数学分析课件华东师大版
合集下载
12-3——华东师范大学数学分析课件PPT
从而数列S2 m 1是递减的,而数列S2 m 是递增的.
又由条件(ii)知道
0 S2m1 S2m u2m 0 (m ), 从而{ [S2m, S2m-1] }是一个区间套. 由区间套定理, 存
在惟一的实数 S, 使得
数学分析 第十二章 数项级数
高等教育出版社
§3 一般项级数
交错级数
绝对收敛级数及其性质
阿贝尔判别法和狄利 克雷判别法
lim
m
S2m1
lim
m
S2m
S.
所以数列 {Sn } 收敛, 即级数 (1) 收敛.
推论
若级数(1)满足莱布尼茨判别法的条件, 则收敛 级数(1)的余项估计式为
Rn un1 .
对于下列交错级数, 应用莱布尼茨判别法, 容易检验 它们都是收敛的:
数学分析 第十二章 数项级数
Sn
S,
所以对任何正整数 m,都有 m
S,
即级数(7)收敛, 且其和 S.
由于级数(5)也可看作级数(7)的重排, 所以也有
S , 从而得到 S. 这就证明了对正项级数定
理成立. 第二步 证明(7)绝对收敛.设级数(5)是一般项级数 且绝对收敛, 则由级数(6)收敛第一步结论, 可得
um1 um2 umr
因此由柯西准则知级数(5)也收敛. 对于级数(5)是否绝对收敛,可引用正项级数的各种 判别法对级数(6)进行考察.
数学分析 第十二章Байду номын сангаас数项级数
高等教育出版社
§3 一般项级数
交错级数
绝对收敛级数及其性质
阿贝尔判别法和狄利 克雷判别法
例1 级数
n 2
n1 n!
原数列的重排. 相应地称级数 uk(n)为级数(5)的重
华东师大数学分析课件01
前页 后页 返回
二、导函数
如果函数 f 在区间 I 上的每一点都可导 (对于区间 对于区间 端点考虑相应的单侧导数, 如左端点考虑右导数) 端点考虑相应的单侧导数 如左端点考虑右导数 , 上的可导函数. 此时, 则称 f 为区间 I 上的可导函数 此时 对 I 上的任 与之对应, 意一点 x 都有 f 的一个导数 f′(x) 与之对应, 这就
不存在极限, 处不可导. 不存在极限,所以 f 在 x = 0 处不可导
前页 后页 返回
有限增量公式
可导, 设 f (x) 在点 x0 可导,则 ∆y ε = f ′( x0 ) − ∆x 是当 ∆ x → 0 时的无穷小量,于是 ε ∆ x = o(∆ x). 时的无穷小量 无穷小量, ∆
这样, 这样 函数 f (x) 的增量可以写成
前页 后页 返回
定义1 定义
的某邻域内有定 设函数 y =f (x) 在点 x0 的某邻域内有定
义,如果极限
f ( x ) − f ( x0 ) lim (3) x → x0 x − x0 存在, 可导, 存在, 则称函数 f 在点 x0 可导, 该极限称为 f 在
x0 的导数,记作 f ′( x0 ) . 导数, 如果令 ∆x = x – x0, ∆y = f (x0 +∆x) –f (x0), 导数就 ∆
∆ y = f ′( x0 )∆ x + o( ∆ x ).
仍然成立. 式对 ∆ x = 0 仍然成立 根据有限增量公式即可得到下面定理. 根据有限增量公式即可得到下面定理
(5)
的有限增量公式, (5)式称为 f (x) 在点 x0 的有限增量公式, 这个公 )
前页 后页 返回
定理5.1 如果函数 f 在点 x0 可导, 则 f 在点 x0 可导, 定理 连续. 连续. 值得注意的是函数在某点连续仅是函数在该点可 导的必要条件. 如例3、 导的必要条件 如例 、例4 中的函数均在 x = 0 处连续,却不可导 处连续,却不可导.
《数学分析华师大》课件
《数学分析华师大》PPT 课件
数学分析是一门重要的数学学科,涵盖了诸多内容,从函数性质到微积分应 用等。本课件将带您深入了解数学分析的各个方面。
导言
学科介绍
数学分析是研究数学对象的性质和变化规律的一门学科。
重要性
它为其他数学学科提供了理论基础,并在科学研究和实际应用中发挥着关键作用。
应用领域
数学分析在物理学、工程学、经济学等众多领域有广泛的应用。
了解连续函数的定义和性质,探索连
续函数的局部性质和级数定义。
3
间断点
研究间断点的各种类型,包括可去间
复合函数
4
断和跳跃间断。
学习复合函数的概念和性质,掌握复 合函数的求导和求极限的方法。
导数与应用
1 导数的定义
深入研究导数的定义和 性质,掌握导数的计算 方法和应用。
2 最值与极值
3 曲线的变化
研究函数的最大值和最 小值,探索极值的判定 条件和优化问题的解法。
函数定义、性质和图像, 理解函数的各种特性和变换。
研究二维和三维曲线曲面的性 质,包括弧长、曲率和曲面积 分。
指数函数
探索指数函数的性质和应用, 了解指数增长和衰减的规律。
极限与连续性
1
极限的概念
深入研究极限的定义和性质,掌握极
连续函数
2
限运算和极限存在的条件。
极坐标和指数形式
研究极坐标和指数形式的复数 表示,深入理解复数的乘方和 开方。
微分方程
1 常微分方程
学习常微分方程的基本概念和解法,掌握常微分方程在实际问题中的应用。
2 偏微分方程
了解偏微分方程的基本概念和分类,研究常见偏微分方程的解法。
3 数值方法
探索数值方法在微分方程求解中的应用,包括欧拉方法和龙格-库塔方法。
数学分析是一门重要的数学学科,涵盖了诸多内容,从函数性质到微积分应 用等。本课件将带您深入了解数学分析的各个方面。
导言
学科介绍
数学分析是研究数学对象的性质和变化规律的一门学科。
重要性
它为其他数学学科提供了理论基础,并在科学研究和实际应用中发挥着关键作用。
应用领域
数学分析在物理学、工程学、经济学等众多领域有广泛的应用。
了解连续函数的定义和性质,探索连
续函数的局部性质和级数定义。
3
间断点
研究间断点的各种类型,包括可去间
复合函数
4
断和跳跃间断。
学习复合函数的概念和性质,掌握复 合函数的求导和求极限的方法。
导数与应用
1 导数的定义
深入研究导数的定义和 性质,掌握导数的计算 方法和应用。
2 最值与极值
3 曲线的变化
研究函数的最大值和最 小值,探索极值的判定 条件和优化问题的解法。
函数定义、性质和图像, 理解函数的各种特性和变换。
研究二维和三维曲线曲面的性 质,包括弧长、曲率和曲面积 分。
指数函数
探索指数函数的性质和应用, 了解指数增长和衰减的规律。
极限与连续性
1
极限的概念
深入研究极限的定义和性质,掌握极
连续函数
2
限运算和极限存在的条件。
极坐标和指数形式
研究极坐标和指数形式的复数 表示,深入理解复数的乘方和 开方。
微分方程
1 常微分方程
学习常微分方程的基本概念和解法,掌握常微分方程在实际问题中的应用。
2 偏微分方程
了解偏微分方程的基本概念和分类,研究常见偏微分方程的解法。
3 数值方法
探索数值方法在微分方程求解中的应用,包括欧拉方法和龙格-库塔方法。
11-2——华东师范大学数学分析课件PPT
f ( x) dx 收敛,则 f ( x) dx 也收敛,并 有
a
a
a f ( x) dx a f ( x) dx.
数学分析 第十一章 反常积分
高等教育出版社
§2 无穷积分的性质与收敛判别
无穷积分的性质
非负函数无穷积分 的收敛判别法
一般函数无穷积分的 收敛判别法
非负函数无穷积分的收敛判别法
u1
u1
数学分析 第十一章 反常积分
高等教育出版社
§2 无穷积分的性质与收敛判别
无穷积分的性质
非负函数无穷积分 的收敛判别法
又因为 f ( x) 2 f ( x)dx u2 h( x)dx u2 g( x)dx ,
u1
证 设F(u)
u
f ( x)dx,
u [a, ),
则
f ( x)dx
a
a
收敛的充要条件是存在极限 lim F(u). 由函数
u
极限的柯西准则,此等价于
0, G a, u1, u2 G,
数学分析 第十一章 反常积分
高等教育出版社
F (u1) F (u2 ) ,
后退 前进 目录 退出
无穷积分的性质
非负函数无穷积分 的收敛判别法
一般函数无穷积分的 收敛判别法
定理11.1(无穷积分收敛的柯西准则)
无穷积分
f ( x)dx
收敛的充要条件是:
a
0, G a, 当 u1, u2 G 时,
u1 f ( x)dx u2 f ( x)dx u2 f ( x)dx .
a
a
高等教育出版社
§2 无穷积分的性质与收敛判别
无穷积分的性质
非负函数无穷积分 的收敛判别法
7-1——华东师范大学数学分析课件PPT
一、区间套定理 二、聚点定理与有限覆盖
定理 三、实数完备性基本定 理
的等价性
*点击以上标题可直接前往对应内容
§1 关于实数集完备性的基本定理
区间套定理
区间套定理
聚点定理与有限覆盖定理
定义1
设闭区间列 {[an, bn]} 满足如下条件 : 1. [an , bn ] [an1, bn1] , n 1, 2, ,
x
证 由定义1 的条件1 可知, 数列{an}递增, 有上界
b1. 所以由单调有界定理, 可知 {an} 的极限存在.
数学分析 第七章 实数的完备性
高等教育出版社
§1 关于实数集完备性的基本定理
区间套定理
聚点定理与有限覆盖定理
实数完备性基本 定理的等价性
设
lim
n
an
=
,
从而由定义1 的条件2 可得
高等教育出版社
§1 关于实数集完备性的基本定理
区间套定理
聚点定理与有限覆盖定理
实数完备性基本 定理的等价性
推论
设 {[an ,bn]} 是一个区间套, [an , bn ], n 1, 2, . 则任给 > 0, 存在 N, 当 n N 时,
[an ,bn ] U ( ; ).
证 由区间套定理的证明可得:
聚点定理与有限覆盖定理
实数完备性基本 定理的等价性
取 [a2, b2] [a1,b1]
aN2
1 22
,
aN2
1 22
.
显然有
1
[a1 ,
b1] [a2 ,
b2 ],
b2 a2
, 2
并且当 n N2 时, an [a2 ,b2 ]. ......
数学分析(华东师范版)PPT
二、利用函数极限的性质计算某些函数的极限 已证明过以下几个极限:
x x0
lim C = C ,
x x0
lim x = x0 ,
x x0
lim sin x = sin x0 ,
1 lim = 0, x x
x
lim arctan x =
2
x x0
lim cos x = cos x0 ;
$d 2 > 0,当0 < x - x0 < d 2时有 f ( x) - B < e ,
A - B = ( f ( x) - A) - ( f ( x) - B) f ( x) - A + f ( x) - B < 2e .
(2)
取d = min(d1 , d 2 ), 则当0 < x - x0 < d时(1), (2)同时成立,故有
0
0
1) 2)
x x0
lim f ( x) g ( x) = A B
;
x x0
lim f ( x) g ( x) = A B :
f ( x) A lim = x x0 g ( x ) B
3) B 0,
定理3.7之3)的证明 1 = 只要证 xlim x
0
lim g ( x ) = B , $ d 1 > 0 使得当 0 < x - x0 < d 1 x x
.
( 注意前四个极限中极限就是函数值 ) 这些极限可作为公式用.
.
.
利用“迫敛性”和“四则运算”,可以从一些 “简单函数极限”出发,计算较复杂函数的极限。
例1 例2 ( 利用极限
.
华东师大数学分析课件04
§1 二重积分概念
二重积分是定积分在平面上的推广, 不 同之处在于: 定积分定义在区间上, 区间的 长度容易计算, 而二重积分定义在平面区 域上, 其面积的计算要复杂得多.
一、平面图形的面积 二、二重积分的定义及其存在性 三、二重积分的性质
前页 后页 返回
一、平面图形的面积
我们首先定义平面图形的面积. 我们首先定义平面图形的面积 所谓一个平面图形 P 是有界的 是指构成这个平面图形的点集是平面 是有界的, 上的有界点集, 即存在一矩形 R , 使得 P ⊂ R . 的有界点集 设 P 是一平面有界图形 用平行于二坐标轴的某一 是一平面有界图形, 组直线网 T 分割这个图形 (图21-1) , 这时直线网 T 图21小闭矩形) 可分为三类: 的网眼 (小闭矩形 ∆ i 可分为三类 小闭矩形 (i) ∆ i 上的点都是 P 的内点 的内点; (ii) ∆ i 上的点都是 P 的外点 即 ∆ i I P = ∅ ; 的外点,
i =1 i =1
n
n
(3) 取极限 当直线网 T 的网眼越来越细密 即分割 取极限: 的网眼越来越细密, T 的细度 || T || = max d i ( d i 为 σ i 的直径 趋于零时 就 的直径)趋于零时 趋于零时, 有
1≤ i ≤ n
∑ f (ξ , η )∆σ
i =1 i i
n
i
→V .
于是由(3)可得 于是由(3)可得 (3)
s P (T ) > I P −
ε
2
, S P (T ) < I P +
ε
2
.
从而对直线网 T 有 S P (T ) − s P (T ) < ε . 充分性 设对任给的 ε > 0 , 存在某直线网 T, 使得
二重积分是定积分在平面上的推广, 不 同之处在于: 定积分定义在区间上, 区间的 长度容易计算, 而二重积分定义在平面区 域上, 其面积的计算要复杂得多.
一、平面图形的面积 二、二重积分的定义及其存在性 三、二重积分的性质
前页 后页 返回
一、平面图形的面积
我们首先定义平面图形的面积. 我们首先定义平面图形的面积 所谓一个平面图形 P 是有界的 是指构成这个平面图形的点集是平面 是有界的, 上的有界点集, 即存在一矩形 R , 使得 P ⊂ R . 的有界点集 设 P 是一平面有界图形 用平行于二坐标轴的某一 是一平面有界图形, 组直线网 T 分割这个图形 (图21-1) , 这时直线网 T 图21小闭矩形) 可分为三类: 的网眼 (小闭矩形 ∆ i 可分为三类 小闭矩形 (i) ∆ i 上的点都是 P 的内点 的内点; (ii) ∆ i 上的点都是 P 的外点 即 ∆ i I P = ∅ ; 的外点,
i =1 i =1
n
n
(3) 取极限 当直线网 T 的网眼越来越细密 即分割 取极限: 的网眼越来越细密, T 的细度 || T || = max d i ( d i 为 σ i 的直径 趋于零时 就 的直径)趋于零时 趋于零时, 有
1≤ i ≤ n
∑ f (ξ , η )∆σ
i =1 i i
n
i
→V .
于是由(3)可得 于是由(3)可得 (3)
s P (T ) > I P −
ε
2
, S P (T ) < I P +
ε
2
.
从而对直线网 T 有 S P (T ) − s P (T ) < ε . 充分性 设对任给的 ε > 0 , 存在某直线网 T, 使得
17-3——华东师范大学数学分析课件PPT
数学分析 第十七章 多元函数微分学
高等教育出版社
§3 方向导数与梯度
说明 (i) 函数在一点可微是方向导数存在的充分条 件而不是必要条件; (ii) 函数在一点连续同样不是方向导数存在的必要 条件, 当然也非充分条件 ( 对此读者应能举出反例 ).
定义2
若 f ( x, y, z) 在点 P0( x0 , y0 , z0 ) 存在对所有自变量 的偏导数, 则称向量 ( fx (P0 ), f y (P0 ), fz (P0 ))为函数 f 在点 P0 的梯度, 记作
(2)
其中 , 是 R2 中向量 l 的方向角.
数学分析 第十七章 多元函数微分学
高等教育出版社
§3 方向导数与梯度
例 1 设 f ( x, y, z) x y2 z3, 求 f 在点 P0(1,1,1) 处
沿着指向点 P1(3, 1, 2) 方向的方向导数.
解 易见 f 在点 P0 可微. 故由
U (P0 ) R3 内有定义,l 为从点 P0 出发的射线.
任给 P( x, y, z) l U(P0 ), 记 | P0P |,若极限
f lim l lim
f (P) f (P0 )
0
0
存在, 则称此极限为函数 f 在点 P0 沿方向 l 的
方向导数, 记作 f l
,
f l
z P• P0 •
l
O
x y
y
由假设 f 在点 P0 可微,则有
x
图17 – 5
f (P) f (P0 ) fx (P0 ) x f y(P0 ) y
fz (P0 ) z o ( ). 上式左、右两边皆除以 , 并根据 (2) 式可得
数学分析 第十七章 多元函数微分学
高等教育出版社
§3 方向导数与梯度
说明 (i) 函数在一点可微是方向导数存在的充分条 件而不是必要条件; (ii) 函数在一点连续同样不是方向导数存在的必要 条件, 当然也非充分条件 ( 对此读者应能举出反例 ).
定义2
若 f ( x, y, z) 在点 P0( x0 , y0 , z0 ) 存在对所有自变量 的偏导数, 则称向量 ( fx (P0 ), f y (P0 ), fz (P0 ))为函数 f 在点 P0 的梯度, 记作
(2)
其中 , 是 R2 中向量 l 的方向角.
数学分析 第十七章 多元函数微分学
高等教育出版社
§3 方向导数与梯度
例 1 设 f ( x, y, z) x y2 z3, 求 f 在点 P0(1,1,1) 处
沿着指向点 P1(3, 1, 2) 方向的方向导数.
解 易见 f 在点 P0 可微. 故由
U (P0 ) R3 内有定义,l 为从点 P0 出发的射线.
任给 P( x, y, z) l U(P0 ), 记 | P0P |,若极限
f lim l lim
f (P) f (P0 )
0
0
存在, 则称此极限为函数 f 在点 P0 沿方向 l 的
方向导数, 记作 f l
,
f l
z P• P0 •
l
O
x y
y
由假设 f 在点 P0 可微,则有
x
图17 – 5
f (P) f (P0 ) fx (P0 ) x f y(P0 ) y
fz (P0 ) z o ( ). 上式左、右两边皆除以 , 并根据 (2) 式可得
数学分析 第十七章 多元函数微分学
数学分析课件华东师大版
202X-01-04
数学分析课件华东师大版
汇报人:
目录
• 引言 • 数学分析基础 • 导数与微分 • 积分学 • 无穷级数 • 多元函数微积分
01
引言
课程简介
01
数学分析是数学专业的一门基础 课程,主要研究实数、函数、极 限、连续性、可微性和积分等概 念及其性质。
02
通过学习数学分析,学生可以掌 握数学的基本原理和方法,培养 逻辑思维能力、抽象思维能力和 解决问题的能力。
总结词
理解无穷级数的定义和性质是掌握无穷级数的基础。
详细描述
无穷级数是数学分析中的一个重要概念,它是由无穷多个数按照一定的规则排列组成的数列。无穷级数具有一些 重要的性质,如线性性质、可加性、可乘性和收敛性等。这些性质在无穷级数的运算和证明中有着广泛的应用。
无穷级数的收敛性判别法
总结词
掌握无穷级数的收敛性判别法是判断无穷级数收敛性的关键。
定积分的计算
牛顿-莱布尼兹公式
分部积分法
牛顿-莱布尼兹公式是计算定积分的常 用方法,它通过求不定积分的原函数 (即不定积分),然后利用原函数计 算定积分。
分部积分法是另一种计算定积分的方 法,通过将两个函数的乘积进行求导 ,将定积分转化为容易计算的积分。
换元法
换元法是一种常用的计算定积分的方 法,通过改变定积分的积分变量或积 分区间,将复杂的积分转化为容易计 算的积分。
极限的性质
极限具有唯一性、局部有界 性、局部保序性、迫近性等 性质。
连续函数的性质
连续函数具有局部有界性、 局部保序性、迫近性等性质 。
偏导数与全微分
偏导数的定义
如果一个函数在某个点的某个 自变量的偏导数存在,则称该 函数在该点关于该自变量可偏
数学分析课件华东师大版
汇报人:
目录
• 引言 • 数学分析基础 • 导数与微分 • 积分学 • 无穷级数 • 多元函数微积分
01
引言
课程简介
01
数学分析是数学专业的一门基础 课程,主要研究实数、函数、极 限、连续性、可微性和积分等概 念及其性质。
02
通过学习数学分析,学生可以掌 握数学的基本原理和方法,培养 逻辑思维能力、抽象思维能力和 解决问题的能力。
总结词
理解无穷级数的定义和性质是掌握无穷级数的基础。
详细描述
无穷级数是数学分析中的一个重要概念,它是由无穷多个数按照一定的规则排列组成的数列。无穷级数具有一些 重要的性质,如线性性质、可加性、可乘性和收敛性等。这些性质在无穷级数的运算和证明中有着广泛的应用。
无穷级数的收敛性判别法
总结词
掌握无穷级数的收敛性判别法是判断无穷级数收敛性的关键。
定积分的计算
牛顿-莱布尼兹公式
分部积分法
牛顿-莱布尼兹公式是计算定积分的常 用方法,它通过求不定积分的原函数 (即不定积分),然后利用原函数计 算定积分。
分部积分法是另一种计算定积分的方 法,通过将两个函数的乘积进行求导 ,将定积分转化为容易计算的积分。
换元法
换元法是一种常用的计算定积分的方 法,通过改变定积分的积分变量或积 分区间,将复杂的积分转化为容易计 算的积分。
极限的性质
极限具有唯一性、局部有界 性、局部保序性、迫近性等 性质。
连续函数的性质
连续函数具有局部有界性、 局部保序性、迫近性等性质 。
偏导数与全微分
偏导数的定义
如果一个函数在某个点的某个 自变量的偏导数存在,则称该 函数在该点关于该自变量可偏
16-3——华东师范大学数学分析课件PPT
§3 二元函数的连续性 二元函数的连续性概念
有界闭域上连续函数的性质
又若把上述例3 的函数改为
f
( x,
y)
xy
x2 m
y
1 m2
2
,
,
( x, y) ( x, y) | y mx, x 0,
( x, y) (0, 0),
其中 m 为固定实数, 亦即函数 f 只定义在 y m x
§3 二元函数的连续性 二元函数的连续性概念
有界闭域上连续 0, 则相应得到的
增量称为偏增量, 分别记作
x f ( x0 , y0 ) f ( x0 x, y0 ) f ( x0 , y0 ),
y f ( x0, y0 ) f ( x0, y0 y) f ( x0, y0 ).
函数的连续性 (除非另外增加条件). 例如二元函数 1, xy 0,
f ( x, y) 0, xy 0 在原点处显然不连续, 但由于 f (0, y) = f (x, 0) = 0, 因此它在原点处对 x 和对 y 分别都连续.
数学分析 第十六章 多元函数的极限与连续
高等教育出版社
§3 二元函数的连续性 二元函数的连续性概念
由上述定义知道: 若P0 是 D 的孤立点, 则 P0 必定是
f 的连续点. 若P0 是 D 的聚点, 则 f 关于集合 D 在点
P0 连续等价于
lim
P P0
f (P)
f (P0 ).
(2)
PD
如果 P0 是 D 的聚点, 而 (2) 式不成立 (其含义与一元
函数的对应情形相同 ), 则称 P0 是 f 的不连续点 (或
xy
x2 x2
y2 y2
,
华东师大第四版数学分析上册课件
数学分析的发展历程
总结词
数学分析的发展经历了初创期、经典时期和现代发展阶段。
详细描述
数学分析的初创期可以追溯到17世纪,当时的数学家开始系统地研究微积分。经典时期则是在18世纪 和19世纪,数学分析得到了全面的发展和完善,产生了许多重要的定理和公式。进入20世纪后,数学 分析继续发展并逐渐与其他数学分支相互融合,形成了现代数学分析的体系。
换元积分法的应用
主要用于处理被积函数为复合函数或具有特定形式的情况,通过换元将问题转化为更易 于处理的形式。
06
定积分
Chapter
定积分的定义与性质
定积分的定义
定积分是积分的一种,是函数在某个区间上的积分和的 极限。
定积分的性质
定积分具有线性性质、可加性、区间可加性、积分中值 定理等性质。
定积分的计算方法
华东师大第四版数学分析上册课件
目录
• 绪论 • 极限论 • 连续性 • 导数与微分 • 不定积分 • 定积分
01
绪论
Chapter
数学分析的起源和定义
总结词
数学分析起源于古希腊,是研究实数、极限、连续性和可微 性的科学。
详细描述
数学分析的起源可以追溯到公元前7世纪古希腊的数学家,他 们开始研究连续性和无穷小的问题。经过几个世纪的探索和 发展,数学分析逐渐形成了以实数、极限、连续性和可微性 为核心的理论体系。
数学分析的特性与重要性
总结词
数学分析具有严密性、连续性和广泛应用性的特点,是数学和自然科学的重要基础。
详细描述
数学分析的特性表现在其严密的逻辑推理和证明上,它强调对概念和定理的精确表述。此外,数学分析还具有连 续性的特点,它研究的是实数域上的连续函数。最后,由于数学分析是许多学科的基础,如物理、工程、经济等 ,它具有广泛的应用价值。
华师大版数学分析第一章实数集与函数1实数ppt
(3)
.
(3)两边平方得:x-1+2x-1-2
≥3x-2;
化简得-
≥0
∴(x-1)(2x-1)=0;解得x=1或x=1/2.
经检验都不符合原不等式,∴原不等式无解。
3、设a、b∈R, 证明:若对任何正数ε有|a-b|<ε,则a=b. 证:设a>b,令ε=a-b>0,则|a-b|=ε,与题设不符, 同理可证a<b时,与题设不符,∴a=b.
(3)
.
(2)∵0≤|x-1|<|x-3|,∴
<1;即-1<
<1.
当x-3>0时,-x+3<x-1<x-3;无解.
当x-3<0时,-x+3>x-1>x-3;解得x<2.
∴原不等式的解为x<2 x<2
02
2、求下列不等式的解,并在数轴上表示出来:
(1)x(x2-1)>0;(2)|x-1|<|x-3|;
ak=bk(k=1,2,…j)而aj+1>bj+1, 则称x大于y或y小于x,分别记为x>y或y<x.
2、设x=a0.a1a2…an…为非负实数。 称有理数xn=a0.a1a2…an为实数x的n位不足近似, 而有理数 =xn+10-n称为实数x的n位过剩近似. 对于负实数x= -a0.a1a2…an…, 其n位不足近似与过剩近似分别规定为 xn=a0.a1a2…an-10-n与 =a0.a1a2…an.
一、实数集与函数
1. 实数
1、(两个实数的大小关系) 给定两个非负实数 x=a0.a1a2…an…,y=b0.b1b2…bn…, 其中a0,b0为非负整数,ak,bk(k=1,2,…)为整数, 0≤ak≤9,0≤bk≤9。 若有ak=bk,k=1,2,…,则称x与y相等,记为x=y; 若a0>b0或存在非负整数j,使得
数学分析(华东师范版)PPT
这种间断点称为 震荡间断点。
y
1
y sin
1 x
●
x
●
x x
●●
1
●:Hi, 小蓝点,你停不住, 我也停不住啊。还想连上, 你可真逗!
●:Hi, 小红点,你能不能停 住?我怎么也停不住,那可 怎么连上啊?
1 例8 讨论函数 f ( x ) sin 在 x 0处的连续性 . x 解 在x 0处没有定义,
第四章 函数的连续性
4.1 连续性概念
4.2 连续函数的性质
4.3 初等函数的连续性
4.1连续性概念
一、函数在一点的连续性 1.函数的增量
设函数 f ( x )在U ( x0 )内有定义, x U ( x0 ), x x x0 , 称为自变量在点 x0的增量.
y f ( x ) f ( x0 ), 称为函数 f ( x )相应于x的增量.
解 f (0 0) 0,
f (0 0) ,
o x
x 1为函数的第二类间断点.
第一类间断点
•可去间断点 •跳跃间断点
第二类间断点
•无穷间断点 •震荡间断点
第一类间断点
可去间断点 无定义、值太高、值太低 跳跃间断点
第二类间断点
无穷间断点 震荡间断点
情形1.1 :f ( x)在x0处无定义 .
y sin( x x ) sin x 2 sin
x cos( x ) 1, 2
对任意的, 当 0时,
x 当x 0时, y 0. 故 y 2 sin x , 2 即 函数 y sin x对任意 x ( ,)都是连续的.
连续函数的图形是一条连续而不间断的曲线.
数学分析课件(华东师大版)(三)
⇒ sec2 ( x + y ) y′ = 1 − sec2 ( x + y ) = − csc2 ( x + y )
d2y d = [− csc2 ( x + y )] 2 dx dx
= −2 csc( x + y ) ⋅ [ − csc( x + y ) cot( x + y )] ⋅ (1 + y′ )
例3 ①
求下列函数的导数
1 y = arccos x
−1 y′ = − ⋅ 2 = 1 x 1− 2 x 1 = | x | x2 − 1 1
②
| x| 1 ⋅ 2 2 x −1 x
f ( x ) = max{ x , x 2 } ,0 < x < 2
x 0< x<1 f ( x) = 1 x =1 x2 1 < x < 2 故 当0 < x < 1时 f ′( x ) = 1 当1 < x < 2时 f ′( x ) = 2 x
| sin x | 而 lim 不存在 x →0 x
故f ( 0 ) = 0
证二 F ( x ) = f ( x )(1+ | sin x |)在x = 0处可导,即
F ′(0)存在 ⇔ F−′ (0) = F+′ (0) f ( x )(1 − sin x ) − f (0) F−′ (0) = lim− x →0 x sin x f ( x ) − f ( 0) = lim− − f ( x) ⋅ x →0 x−0 x = f ′( 0 ) − f ( 0 ) f ( x )(1 + sin x ) − f (0) F+′ (0) = lim+ x →0 x sin x f ( x ) − f ( 0) = lim+ + f ( x) ⋅ x →0 x−0 x = f ′( 0 ) + f ( 0 )
d2y d = [− csc2 ( x + y )] 2 dx dx
= −2 csc( x + y ) ⋅ [ − csc( x + y ) cot( x + y )] ⋅ (1 + y′ )
例3 ①
求下列函数的导数
1 y = arccos x
−1 y′ = − ⋅ 2 = 1 x 1− 2 x 1 = | x | x2 − 1 1
②
| x| 1 ⋅ 2 2 x −1 x
f ( x ) = max{ x , x 2 } ,0 < x < 2
x 0< x<1 f ( x) = 1 x =1 x2 1 < x < 2 故 当0 < x < 1时 f ′( x ) = 1 当1 < x < 2时 f ′( x ) = 2 x
| sin x | 而 lim 不存在 x →0 x
故f ( 0 ) = 0
证二 F ( x ) = f ( x )(1+ | sin x |)在x = 0处可导,即
F ′(0)存在 ⇔ F−′ (0) = F+′ (0) f ( x )(1 − sin x ) − f (0) F−′ (0) = lim− x →0 x sin x f ( x ) − f ( 0) = lim− − f ( x) ⋅ x →0 x−0 x = f ′( 0 ) − f ( 0 ) f ( x )(1 + sin x ) − f (0) F+′ (0) = lim+ x →0 x sin x f ( x ) − f ( 0) = lim+ + f ( x) ⋅ x →0 x−0 x = f ′( 0 ) + f ( 0 )
华师大版数学分析第一章实数集与函数1.3函数概念ppt
3、由基本初等函数经过有限次四则运算与复合运算 所得到的函数,统称为初等函数。
7、试问y=|x|是初等函数吗? 解:y=|x|= = ; u=x2; 可见 y=|x|是由基本初等函数有限次复合而成的函数, ∴y=|x|是初等函数.
8、确定下列初等函数的存在域: (1)y=sin(sinx);(2)y=lg(lgx); (3)y=arcsin(lg );(4)y=lg(arcsin ).
9、下列函数是由哪些基本初等函数复合而成: (1)y=(1+x)20; (2)y=(arcsinx2)2;
(3)y=lg(1+
); (4)y=
.
解:(1)y=u20, u=v1+v2, v1=1, v2=x; (2)y=u2, u=arcsinv, v=x2; (3)y=lgu, u=(u1+u2), u1=1, u2= , v=u1+w, w=x2; (4)y=, u=v2, v=sinx.
或f(x)=xsgn x
狄利克雷函数:D(x)= 定义在[0,1]上的黎曼函数: R(x)=
1、试作下列函数的图象: (1)y=x2+1;(2)y=(x+1)2; (3)y=1-(x+1)2;(4)y=sgn(sinx);(5)y= 解:如图:
(1)
(2)
(3)
1、试作下列函数的图象: (1)y=x2+1;(2)y=(x+1)2; (3)y=1-(x+1)2;(4)y=sgn(sinx);(5)y= 解:如图:
注: 两个相同的函数对应法则相同,定义域也相同, 但对应法则的表达形式可能不同,如: f(x)=|x|,x∈R和f(x)= ,x∈R.
函数的三种表示法: 即解析法(或称公式法)、列表法和图象法。 在不同的定义域用不同公式表示的函数称为分段函数。
数学分析华东师大版上第一章ppt课件
是奇函数
y1 =
1 (ex -e- x ) 的反 2
函数,从而由奇函数的图象性质可知它也是奇函
数.
前页 后页 返回
四、周期函数
定义4 设 f 为 D 上定义的函数. 若 0, 使 x D 必有x D,且 f ( x ) f ( x), 则称 f 为周期函数, 为 f 的一个周期.
一、有界函数
定义1 设 f 定义在D上. 若M R, x D, f ( x) M ,则称 f 在 D上有上界;
若L R,x D, f ( x) L, 则称 f 在D上有下界; 若M R,x D, f ( x) M , 则称 f 在 D上有界. 易证 f 在D上有界 f 在D上既有上界又有下界. 若M R, x0D, f ( x0) M, 则称 f 在 D 上无上 界;
x2n1 1
0
x2n1 2
或
x2n1 1
0
x22n1,
这证明了 y2n1 在 R 上严格增.
前页 后页 返回
例5 易证函数 y [ x]在 R上是增函数, 但非严格 增.
y
3 2 1
2 1 O 1 2 3 4 x
1 2
前页 后页 返回
定理1.2 设 y f ( x), x D为严格增函数,则 f 必 有反函数 f 1,且 f 1在其定义域 f (D)上也是严格 增函数. 类似地, 严格减函数 f 必有反函数 f 1, 且 f 1在其 定义域上也是严格减函数. 证 设 f 在 D 上严格增, 则 y f (D)只有一个 x D, 使 f (x) y. 事实上,若 x1 x2, 使 f ( x1) y f ( x2 ), 则与 f
前页 后页 返回
若L R,x0D, f ( x0) L, 则称 f 在D上无下界; 若MR, x0D, f ( x0) M , 则称 f 在 D上无界.
(完整版)数学分析全套课件(华东师大)
证明
由于x
<
y, 故存在非负整数n,使得x n
< yn.令r
1 2
(xn
yn
)
则r为有理数,且有x xn < r < yn y,即得x < r < y.
例2 设a,b R,证明: 若对任何正数e有a < b e ,则a b.
证明 用反证法.假若结论不成立 ,则根据实数的有序性
有a > b.令e a - b,则e为正数且a b e , 这与假设 a < b e矛盾.从而必有a b.
§3 函数概念
1.函数概念
❖定义
设数集DR, 则称映射f : D R为定义在D上的函数, 通常简记为
yf(x), xD, 其中x称为自变量, y称为因变量, D称为定义域, 记作Df, 即DfD.
说明:
记为函号了数f叙的和述记f(x方号)的便是区可, 常别以用:任前记意者号选表“取示f(的x自), 变除x量了Dx用”和或f因“外变y, 还量f(可xy)之,用x间“D的g””对来 应表、法示“则 定F”义,、而在“后D者”上表等的示,函此与数时自, 函这变数时量就应x对记理应作解的y为函g由(数x它)、值所.y确F定(x的)、函y数f(x.)
的集合, RR常记作R2.
3.实数集 ❖两个实数的大小关系
• 定义1
给定两个非负实数
x a0.a1a2 Lan L, y b0 .b1b2 Lbn L,其中a0 ,b0为非负整数, ak ,bk (k 1,2,L)为整数,0 ak 9,0 bk 9. 若有ak bk , k 1,2,L,则称x与y相等,记为x y;
称有理数xn a0.a1a2 Lan为实数x的n 位不足近似,