析氢反应机理
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a的分类方法虽然简单, 但对电化学实践中选择 电极材料还是有一定的参考价值
高过电位金属: (1)电解工业中用作阴极材料; (2)化学电源:负极;
低过电位金属: (1)制备平衡氢电极; (2)电解水工业中制造阴极; (3)氢-氧燃料电池中作负极;
经验常数 b
在大多数金属的纯净表面上,公式中的经验 常数b具有比较接近的数值(≈100—140mV), 表示表面电场对氢析出反应的活化效应大致相 同.
有时也观察到较高的b值(>140mV),可能引 起这种现象的原因之一是在所涉及的电势范围 内电极表面状态发生了变化。在氧化的金属表 面上,也往往测得较大的b值.
三、氢析出反应的可能反应机理
假设: 1. H原子具有高度的活性,可以吸附态存在于电极
表面; 2. H2价键饱和,无活性,常温下在电极表面不吸附; 3. H3O+不可能在电极表面同一点同时放电,初始产
属沉积反应和有机物还原反应中是一个竞争反 应,并且也是金属腐蚀中的反应之一。 氢气的氧化反应,受燃料电池研究的推动,对 其电催化过程的研究具有十分重要的意义。
一、氢电极过程的重要性
1. 标准氢电极的电极电位是公认的电极电位的基准,以它
为基准的电位系列称为氢标电位。在电化学研究和电化 学测试中应用极为普遍。 2. H电极反应,是一类去极化剂。 金属在溶液中发生电化学腐蚀的根本原因是溶液中含有 能使该种金属氧化的物质,即腐蚀的去极化剂。去极化 剂还原的阴极过程与金属氧化的阳极过程共同组成整个 腐蚀过程。 3. 研究这一过程所采用的研究方法,以及所获得的电极过 程的一般规律对其它过程均有指导作用。
ln [ H ]
常数
RT ln [ H ] 2RT
F
F
lnI K 1
阴离子影响; 有机分子影响; 阳离子影响。
(2)pH值对 H 的影响
在酸、碱溶液中, 1 对 H 影响正好相反:
当电流密度一定,I 时 104 A/cm2,H与pH值有影响 :
(1)pH7,H(H3O)e MH
物应是H原子,而不是H2.
析氢反应历程中可能出现的步骤
1.电化学步骤 H+(或H2O)+e-→MH
2.复合脱附步骤 MH+MH→H2,
3.电化学脱附步骤 H+(或H2O)+MH十e
[A] [B] H2 [C]
氢析出过程的反应机理 可以有下面四种基本方案:
电化学步骤 (快)+复合脱附 (慢) 电化学步骤 (慢)+复合脱附 (快) 电化学步骤 (快)+电化学脱附 (慢) 电化学步骤 (慢)+电化学脱附 (快)
气体电极过程: 在电化学反应过程中,气体在电极上发生氧化或还原反应, 当这种气体反应成为电极上的主反应或成为不可避免的副 反应时,就称该电极过程为气体电极过程.
在各种实际电化学体系中,最常见的气体电极过程是氢电 极过程和氧电极过程.
6.1 氢电极反应的电催化
氢电极反应包括:氢气的析出和氧化。 氢气的析出反应:氯碱工业上的阴极反应,金
Ni、Fe电极上,H析出历程随电极表面性质与极 化剂条件而改变。
由于中超电位和低超电位电极上H析出复杂,处 理也要小心。
金属材料的防护中,常采用缓蚀剂,降 低析氢速度,借此减低金属溶解速度。
但不是任何能增大H过电位的添加剂都能 用作“缓蚀剂”。
6.2 氢氧化反应的电催化
阳极氧化反应机理应与阴极还原机理相同,只是进行方向相反而已。 根据对氢气析出反应机理的认识,不难得出氢气的阳极氧化反应历程 包含如下步骤:
第六章 析氢反应机理 与电化学催化
电极材料是实现电催化过程极为重要的支配因 素。
电化学反应一般是在“电极/溶液”界面的电极 表面上发生的,因此,电极表面的性能如何则 是更为重要的因素。
由于受电极材料种类的限制,如何改善现有电 极材料的表面性能,赋予电极所期望的电催化 性能,便成了电化学工作者研究的一个永恒的 课题。
IH i0expRnTFH
H2 .3 n RF lT oi0 g2 .3 n RF lT oIH g
2.复合脱附机理
如果复合脱附步骤为析氢电极反应的控制性步骤,设平
衡电位下
(0 覆盖度),有电流通过时
MH
,MH
MHM 0 H
如果H吸很少时,可以用 MH代替 aM。H 不通过电流时的电极电势可写成:
五、验证
1.对于多数金属来说: 118mV
lgI
b12 .3 n RF T22.3 F R T11 m8V
b22.3RT 1182.9 5mV 2F 4
b312 .3RFT13183.93mV
2.汞电极上氢析出反应机理
实验证明,当在金属汞电极上进行析氢反应时,当电流 密度在10-10到102A·cm-2的范围内变化时,氢析出反应 的极化曲线在半对数坐标上是一根直线,其斜率为 0.11—0.12V,这与缓慢放电机理所推导的基本动力学 关系式中的b值相一致。
ablgI
此式称为Tafel公式.
经验常数a的物理意义
是当电流密度为lA·cm-2时超电势的数值. 它与电极材料、电极表面状态、溶液组成以及实验温度
有关。 氢超电势的大小基本上决定于a的值,因此a的值越小,
氢超电势也愈小,其可逆程度越好,电极材料对氢的催 化活性也愈高。 在用不同材料制成的电极上a的数值可以很不相同,表 示不同电极表面对氢析出过程有着很不相同的“催化能 力”.
因为上述的电化学极化方程对电极材料有 一定要求。例如:金属对氢的吸附要十分 微弱。
2.在Pd、Pt、Ni、Fe等金属上析氢机理
吸附氢的能力较强的金属电极上,尽管 b=118mV,但不能轻率认为只有迟缓放电理论 才正确。
Pt、Pd等电极上,极化不大时,H析出是复合脱 附机理,电化学极化大时是电化学脱附机理。
(Ⅰ) (Ⅱ) (Ⅲ) (Ⅳ)
(Ⅱ) 、(Ⅳ) 是迟缓放电理论; (Ⅰ)是复合脱附理论; (Ⅲ)是电化学脱附理论。
四、三种理论的动力学方程
1.迟缓放电理论 假若发生阴极极化,
IHik ia
如
IH i0 ex R n p T F H ex R p nT F H
IH i0
ik
FK
0 k
[
H
]s e
F 1
RT
[H
]s
[H
] e
-F 1 RT
Ik
FK
0 k
[
H
]s
e
F RT
• e
1
F
RT
1
lnI 常数
ln [ H ] F F RT RT
(1 ) 1
常数
2RT F
ln [ H ] 2RT F
lnI K 1
e
0 e
RT F
这一实验事实意味着虽然反应速度变化了1012倍,然而 动力学规律却并没有改变.类似的情况在动力学研究中 是十分罕见的.
在Pb,Cd,Zn这几种金属电极上的析氢反应与汞电极 上的析氢反应有相似的机理。
(1)溶液组成对 的影响
若阴极极化,IK=ik-ia ,Ik>>i0时,考虑Ψ1效应影响,
Ik
甲醇阳极氧化机理的探讨
Pt + CH3OH-----Pt-(CH3OH)ad
(1)
Pt + Pt-(CH3OH)ad-----Pt-(CH2OH)ad + Pt-Had (2)
Pt + Pt-(CH2OH)ad----Pt-(CHOH)ad + Pt-Had (3)
Pt + Pt-(CHOH)ad-----Pt-(COH)ad + Pt-Had (4)
3.电化学脱附机理
H+(或H2O)+MH十e
H2 iknF K cOexp R n T F平 0
IH2F K cH Me Hx R p FT H i0expRnTFk
2F K cH M 0 e Hx 1p R FT H
H常 数 12 .3 RFTlgIH MHM 0 H expRFT H
2.在低电流密度下 测H 量时,必须考虑到由于改 变电极电势而引起的双电层充电电流。
3.极化曲线测量的速度和方向。考虑建立稳定 的表面状态所需时间与测量速度相对大小之 间的关系。
二、基本实验事实
在许多电极上氢的析出反应都伴随着较大的超 电势 。
1905年Tafel首先发现,许多金属上的氢析出超 电势均服从经验公式:
H 测量的有关问题
实验数据分散,不同实验室数据不一,重现性差,电极表面状态的变 化与界面污染是造成这种现象的原因。
测量要注意的问题:
H
1. 溶液和电极的净化
⑴ 高纯净的药品; ⑵高纯净的水;
⑶ 高纯净的金属材料制成电极;
⑷ 全玻璃封闭式电池;
⑸ 研究溶液实验前要经过长时间预电解净化,通过高纯H2或惰性气体 以除去溶解在溶液中的O2.
)
常数
2 RT F
ln
IK
1
e
0 e
RT F
ln[ H ]
H
常数
2 RT F
ln I K
RT F
ln[ H ] 1
H
pH
I , 1
H lg[ H
]
I
,
1
2.3 RT F
59 mV
但对其它的金属电极,我们不能仅根据实 验测得的b值是118mV,29.5mV或39 mV就简单地推断在此金属上析氢反应的 机理。
e
e0
RTlnaH
F
0 MH
而通过电流时若假定电化学步骤的平衡基本上未受到破
坏,则应有:
e0
RTlnaH
F MH
HeRFTlnM M 0 H H
MHM 0 H expRFT H
IH 2 FM 2 k H 2 F(k M 0)2 H e x R 2 F pT H
H常 数 2.2 3F RT lgIH
除上述提到的金属外,碳化钨(WC)在酸性介 质中也是较好的非贵金属氧化剂。
6.3 甲醇的电化学氧化
直接甲醇燃料电池中阳、阴极反应和净反应 分别为
阳极(负极) 阴极(正极) 净反应
C 3 O H H 2 H O C 2 6 O H 6 e
1 .5 O 2 6 H 6 e 3 H 2 O
在氢气氧化反应的机理中,除包含有上述两步骤外,当然还包括H2、 H+(或OH-)等物种的扩散过程。
依据上述的反应机理, 不难看出:不同电极对 H2氧化的催化活性同 样与形成的M-H键的 强度有关。可以预期, 适中的M-H键的强度 对应的催化剂活性最高。
对于氢气阳极氧化的研究,常用的电催化剂是 铂系贵金属及其合金,其他金属如Mo,Nb, Ag,Cu等对氢气的氧化也有一定的电催化活 性。
C 3 O H 1 .5 H O 2 C 2 O 2 H 2 O
开发直接甲醇燃料电池的主要困难:
首先是甲醇氧化反应的电化学催化.即使采用铂 催化剂,这一电池的工作电压也只有0.4~0.5V (1.21V),只有理论电动势的35%~40%,导 致电池系统的实际比能量严重降低.
其次是甲醇往往能透过电解质层达到阴极(正极) 表面,称为甲醇的“穿越”(crossover).这一 现象不仅会引起甲醇的额外损耗,还常引起空气 电极的催化剂中毒,使电池的工作电压进一步降 低.
Pt + Pt-(COH)ad-----Pt-(CO)ad + Pt-Had
(5)
同时,发生下列反应
Pt-Had ----- Pt + H+ + e
(6)
从上述方程中不难看出,要保证催化剂不被毒化,就必须尽 量避免反应(5)的发生,而只有电极表面含有大量含氧物种时, 氧化反应才能发生。当电极表面有活性氧物种时发生的反应 为:
按照a值的大小,可将常用电极材料大致分为三类
1.高超电势金属(a≈1.0—1.5V),主要有Pb,Cd,Hg,T1, Zn,Ga,Bi,Sn等;
2.中超电势金属(a≈0.5~0.7V),其中最主要的是Fe,Co, Ni,Cu,W,Au等;
3.低超电势金属(a≈0.1—0.3V),其中最重要的是Pt,Pd, Ru等铂族金属.
(1) 氢分子的溶解及扩散达到电极表面;
(2) 氢分子在电极表面的解离吸附或按电化学历程解离吸附:
2M + H2---- M-H + M-H 或 M + H2---- M-H + H+ + e (3) 吸附氢的电化学氧化:
(酸性溶液)
M-H----H+ + e (酸性介质)
M-H + OH- ---- H2O + e (中性或碱性介质)
H
常数 2.3RTlg[H] F
22.3RT F
lg
百度文库
IK
1
若保持溶液中离子不 强变 度,即在界面电势分布相 基同 本时,
在一定电流密度 , 下
H
lg H
I,1
pHH I,1
2.3RT 59mV F
(2)
pH 7, H 2O e MH OH
IK
FK
0 K
[
H
2O
]e
F RT
(
1