则代数式的值为( )A.0B.4C.6D.2答案:C解题思路:故选C.试题难度:三颗星知识点:整体代入4.若代数式的值是8,则代数式的值为( )A.2B.-13C.-7D.7答案:C分析:整体代入的思考方向:①求值困难,考虑整体代入;②化简已知和所求,对比确定整体;③代入求值,化简.根据已知,直接求的值比较困难,考虑整体代入.对比已知和所求,把作为整体,然后代入求值.解:∵代数式的值是8∴∴∴故选C.试题难度:三颗星知识点:整体代入5.若,则的值是( )A.-2B.-1C.1D.801答案:D解题思路:解:试题难度:三颗星知识点:整体代入6.若,则的值为( )A. B.C. D.答案:B解题思路:解:故选B.试题难度:三颗星知识点:整体代入7.当时,代数式;则当时,代数式的值为( )A.1B.61C.-11D.49答案:C把代入得,即把代入得故选C.试题难度:三颗星知识点:整体代入8.如果用,(,)分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为_________;交换这个两位数的十位数字和个位数字,得到的数是_________;把这两个数相加,结果是( )的倍数.A. B.C. D.答案:A解题思路:画数位表:根据数位表,原来的两位数为,交换后的两位数为,因此把这两个数相加,得,故结果是11的倍数.故选A.试题难度:三颗星知识点:数位表示9.若关于的代数式的值与无关,则,的值分别为( )A. B.C. D.答案:D解题思路:分析:关于的代数式,把代数式中的当作字母,其他字母都可视为常数.代数式的值与无关,则化简后含的项的系数为0.解:∵上式的值与无关∴∴故选D.试题难度:三颗星知识点:整式的加减10.已知代数式的值与无关,则的值为( )A.12B.-12C.24D.-24答案:D解题思路:故选D.试题难度:三颗星知识点:化简求值。

人教版初一数学上册整体代入求值(专题课)

人教版初一数学上册整体代入求值(专题课)

三、整体代入
例2:若x²-3x=6,则 6x-2x²+3=____。
小试牛刀
1、若x-y=3,则 –x+y+5=______
2、若a²+2b-3=0,那么4-3a²-6b 的值是( )
A、-5 B、-14 C、13 D、9
三、整体代入 例3:已知xy=-2,x+y=3,求整式 (3xy+10y)+[5x-(2xy+2y-3x)]的值。
练:化简求值: 2a²-3ab+b²-(a²-ab+2b²), 其中a²-b²=5,ab=2.
三、整体代入
例3:已知当x=1时,2ax²+bx 的值为3,则当x=2时,ax²+bx 的值为_____。
练:已知当x=-2时,多项式 ax³+bx+1的值为6,那么当x=2时, 多项式ax³+bx+1的值是____。
三、整体代入
例1:当代数式a+b的值为3时,代数式 2a+2b+1的值是______.Fra bibliotek举一反三
1、已2x知 2 3x 7的值8, 为则 4x2 6x -9的值_为 ____。 ___
2、若 3x式 24x子 6的值 9,为 x则 23 4x6
的值为()
A、7 B、18 C、12 D、9
课堂小结
整式求值有三法:
一、直接代入 二、化简代入 三、整体代入
1、如果a²+ab=4,ab+b²=-1,那么 a²+b²+2ab=_______,a²-b²=________。
2、当0≤x≤3时,请化简式子: |x+1|-|x-4|+|x+5|

专题01整式的化简与求值(教师版) 2024-2025学年七年级数学上册考试满分全攻略同步备课备考系

专题01整式的化简与求值(教师版) 2024-2025学年七年级数学上册考试满分全攻略同步备课备考系

专题01整式的化简与求值题型01先化简在直接代入求值【典例分析】【例1-1】(23-24七年级上·山西晋城·阶段练习)当1x =-时,多项式2245413x x x x x -+---的值为( )A .2-B .2C .1-D .0【答案】D【分析】本题考查了整式加减中的化简求值,先利用整式的加减运算法则进行化简,再将1x =-代入原式即可求解,熟练掌握其运算法则是解题的关键.【详解】解:2245413x x x x x -+---2551x x x =+--21x =-,将1x =-代入原式得:()221110x -=--=,故选D .【例1-2】(22-23七年级上·上海闵行·周测)若2x =-,则多项式()()2234532x x x x -+-+-+的值是 .【答案】2【分析】根据整式加减混合运算法则进行化简,然后代入数据进行计算即可.【详解】解:()()2234532x x x x -+-+-+2234532x x x x =-+-+-+2x x =+,把2x =-代入得:原式()()2222=-+-=.【点睛】本题主要考查了整式加减的化简求值,解题的关键是熟练掌握整式加减运算法则,准确计算.【例1-3】(22-23七年级上·宁夏中卫·期末)先化简,再代入求值.()()()42224x y x y x y x éù----++-ëû,其中0,3x y ==- ;【答案】15【分析】本题考查整式加减中的化简求值,去括号,合并同类项,化简后代值计算.【详解】解:原式()422224x y x y x y x=---+++-4234x y y x =---5y =-;当0,3x y ==-时,原式()5315=-´-=.【变式演练】【变式1-1】(22-23七年级上·天津南开·期中)若12x =,则代数式22225432x x x x x -++--的值为( )A .52B .12C .12-D .52-【点睛】本题考查了整式的加减-化简求值,熟练掌握整式的加减运算法则是解本题的关键.【变式1-2】(22-23七年级上·黑龙江佳木斯·期中)若2022a =-,12022b =,则多项式2223232a ab a ab a +---= .【点睛】本题考查了整式的化简求值;熟练掌握合并同类项的法则是解题的关键【变式1-3】(23-24七年级上·福建泉州·阶段练习)先化简再求值∶ ()2222261a a a a ---+,其中 12a =-.题型02利用整体思想化简求值【典例分析】【例2-1】(23-24七年级上·河南安阳·期末)“整体思想”是数学中的一种重要的思想方法,它广泛应用于数学运算中.例如:已知2a b +=,3ab =-,则()22238a b ab +-=-´-=,利用上述思想方法计算:已知22a b -=,1ab =-,则()()2=a b ab b --- .【答案】3【分析】本题考查了整式的化简求值,熟练掌握“整体代入法求代数式的值”是解题的关键.先将()()2a b ab b ---化简,然后将22a b -=,1ab =-,代入计算即可.【详解】解:()()2a b ab b ---22a b ab b=--+2a b ab =--;∵22a b -=,1ab =-,∴()221213a b ab --=--=+=.故答案为:3.【例2-2】(23-24七年级上·甘肃兰州·期末)阅读材料:我们知道,()232314x x x x x +-=+-=,类似的,我们把()a b +看成一个整体,则()()()()()()232314a b a b a b a b a b +++-++-+=+=.“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把()2x y -看成一个整体,求将()()()22224x y x y x y ---+-合并的结果.(2)已知2348m n -=-,求代数式23n m -的值.拓广探索:(3)已知22a b -=,2b c -=-,36c d +=,求()()()32a c b c b d ++++-的值.【答案】(1)()2x y --;(2)8;(3)6【分析】本题考查了整式的加减运算与化简求值,熟练掌握整体代入思想是解题的关键.(1)根据合并同类项法则合并即可.(2)将代数式变形,然后把已知条件的值代入计算即可.(3)把原式去括号整理后,变为()()()23-+-++a b b c c d ,然后整体代入求值可.【详解】(1)解:()()()22224x y x y x y ---+-()()2241x y -+-=()2x y =--(2)解:2348m n -=-Q ,【例2-3】(23-24七年级上·广西南宁·期中)探究与应用【阅读材料】“整体思想”是一种重要的数学思想,在多项式的化简求值中应用极为广泛.在()424213a a a a a -+=-+=中,字母a 是一个整体,类似的,可以把()x y +看成一个整体,则()()()()()()424213x y x y x y x y x y +-+++=-++=+.【尝试应用】(1)把2()x y +看成一个整体,化简2223()6()2()+-+++=x y x y x y ________;(2)已知222a b -=-,求23621a b --的值.【拓展探索】(3)已知3a b -=,5b c +=-,10c d +=,求()()()a c b d b c -----的值.【答案】(1)2()x y -+;(2)27-;(3)18【分析】本题主要考查代数式的值及合并同类项,熟练掌握利用整体思想进行求解是解题的关键.(1)把()2x y +看作一个整体,合并即可得到结果;(2)原式前两项提取3变形后,将已知等式代入计算即可求出值;(3)根据已知条件进行整理,然后将已知等式代入计算即可求出值.【详解】解:(1)2223()6()2()x y x y x y +-+++()2362()x y =-++2()x y =-+;(2)222a b -=-Q 23621a b \--()23221a b =--3(2)21=´--621=--27=-;(3)3a b -=Q ,5b c +=-,10c d +=()()()\-----a c b d b c =--+-+a c b d b c()()()=--+++a b b c c d 3(5)10=--+3510=++18=.【变式演练】【变式2-1】(22-23七年级上·河南南阳·期末)“整体思想”是数学中的一种重要的思想方法,它在数学运算、推理中有广泛的应用,如:已知2m n +=-,3=-mn ,则()()22234m n mn +-=--´-=.利用上述思想方法计算:已知343m n -=-,1mn =-.则()()62m n n mn ---=.【答案】8-【分析】将原式通过去括号、合并同类项化简后,再将343m n -=-,1mn =-整体代入即可.【详解】解:∵343m n -=-,1mn =-,∴()()62m n n mn ---6622m n n mn =--+682m n mn=-+()2342m n mn=-+()()2321=´-+´-8=-故答案为:8-.【点睛】本题考查整式的加减—化简求值,掌握去括号、合并同类项法则以及整体思想的体现是正确解答的前提.【变式2-2】(23-24七年级上·河南安阳·期末)阅读材料:“整体思想”是中学数学的重要思想方法,在解题中会经常用到.我们知道,合并同类项:()5325324x x x x x -+=-+=,类似地,我们把()m n +看成一个整体,则()()()()()()5325324m n m n m n m n m n +-+++=-++=+.尝试应用:()1把()2m n +看成一个整体,合并()()()222453m n m n m n +-+++的结果是______.()2已知229x y +=-,求24818x y ++的值.拓展探索:()3已知2a b -=,24b c -=,21c d -=-,求()()()22a c b c b d ---+-的值.【答案】()1()22m n +;()218-;()35.【分析】本题考查的知识点是合并同类项、整式的化简求值、根据已知式子的值求代数式的值,解题关键是结合已知条件将原式进行正确变形,采用整体代入的思想进行计算.()1将原式合并即可;()2将22x y +看成一个整体,对原式进行变形,再代入求值即可;()3将原式变形后代入已知整式值计算即可.【详解】()1解:原式()()2453m n =-++,()22m n =+.故答案为:()22m n +.()2解:229x y +=-Q ,24818x y \++,()24218x y =++,()4918=´-+,18=-.()3解:2a b -=Q ,24b c -=,21c d -=-,()()()22a c b c b d \---+-,22a c b c b d =--++-,()()()22a b b c c d =-+-+-,()241=++-,5=.【变式2-3】(23-24七年级上·内蒙古鄂尔多斯·期中)阅读材料:“整体思想”是中学数学中重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把()a b +看成一个整体,4()2()((421)()3())a b a b a b a b a b =+-+++-++=+.尝试应用:(1)把2()a b -看成一个整体,合并2227()9()3()a b a b a b ---+-的结果是__________.(2)已知222x y -=,则2482023x y --的值=__________.拓广探索:(3)若2m n -=,5mn =-,则3()(3)mn n mn m ---的值为__________.(4)已知23a b -=,6c d -=,求()(2)a c b d ---的值=_________.【答案】(1)2()a b -;(2)2015-;(3)4-;(4)3-【分析】本题考查了利用整体思想求代数式的值,将代数式进行适当变形是解题关键.(1)将各项系数加减即可求解;(2)2482023x y --()2422023x y --=,据此即可求解;(3)()3()(3)23mn n mn m mn m n ---=+-,然后整体代入求值;(4)()()2a c b d ---()()2a b c d =---,据此即可求解.【详解】解:(1)()222227)7()9()3(()(3)9a b a b a b a b a b =----+=+---故答案为:2()a b -;(2)因为222x y -=,所以2482023x y --()2422023x y --=422023=´-82023=-2015=-,故答案为:2015-;(3)3()(3)mn n mn m ---=333mn n mn m--+=()23mn m n +-,当2m n -=,5mn =-时,原式=()25321064´-+´=-+=-,故答案为:4-;(4)当23a b -=,6c d -=时,()()2a c b d ---2a c b d=--+()()2a b c d =---36=-3=-故答案为:3-题型03复合型代数式的化简求值问题【典例分析】【例3-1】(22-23七年级上·广东惠州·期中)已知多项式2222A x y z =+-,222432B x y z =-++且0A B C ++=,则C 为( )A .2225x y z --B .22235x y z --C .22233x y z --D .22235x y z +-【答案】B【分析】由题意得222222=()3)24(2C x y z z A y B x +--+-+=---,进行计算即可得.【详解】解:由于多项式2222A x y z =+-,222432B x y z =-++且0A B C ++=,则222222=()3)24(2C x y z z A y B x +--+-+=---=2222222432x y z x y z ++----=22235x y z --,故选:B .【点睛】本题考查了整式的加减,解题的关键是掌握整式加减的步骤【例3-2】(23-24七年级上·贵州遵义·期末)已知两个整式A 和B ,237A a ab =-+,2447B a ab =-++.(1)请化简A B -;(2)若1a =-,2b =,则A B -的值为多少?【答案】(1)275a ab-(2)17【分析】本题考查的是整式的加减运算中的化简求值;熟记去括号,合并同类项的法则是解本题的关键.(1)先去括号,再合并同类项,即可得到答案;(2)把1a =-,2b =代入化简后的代数式进行计算即可.【详解】(1)∵237A a ab =-+,2447B a ab =-++∴A B-()2244737a a b ab a -+-+-+=2244737a a a a b b =--+-+275a ab =-;(2)∵1a =-,2b =,∴()()22757151217A B a ab -=-=´--´-´=【例3-3】(22-23七年级上·云南文山·期末)已知22235A x y xy xy =+-,22234B xy xy x y =-+.(1)求2A B -;(2)当3x =,13y =-时,求2A B -的值.【答案】(1)2912xy xy -【变式演练】【变式3-1】(21-22七年级上·广东湛江·期中)已知22321A x xy x =++-,232B x xy x =++-.先化简2A B -,且当2x y ==时,求2A B -的值;【答案】243A B xy x -=-+,2A B -的值为1-;【分析】先求出243A B xy x -=-+,再将2x y ==代入求值即可;本题考查了整式的加减,熟练掌握整式的加减运算法则,并能准确计算是解题的关键.【详解】2A B-()()222321232x xy x x xy x ++=+--+-2222321264x xy x x xy x =-+--+-+43xy x =-+,当2x y ==时,原式4831=-+=-【变式3-2】(23-24七年级上·江苏苏州·阶段练习)已知,224532A x y B x y =-=--,,求2A B -的值, 其中21x y =-=,.【答案】36【分析】本题考查了整式的化简求值.熟练掌握整式的化简求值是解题的关键.先去括号,然后合并同类项可得化简结果,最后代值计算求解即可.【详解】解:由题意知,()()22224532A B x y x y -=----2281032=-++x y x y2118=-x y ,将21x y =-=,代入得,原式()21128144836=´--´=-=.【变式3-3】(21-22七年级上·河北保定·期中)化简与求值:(1)已知25A x xy =-,26B xy x =-+,求2A B -;(2)先化简,再求值:()()2222272234x y x y xy x y xy -----,其中2x =-,1y =.【答案】(1)24x xy -;(2)2277x y xy +,14.【分析】本题考查了整式的化简求值,解答本题的关键是熟练掌握整式的运算法则,将所给代数式化简.(1)去括号合并同类项即可;(2)先去括号合并同类项,再把2x =-,1y =代入计算.【详解】(1)()()222256A B x xy xy x -=---+222106x xy xy x =-+-24x xy =-.(2)()()2222272234x y x y xy x y xy -----222227464x y x y xy x y xy =-+++2277x y xy =+.当2x =-,1y =时,原式()227(2)1721281441=´-´+´--=´=题型04绝对值的化简求值【典例分析】【例4-1】(22-23七年级上·四川绵阳·期中)若23a <<时,化简32a a -+-( )A .1B .25a -C .1-D .52a-【例4-2】(21-22七年级上·广东湛江·期中)已知a a =-,||1b b=-,c c =,化简a b a c b c ++---= .【例4-3】(23-24七年级上·江苏苏州·阶段练习)有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c +______0,a b -______0,b a -______0;(2)化简:b c a b b a ++---.【答案】(1),,><>(2)b c+【变式演练】【变式4-1】(23-24七年级上·甘肃庆阳·期末)若0b <,0ab <,则1b a a b ---+的值为( )A .2-B .1-C .1D .2【变式4-2】(22-23七年级上·广西贺州·期中)有理数a b 、表示的点在数轴上如图所示.化简:()||||a b a b a b -+++--= .【答案】3a b--【分析】本题考查了数轴和绝对值,整式的加减,根据数轴得出,0b <,0a >,||||b a >,去掉绝对值符号,再合并即可.【变式4-3】(23-24七年级上·江苏·周测)如图,在一条不完整的数轴上,从左到右的点A、B、C把数轴分ab<.成①②③④四部分,点A、B、C对应的数分别是a、b、c,且0(1)原点在第部分(填序号);----;(2)化简式子:a b c a a=+-a b c题型05利用“不含与无关”求值【典例分析】【例5-1】(23-24七年级上·海南海口·期中)若多项式22266x kxy y xy -++-不含xy 的项,则k 的值是( )A .0B .3-C .6D .3【答案】D【分析】本题考查了多项式的不含有项的问题,熟练掌握合并同类项,令系数为零是解题的关键.先合并同类项,令xy 的系数为零,求解即可.【详解】解:多项式()2222266626x kxy y xy x k xy y -+=+-+-+-不含xy 的项,∴620k -=,∴3k =,故选:D【例5-2】(23-24七年级上·山东日照·期末)若多项式()22331x mx x nx ++-+-的值与x 的取值无关,则2m n -+的值为 .【答案】7-【分析】本题考查了整式的加减中的无关题型、求代数式的值,将原式括号去掉、合并同类项后得到()()2132n x m x ++-+,再由其值与x 的取值无关,可求出m n 、的值,最后代入计算即可得出答案,求出m n 、的值是解此题的关键.【详解】解:()()()22222331331132x mx x nx x mx x nx n x m x ++-+-=++--+=++-+,Q 多项式()22331x mx x nx ++-+-的值与x 的取值无关,10n \+=,30m -=,解得:3m =,1n =-,()22317m n \-+=-´+-=-,故答案为:7-【例5-3】(23-24七年级上·江苏苏州·阶段练习)已知22573A x xy y =--+,21B x xy =-+.(1)求4(2)A A B -+的值;(2)若2A B -的值与y 的取值无关,求x 的值.【答案】(1)239145x xy y --+73x \=-【变式演练】【变式5-1】(22-23七年级上·广东湛江·期中)若关于x 的多项式3222673x mx x x +--+不含二次项,则m 等于( )A .2B .2-C .3D .3-【答案】C【分析】本题主要考查了整式加减中的无关项问题.先合并同类项,然后根据多项式中不含二次项,可得260m -=,即可求解.【详解】解:()3223226732673x mx x x x m x x +--+=+--+,∵多项式中不含二次项,∴260m -=,解得:3m =.故选:C【变式5-2】(23-24七年级上·江苏扬州·期末)已知M ,N 为两个整式,其中23761M a ab a =-+--,2342N a ab =-+,若+M N 的值与a 的取值无关,则b = .【答案】2【分析】本题考查整式的加减混合运算,熟练掌握运算技巧与合并同类项的方法是解题的关键,同时需注意代数式的值与a 无关,说明含a 项的系数为0.先把已知条件中的M ,N 代入+M N 进行化简,然后根据+M N的值与a 的取值无关,列出关于b 的方程,解方程即可.【详解】解:∵23761M a ab a =-+--,2342N a ab =-+,∴M N+()()223761342a ab a a ab =-+--+-+223761342a ab a a ab =-+--+-+223374621a a ab ab a =-+--+-361ab a =-+()321a b =-+,∵+M N 的值与a 的取值无关,∴20b -=,\2b =,故答案为:2.【变式5-3】(23-24七年级上·安徽六安·期末)已知代数式22573A x xy y =+--,22B x xy -=+.(1)求()323A A B -+.(2)若2A B -的值与y 的取值无关,求x 的值.【答案】(1)2879x xy y -+--(2)x =1【分析】本题考查整式的运算,熟练掌握整式的运算法则是解答本题的关键.(1)根据整式的运算法则即可求出答案;(2)根据题意将2A B -化简,然后令含y 的项的系数为0即可求出x 的值.【详解】(1)解:()3233233A A B A A B A B -+=--=-22573A x xy y =+--Q ,22B x xy =-+3A B\-()()22257332x xy y x xy =+----+222573336x xy y x xy =+---+- 2879x xy y =-+--;(2)2A B-()()22257322x xy y x xy =+----+777xy y =-- 7(1)7y x =--2A B -Q 的值与y 的取值无关,∴10x -=,1x \=。

人教版初中数学代数式的值(含答案)

人教版初中数学代数式的值(含答案)

代数式的值一、情境联想导入有一个数学游戏,无论是一个什么有理数(0除外),将它们乘以4加上6,再将其结果乘以4,最后减去24,其结果一定是16的倍数.问题对于这个结论,你想信吗?试试看,你想知道为什么吗?二、思维起点落实一般地,用数值代替代数式里的_______,按照代数式中的______•关系计算得出的结果,叫做代数式的值.三、重点难点突破重点求代数式的值用代数式值的定义求代数式的值有代入和计算两个步骤;“代入”是指用数值代替式里的字母,“计算”指按代数式中的运算关系计算得出结果.注意代数式的值是由代数式中字母的取值来决定的,同一个代数式,由于字母的取值不同,所求的值就不同.难点代数式中有多个字母时,求代数式的值.当代数式中有多个字母时,字母之间的关系较复杂,给求值造成障碍,这时应先理解代数式的意义再求值,它的求值方法和含有一个字母的代数式求值一样,即:①当…时,②代入,③计算.点拨代数式中字母可取不同值,但所有的值应该使代数式或代数式中字母所代表的量有意义.四、思维能力拓展能力点利用整体思想求代数式的值.例1(1)已知:2x+y=1,求6x+3y-2的值.(2)已知a ba b-+=5,求a ba b-+-5()2()a ba b+-的值.分析:由于题目中没有给出具体的字母值,直接代入无法进行,可结合题目特点,通过变形整体代入.(1)中6x+3y-2可变形为3(2x+y)-2;(2)中5()2()a ba b+-可变形为52·a ba b+-,而a ba b+-与互a ba b-+为倒数,故a ba b+-=15.答案:(1)当2x+y=1时,6x+3y-2=3(2x+y)-2=3×1-2=1;(2)当a ba b-+=5时,a ba b+-=15,所以原式=a ba b-+-52·a ba b+-=5-52×15=412.方法提炼:当代数式中含有相同或互为倒数的式子,而字母的值不确定时,•就可采用整体代入法.五、综合探究创新综合点生活中的应用例2:托运行李的费用计算方法是:托运行李总重量不超过30千克,每千克收费1元,超过30千克,超过部分每千克收费1.5元.某旅客托运m千克(m为正整数).(1)请你用代数式表示托运m千克行李的费用;(2)求当m=45时的托运费用.分析:本题是“出租车”“用电”“水费”一类型,是属于分段交费,•题目中的m 的大小,应分为:m≤30和m>30两种情况计算.答案:(1)m≤30,为m元;m>30,为[30+1.5(m-30)]元;(2)52.5元.评注:分段求值时,一定要划清各段的界限.六、针对训练1.求代数式:(1)332a b aa b b-+-+的值,其中a=-5,b=112;(2)3x-2(y-1)的值,其中x=-5,y=32.2.已知x=3y ,z=7x (x ≠0),求代数式23x y z x y z+++-的值.3.已知当x=2时,代数式ax 5+bx 3+cx +6的值为10,求当x=-2时,代数式ax 5+bx 3+c x+6的值.4.代数式x 2+x+3的值为7,求代数式-2x 2-2x-3的值.5.某公园的门票价格是:成人20元,学生10元,满50人可以购团体票(打8折).•设一旅游团共x(x>50)人,其中学生a人.(1)用代数式表示该旅游团应付的门票费;(2)如果旅游团共有54个人,其中有16个学生,那么应付费多少元?答案:【情境联想导入】设这个数为x (x ∈Q ,且x ≠0),则可列代数式为4(4x+6)-24,化简为16x ,因此一定是16的倍数.【思维起点落实】字母 运算【针对训练】1.(1)当a=-5,b=112时,332a b a a b b -+-+=331(5)(1)592181128(5)(1)1222-+-+=--+. (2)当x=-5,y=32时,原式=3×(-5)2-2[(32)2-1]=7212. 提示:求代数式的值可采用直接代入法,即先代入,后计算.将数值代入后,•按有理数的运算法则进行.将分数和负数代入时要用括号,原来省略的乘号应添上.•在解题时要注意格式,写成当……时,代数式=……或用原式代替代数式.2.解法一:顺x=3y ,z=7x ,故z=7(3y )=21y .把x=3y ,z=21y 代入原代数式,得 23x y z x y z +++-=32125252(3)3211221y y y y y y y++==-+--; 解法二:因x=3y ,故y=13x ,又因z=7x . 故23x y z x y z +++-=172531212373x x x x x x ++=-+-. 提示:这个题目没有给出代数式中各字母的具体值,但是给出了各字母之间的相互关系.这时应设法把原代数式中的各个字母都用一个字母来表示,然后约分即可.3.2 提示:x=2时,有2a 5+23b +2c+6=10,即25a+23b +2c=4;当x=-2时,ax5+bx3+cx+•6=•-25a-23b-2c+6=-(25a+23b+2c)+6.4.-11 提示:x2+x=4,-2x2-2x-3=-2(x2+x)-3=-2×4-3=-11.5.(1)810[10a+20(x-a)];(2)736元提示:(2)就是求a=16,x=54时代数式的值.。

初一:代数式的求值专题

初一:代数式的求值专题

代数式的求值类型一、利用分类讨论方法【例1】已知|[ =7,间=12,求代数式x+y的值.变式练习:1、已知|乂-1|=2,|丫|=3,且乂与丫互为相反数,求3 X 2 7y . 4 y的值2、|x|=4,|y|=6,求代数式|x+y|的值3、已知凶=1,| y = 1,求代数式x 2—2町+ y 2的值;类型二、利用数形结合的思想方法【例】有理数a, b,c在数轴上的位置如图所示:试试代数式I a+b | — | b—1 | — | a—c | — | 1 一c] 的值.变式练习:1、有理数a, b, c在数轴上对应点如图所示,化简|b+a| + |a+c| + |c-b|I 111rC B0 A2、已知a, b, c在数轴上的位置如图所示,化简|a| + |c-b| + |a-c| + |b-a|a 0 c b题型三、利用非负数的性质【例 D 已知(a—3)2+|—b+5 | + | c — 2 |=0.计算 2a+b+c 的值.【例2】若实数a、b满足a2b2+a2+b2-4ab+1=0,求b + a之值。

a b变式练习:1、已知:|3x-5| + |2y+8|=0 求x+y2、若205x|2x-7| 与30x| 2y-8 |互为相反数,求xy+x题型四、利用新定义【例1】用“★”定义新运算:对于任意实数a, b,都有a*b=b2+i.例如,7*4 = 42+1 = 17, 那么5*3=;当川为实数时,m*(m*2)=.变式练习:1、定义新运算为a4b =( a + 1 )刊,求的值。

6A ( 3A4 )2、假定m^n表示m的3倍减去n的2倍,即mOn=3m-2n o (2)已知乂。

(4。

1) =7,求x的值。

3、规定a * b = 1 - -, a **b = 2-1, 则(6 * 8)**(8 * 6)的值为; b a题型五、巧用变形降次【例】已知X2 —x—1 = 0,试求代数式一X3+2X+2008的值.变式练习:设m 2 + m — 1 = 0,则U m 3 + 2 m 2 +1997 =题型六、整体代入法当单个字母的取值未知的情况下,可借助“整体代入,,求代数式的值。

代数式求值(整体代入一)(人教版)(含答案)

代数式求值(整体代入一)(人教版)(含答案)

学生做题前请先回答以下问题问题1:整体代入的思考方向①求值困难,考虑_____________;②化简________________,对比确定________;③整体代入,化简.问题2:已知代数式2a2+3b=6,求代数式4a2+6b+8的值.①根据2a2+3b=6无法求出a和b的具体值,考虑_____________;②对比已知及所求,考虑把________作为整体;③整体代入,化简,最后结果为______.代数式求值(整体代入一)(人教版)一、单选题(共13道,每道7分)1.把看成一个整体,合并同类项的结果为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:合并同类项2.把看成一个整体,合并同类项的结果为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:合并同类项3.设,把用含的代数式表示并化简的结果为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:整体代入4.设,把用含的代数式表示并化简的结果为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:整体代入5.若,则代数式的值为( )A.0B.4C.6D.2答案:C解题思路:试题难度:三颗星知识点:整体代入6.已知,则的值为( )A.-1B.0C.1D.3答案:A解题思路:试题难度:三颗星知识点:整体代入7.若,则代数式的值为( )A.-1B.1C.-5D.5答案:A解题思路:试题难度:三颗星知识点:整体代入8.已知代数式的值是4,则的值为( )A.1B.5C.9D.10答案:C解题思路:试题难度:三颗星知识点:整体代入9.若代数式的值为5,则代数式的值为( )A.1B.9C.11D.21答案:B解题思路:试题难度:三颗星知识点:整体代入10.已知代数式的值为6,则的值为( )A.24B.18C.12D.9答案:B解题思路:试题难度:三颗星知识点:整体代入11.若,则的值为( )A.0B.2C.5D.8答案:D解题思路:试题难度:三颗星知识点:整体代入12.若,则的值为( )A.7B.-7C.1D.-1答案:A解题思路:试题难度:三颗星知识点:整体代入13.若,则的值为( )A.-59B.-31C.41D.61答案:D解题思路:试题难度:三颗星知识点:整体代入。

专题04 代数式化简求值的三种考法(解析版)-2024年常考压轴题攻略(7年级上册人教版)

专题04 代数式化简求值的三种考法(解析版)-2024年常考压轴题攻略(7年级上册人教版)

专题04代数式化简求值的三种考法类型一、整体代入求值【变式训练3】已知a+b=2ab,那么=()a ab b-+A .6B .7C .9D .10【答案】B【详解】解:∵2a b ab +=,∴232a ab b a ab b++-+=2()3a b ab a b ab +++-=2232ab ab ab ab ⨯+-=43ab ab ab +=7abab =7,故选:B .类型二、特殊值法代入求值例1.已知关于x 的多项式4323ax bx cx dx e ++++,其中a ,b ,c ,d 为互不相等的整数.(1)若4abcd =,求+++a b c d 的值;(2)在(1)的条件下,当1x =时,这个多项式的值为27,求e 的值;(3)在(1)、(2)条件下,若=1x -时,这个多项式4323ax bx cx dx e ++++的值是14,求a c +的值.【答案】(1)0(2)3e =(3) 6.5-【分析】(1)由a b c d 、、、是互不相等的整数,4abcd =可得这四个数由1-,1,2-,2组成,再进行计算即可得到答案;(2)把1x =代入432327ax bx cx dx e ++++=,即可求出e 的值;(3)把=1x -代入432314ax bx cx dx e ++++=,再根据0a b c d +++=,即可求出a c +的值.【详解】(1)解:4abcd = ,且a b c d 、、、是互不相等的整数,∴a b c d 、、、为1-,1,2-,2,0a b c d ∴+++=;(2)解:当1x =时,4323ax bx cx dx e ++++43231111a b c d e =⨯+⨯+⨯+⨯+3a b c d e =++++30e =+27=,3e ∴=;(3)解:当=1x -时,4323ax bx cx dx e ++++()()()()43231111a b c d e=⨯-+⨯-+⨯-+⨯-+3a b c d e =-+-+14=,【变式训练2】若6543210,则5310a a a a ++-=______.【答案】365-【详解】解:令x =0,代入等式中得到:()601-=a ,∴0=1a ,令x =1,代入等式中得到:65432101①=++++++ a a a a a a a ,令x =-1,代入等式中得到:66543210(3)②----=+++ a a a a a a a ,将①式减去②式,得到:65311(3)2()--+=+a a a ,∴536113)3642(-+=+=-a a a ,∴53103641365++-=--=-a a a a ,故答案为:365-.【变式训练3】特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=;(3)取1x =-时,可以得到432106a a a a a -+-+=-;(4)把(2),(3)的结论相加,就可以得到4222a a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=.求:(1)0a 的值;(2)6543210++++++a a a a a a a 的值;(3)642a a a ++的值.【答案】(1)4;(2)8;(3)0【解析】(1)解:当1x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴0414a =⨯=;(2)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+;(3)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+①;当0x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432100+-++=--a a a a a a a ②;用①+②得:406282222++=+a a a a ,∴642040a a a a ++=-=.类型三、降幂思想求值例.若2230x x -+=,则3227122020x x x -++=_____;【答案】2029【详解】解:∵2230x x -+=,∴223x x -=-,∴3227122020x x x -++=x (2x 2-4x -3x +12)+2020=x [2(x 2-2x )-3x +12]+2020=x [2×(-3)-3x +12]+2020=x (-3x +6)+2020=-3(x 2-2x )+2020=-3×(-3)+2020=9+2020=2029故答案为:2029.【分析】根据已知得到2232022x x -=,再将所求式子变形为()()22232320222020x x x x x x =-+---,整体代入计算即可.【详解】解:∵22320220x x --=,∴2232022x x -=,∴32220252020x x x ---322232*********x x x x x =-+---()()22232320222020x x x x x x =-+---2022202220222020x x =+--2=故答案为:2.【点睛】本题主要考查了代数式求值,利用整体代入的思想求解是解题的关键.【变式训练2】如果2233x x -+的值为5,则2695x x --的值为______.【答案】1【详解】∵22335x x -+=,∴2232x x -=∴2695x x --()23235x x =--325=⨯-1=,故答案为:1.【变式训练3】已知21x x +=,求43222023x x x x +--+的值.【答案】2022【分析】把所求式子变形成含已知的代数式,结合整体代入的思想解答即可.【详解】解:∵21x x +=,∴43222023x x x x +--+()22222023x x x x x =+--+2222023x x x =--+22023x x =--+()22023x x =-++12023=-+2022=.【点睛】本题考查了代数式求值和整式的乘法,正确变形,灵活应用整体思想是解题的关键.【变式训练4】已知210x x --=,则3222021x x -++的值是______.【答案】2022【详解】解:∵210x x --=,∴230x x x --=,∴32210x x -+-=,∴3221x x -+=,∴3222021120212022x x -++=+=,故答案为:2022.1.已知2|1|(2)0x y -++=,a 与b 互为倒数,c 与d 互为相反数,求32()()33x y ab c d +--++的值.【答案】-2【详解】解:()2120x y -++= ,()21020x y -≥+≥,.10x ∴-=,20y +=1x ∴=,2y =-因为a 与b 互为倒数,所以1ab =因为c 与d 互为相反数,所以0c d +=∴原式()()()321213c d =---++()311=--=-2.2.已知23a bc +=,222b bc -=-.则22543a b bc +-的值是()A .23-B .7C .13D .23【答案】B【分析】将所求式子变形为()()22542a bc b bc ++-,再整体代入计算.【详解】解:∵23a bc +=,222b bc -=-,∴22543a b bc+-225548a bc b bc =+-+()()22254a bc b bc =+-+()5342=⨯+⨯-158=-7=故选B .【点睛】本题考查了整式的加减,代数式求值,解题的关键是掌握整体思想的灵活运用.3.已知21a a +=,那么3222023a a ++的值是()A .2021B .2022C .2023D .2024【答案】D【分析】先将3a 降次为2a a -+,然后代入代数式,再根据已知条件即可求解.【详解】解:∵21a a +=,∴21a a =-+,则32a a a =-+,∴3222023a a ++2222023a a a =-+++22023a a =++12023=+已知2,【答案】1或-3【详解】∵24a +=,()214b -=,∴a +2=±4,b −1=±2,∴a =2或a =−6,b =3或b =−1;∵0ab <,∴a =2,b =−1或a =−6,b =3,当a =2,b =−1时,则2(1)1a b +=+-=;当a =−6,b =3时,则633a b +=-+=-;故答案为:1或-3.。

人教版数学七年级上学期专题03 代数式化简求值的四种考法(原卷版)(原卷版+解析版)(人教版)

人教版数学七年级上学期专题03 代数式化简求值的四种考法(原卷版)(原卷版+解析版)(人教版)

专题03 代数式化简求值的四种考法类型一、整体代入求值例1.若2m n -=,那么922m n -+=_________.例2.已知2310x x -+=,则2395x x -+=_________.例3.当1x =时,多项式534ax bx ++的值为5,则当1x =-时,该多项式的值为()A .5-B .5C .3-D .3【变式训练1】已知3x y -=,则722x y -+的值为_______.【变式训练2】若1m n -=,2mn =,则(2)(2)m n -+=___.【变式训练3】若33a b -=,则(2)(2)a b a b +--的值为( )A .13- B .13 C .3 D .3-【变式训练4】已知a +b =2ab ,那么232a ab ba ab b ++-+=( )A .6B .7C .9D .10类型二、特殊值法代入求值例1.设()3321x ax bx cx d -=+++,则a b c d -+-的值为( )A .2B .8C .2-D .8-【变式训练1】已知(x ﹣1)6=a 6x 6+a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,将x =0代入这个等式中可以求出a 0=1.用这种方法可以求得a 6+a 5+a 4+a 3+a 2+a 1的值为( )A .﹣16B .16C .﹣1D .1【变式训练2】若()665432654321021x a x a x a x a x a x a x a -=++++++,则5310a a a a ++-=______.【变式训练3】特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=;(3)取1x =-时,可以得到432106a a a a a -+-+=-;(4)把(2),(3)的结论相加,就可以得到4222a a +020+=a ,结合(1)00a =的结论,从而得出420a a +=. 请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=.求:(1)0a 的值;(2) 6543210++++++a a a a a a a 的值;(3) 642a a a ++的值.类型三、降幂思想求值例.若2230x x -+=,则3227122020x x x -++=_____;【变式训练1】若实数x 满足x 2﹣2x ﹣1=0,则2x 3﹣7x 2+4x ﹣2016=_____.【变式训练2】如果2233x x -+的值为5,则2695x x --的值为______.【变式训练3】已知x 2﹣3x =2,那么多项式x 3﹣x 2﹣8x +9的值是 _____.【变式训练4】已知210x x --=,则3222021x x -++的值是______.类型四、含绝对值的代数式求值例1.若19,97a b ==,且a b a b +≠+,则-a b 的值是________例2.已知x =5,y =4,且,则x y >,则2x y -的值为( )A .6B .±6C .14D .6或14【变式训练1】已知23,25a b ==,且0a b +<,则-a b 的值为( ) A .2或8-B .2-或8C .2或8D .2-或8-【变式训练2】已知2|1|(2)0x y -++=,a 与b 互为倒数,c 与d 互为相反数,求32()()33x y ab c d +--++的值.【变式训练3】已知24a +=,()214b -=,且0ab <,则a b +=______.专题03 代数式化简求值的四种考法类型一、整体代入求值例1.若2m n -=,那么922m n -+=_________.【答案】5 【详解】解:m -n =2,∴()922929225m n=-m n -+-=-⨯=,故答案为:5.例2.已知2310x x -+=,则2395x x -+=_________.【答案】2【详解】22239539323(31)+2x x x x x x -+=-++=-+∵2310x x -+=∵23950+2=2x x -+=故答案为:2.例3.当1x =时,多项式534ax bx ++的值为5,则当1x =-时,该多项式的值为( ) A .5-B .5C .3-D .3【答案】D【详解】解:当x =1时,多项式53445ax bx a b ++=++=,即a +b =1,则x =-1时,多项式()53444143ax bx a b a b ++=--+=-++=-+= 故选:D .【变式训练1】已知3x y -=,则722x y -+的值为_______.【答案】1【详解】解:∵3x y -=,∵()722727231-+--=-⨯=x y x y =.故答案为:1【变式训练2】若1m n -=,2mn =,则(2)(2)m n -+=___.【答案】0【详解】解:∵1m n -=,2mn =,∵(2)(2)m n -+=2()4mn m n +--=224+- =0,故答案为0【变式训练3】若33a b -=,则(2)(2)a b a b +--的值为( )A .13-B .13C .3D .3-【答案】D【详解】解:∵33a b -=,∵(2)(2)a b a b +--22a b a b =+-+3b a =-()3a b =--3=-故选:D .【变式训练4】已知a +b =2ab ,那么232a ab b a ab b ++-+=( ) A .6B .7C .9D .10【答案】B【详解】解:∵2a b ab +=, ∵232a ab b a ab b ++-+=2()3a b ab a b ab +++-=2232ab ab ab ab ⨯+-=43ab ab ab +=7ab ab =7, 故选:B .类型二、特殊值法代入求值例1.设()3321x ax bx cx d -=+++,则a b c d -+-的值为( )A .2B .8C .2-D .8-【答案】B【详解】解:将x =-1代入()3321x ax bx cx d -=+++得,()311a b c d --=-+-+, 8a b c d ∴-+-+=-,()8a b c d ∴--+-+=,即8a b c d -+-=,故选:B .【变式训练1】已知(x ﹣1)6=a 6x 6+a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,将x =0代入这个等式中可以求出a 0=1.用这种方法可以求得a 6+a 5+a 4+a 3+a 2+a 1的值为( )A .﹣16B .16C .﹣1D .1【答案】C【详解】解:当x =0时,可得a 0=1当x =1时,∵(x −1)6=a 6x 6+a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0∵a 6+a 5+a 4+a 3+a 2+a 1+a 0=0,∵a 6+a 5+a 4+a 3+a 2+a 1=−a 0=−1,故选:C .【变式训练2】若()665432654321021x a x a x a x a x a x a x a -=++++++,则5310a a a a ++-=______.【答案】365-【详解】解:令x =0,代入等式中得到:()601-=a ,∵0=1a ,令x =1,代入等式中得到:65432101①=++++++a a a a a a a ,令x =-1,代入等式中得到:66543210(3)②----=+++a a a a a a a , 将①式减去②式,得到:65311(3)2()--+=+a a a ,∵536113)3642(-+=+=-a a a , ∵53103641365++-=--=-a a a a ,故答案为:365-.【变式训练3】特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=;(3)取1x =-时,可以得到432106a a a a a -+-+=-;(4)把(2),(3)的结论相加,就可以得到4222a a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=.求:(1)0a 的值;(2) 6543210++++++a a a a a a a 的值;(3) 642a a a ++的值.【答案】(1)4;(2)8;(3)0【解析】(1)解:当1x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∵0414a =⨯=;(2)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∵65432108a a a a a a a +++++=+;(3)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∵65432108a a a a a a a +++++=+①;当0x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∵65432100+-++=--a a a a a a a ②;用①+②得:406282222++=+a a a a ,∵642040a a a a ++=-=.类型三、降幂思想求值例.若2230x x -+=,则3227122020x x x -++=_____;【答案】2029【详解】解:∵2230x x -+=,∵223x x -=-,∵3227122020x x x -++=x (2x 2-4x -3x +12)+2020=x [2(x 2-2x )-3x +12]+2020= x [2×(-3)-3x +12]+2020=x (-3x +6)+2020=-3(x 2-2x )+2020=-3×(-3)+2020=9+2020=2029 故答案为:2029.【变式训练1】若实数x 满足x 2﹣2x ﹣1=0,则2x 3﹣7x 2+4x ﹣2016=_____.【答案】2019- 【详解】解:实数x 满足x 2﹣2x ﹣1=0,∴221x x -=,322742016∴-+-x x x ()()22222222016=-----x x x x x x222018=--x x ()222018=---x x 12018=--2019=-故答案为:2019-.【变式训练2】如果2233x x -+的值为5,则2695x x --的值为______.【答案】1【详解】∵22335x x -+=,∵2232x x -=∵2695x x --()23235x x =--325=⨯-1=,故答案为:1. 【变式训练3】已知x 2﹣3x =2,那么多项式x 3﹣x 2﹣8x +9的值是 _____.【答案】13【详解】解:∵x 2﹣3x =2,∵x 3﹣x 2﹣8x +932232629x x x x x =-+--+()()2232329x x x x x x =-+--+=22229x x +⨯-+13=.故答案为:13.【变式训练4】已知210x x --=,则3222021x x -++的值是______.【答案】2022【详解】解:∵210x x --=,∵230x x x --=,∵32210x x -+-=,∵3221x x -+=,∵3222021120212022x x -++=+=,故答案为:2022.类型四、含绝对值的代数式求值例1.若19,97a b ==,且a b a b +≠+,则-a b 的值是________【答案】116或78【详解】解:∵19a =,97b =,∵19a =±、97b =±,又∵a b a b +≠+ ,∵0a b +<,∵19a =,97b =-或19a =-,97b =-,∵()1997116a b -=--=或()199778a b -=---=,∵a b -的值是116或78.故答案为:116或78.例2.已知x =5,y =4,且,则x y >,则2x y -的值为( ) A .6 B .±6 C .14D .6或14 【答案】D 【详解】解:5x =,4y =,∴5x =±,4y =±, 又x y >,∴54x y =⎧⎨=⎩或54x y =⎧⎨=-⎩.当5x =,4y =时,22546x y -=⨯-=;当5x =,4y =-时,225(4)14x y -=⨯--=.综上,2x y -的值为6或14.故选:D .【变式训练1】已知23,25a b ==,且0a b +<,则-a b 的值为( ) A .2或8- B .2-或8 C .2或8D .2-或8- 【答案】C【详解】解:∵3a =,225b =,∵3a =±,5b =±,∵0a b +<,∵3a =-,5b =-或3a =,5b =-,当3a =-,5b =-时,3(5)2a b -=---=,当3a =,5b =-时,3(5)8a b -=--=,故选C .【变式训练2】已知2|1|(2)0x y -++=,a 与b 互为倒数,c 与d 互为相反数,求32()()33x y ab c d +--++的值.【答案】-2 【详解】解:()2120x y -++=,()21020x y -≥+≥, .10x ∴-=,20y +=1x ∴=,2y =-因为a 与b 互为倒数,所以1ab =因为c 与d 互为相反数,所以0c d +=∴原式()()()321213c d =---++()311=--=-2.【变式训练3】已知24a +=,()214b -=,且0ab <,则a b +=______.【答案】1或-3【详解】∵24a +=,()214b -=,∵a +2=±4,b −1=±2,∵a =2或a =−6,b =3或b =−1;∵0ab <,∵a =2,b =−1或a =−6,b =3,当a =2,b =−1时,则2(1)1a b +=+-=;当a =−6,b =3时,则633a b +=-+=-;故答案为:1或-3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解题思路:
解:∵

故选B.
试题难度:三颗星知识点:整式的加减的应用——整体代入
5.若代数式 的值为9,则 的值为( )
A.7 B.18
C.12 D.9
答案:A
解题思路:
解:由题意得,
故选A.
试题难度:三颗星知识点:整式的加减的应用——整体代入
6.如果多项式 的值为18,则多项式 的值为( )
A.28 B.-28
代数式求值——整体代入(一)(人教版)(专题)
一、单选题(共10道,每道10分)
1.若 ,则代数式 的值为( )
A.0 B.4
C.6 D.2
答案:C
解题思路:
故选C.
试题难度:三颗星知识点:整式的加减的应用——整体代入
2.已知 ,则 的值为( )
A.-1 B.0
C.1 D.3
答案:A
解题思路:
故选.
C.32 D.-32
答案:C
解题思路:
解:由题意得,
故选C.
试题难度:三颗星知识点:整式的加减的应用——整体代入
7.若代数式 的值为7,则 的值为( )
A.11 B.14
C.15 D.17
答案:D
解题思路:
解:∵

故选D.
试题难度:三颗星知识点:整式的加减的应用——整体代入
8.若 ,则 的值为( )
A.0 B.2
C.5 D.8
答案:D
解题思路:
解:∵
故选D.
试题难度:三颗星知识点:整式的加减的应用——整体代入
9.若 ,则 的值为( )
A.-59 B.-31
C.41 D.61
答案:D
解题思路:
故选D.
试题难度:三颗星知识点:整式的加减的应用——整体代入
10.若 ,则代数式 的值为( )
A.56 B.66
试题难度:三颗星知识点:整式的加减的应用——整体代入
3.已知代数式 的值为6,则 的值为( )
A.24 B.18
C.12 D.9
答案:B
解题思路:
解:由题意得,
故选B.
试题难度:三颗星知识点:整式的加减的应用——整体代入
4.若 ,则 的值为( )
A.2012 B.2016
C.2014 D.2010
答案:B
C.78 D.80
答案:B
解题思路:
解:
故选B.
试题难度:三颗星知识点:整式的加减的应用——整体代入
相关文档
最新文档