一.课题简单的线性规划(2)

合集下载

数学学案:简单线性规划

数学学案:简单线性规划

数学人教B必修5第三章3.5。

2 简单线性规划1.体会线性规划的基本思想在求解实际问题中的作用,会求解简单的线性规划问题.2.经历在线性约束条件下求实际问题中的线性目标函数的最值问题的求解过程,提高用线性规划解决实际问题的能力.线性规划中的基本概念简单线性规划应用问题的求解步骤:(1)设:设出变量x ,y ,写出约束条件及目标函数.(2)作:作出可行域.(3)移:作一组平行直线l ,平移l ,找最优解.(4)解:联立方程组求最优解,并代入目标函数,求出最值.(5)答:写出答案.总之:求解线性规划问题的基本程序是作可行域,画平行线,解方程组,求最值.【做一做1】如果实数x ,y 满足条件⎩⎪⎨⎪⎧ x -y +1≥0,y +1≥0,x +y +1≤0,那么2x-y 的最大值为( ).A .2B .1C .-2D .-3 【做一做2】配制A,B 两种药剂都需要甲、乙两种原料,用料要求如下表所示(单位:千克):药剂A,B至少各配一剂,且药剂A,B每剂售价分别为100元、200元.现有原料甲20千克,原料乙25千克,那么可获得的最大销售额为______百元.一、图解法求最值的实质剖析:设目标函数为z=Ax+By+C(AB≠0),由z=Ax+By+C 得y=-错误!x+错误!.这样,二元一次函数就可以视为斜率为-错误!,在y轴上截距为错误!,且随z变化的一组平行线.于是,把求z的最大值和最小值的问题转化为直线与可行域有公共点时,直线在y轴上的截距的最大值和最小值的问题.当B>0时,z的值随着直线在y 轴上的截距的增大而增大;当B<0时,z的值随着直线在y轴上的截距的增大而减小.(1)如果可行域是一个多边形,那么一般在其顶点处使目标函数取得最大或最小值,最优解一般就是多边形的某个顶点.(2)由于最优解是通过图形来观察的,故作图要准确,否则观察的结果可能有误.二、常见的线性规划问题类型剖析:(1)线性规划的理论和方法主要在两类问题中得到应用:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.(2)线性规划问题的常见类型有:①物资调运问题例如已知A1,A2两煤矿每年的产量,煤需经B1,B2两个车站运往外地,B1,B2两车站的运输能力是有限的,且已知A1,A2两煤矿运往B1,B2两车站的运输价格,煤矿应怎样编制调运方案,能使总运费最少?②产品安排问题例如某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品所需A,B,C三种材料的数量、此厂每月所能提供的三种材料的限额、每生产一个单位甲种或乙种产品所获利润额都是已知的,这个厂每月应如何安排产品的生产,才能使每月获得的总利润最大?③下料问题例如要把一批长钢管截成两种规格的短钢管,怎样下料能使损耗最小?题型一求线性目标函数的最值问题【例1】设z=2y-2x+4,式子中x,y满足条件错误!试求z的最大值和最小值.分析:作出线性约束条件下的可行域,然后作出与直线2y-2x=0平行的直线,通过平移直线,在可行域内求出最大值和最小值.反思:求目标函数z=ax+by+c(ab≠0,c≠0)的最值,与求目标函数z=ax+by(ab≠0)的最值的方法是一样的,因为在z=ax+by+c中,c为非零常数,故仍可设t=ax+by,只要求出t=ax+by的最值,则z=ax+by+c的最值即可求得,在本题中,通过平移直线,得到y轴上的截距的最值,也就得到了t的最值.题型二求非线性目标函数的最值问题【例2】已知错误!求:(1)z=x2+y2-10y+25的最小值;(2)z=错误!的取值范围.分析:(1)中z=x2+y2-10y+25=(x-0)2+(y-5)2的几何意义为平面区域内的点(x,y)到(0,5)的距离的平方;(2)z=错误!=2·错误!的几何意义为平面区域内的点(x,y)与(-1,-错误!)连线斜率的2倍.关键是将目标函数进行变形找到几何意义,再利用数形结合知识求解.反思:(1)对形如z=(x-a)2+(y-b)2型的目标函数均可化为求可行域内的点(x,y)与点(a,b)间的距离的平方的最值问题.(2)对形如z=错误!(ac≠0)型的目标函数,可先变形为z=错误!·错误!的形式,将问题转化为求可行域内的点(x,y)与(-错误!,-错误!)连线斜率的错误!倍的范围、最值等,注意斜率不存在的情况.题型三简单的线性规划问题【例3】某校伙食长期以面粉和大米为主食,面食每100 g含蛋白质6个单位,含淀粉4个单位,售价0.5元,米食每100 g含蛋白质3个单位,含淀粉7个单位,售价0.4元,学校要求给学生配制盒饭,每盒盒饭至少有8个单位的蛋白质和10个单位的淀粉,问应如何配制盒饭,才既科学又费用最少?分析:根据实际问题中的已知条件,找出约束条件和目标函数,再用图解法解之.先作可行域,再作出初始直线l0,通过向上或向下平移直线l0至可行域的边界点,便得最优解,再进一步求最值.题型四最优整数解的问题【例4】电视台为某个广告公司特约播放两套片集.其中片集甲每集播放时间为21分钟,其中广告时间为1分钟,收视观众为60万;片集乙每集播放时间为11分钟,其中广告时间为1分钟,收视观众为20万.广告公司规定每周至少有6分钟广告,而电视台每周只能为该公司提供不多于86分钟的节目时间(包含广告时间).电视台每周应播放两套片集各多少集,才能获得最高的收视率?分析:设每周片集甲播放x集,片集乙播放y集,它们每集的广告时间都是1分钟,则x+y不少于6分钟.我们还应注意到片集一共的播放时间里要包括广告时间,不超过86分钟.反思:如果遇到问题是求最优整数解,可先求出线性规划的最优解,若它是整数解,则问题解决;若不是,要在该非整数解周围可行域内寻求与之最近的整数解,可通过精确作图,打好网格的办法求得.题型五易错辨析【例5】已知二次函数f(x)=ax2+bx(a≠0)满足1≤f(-1)≤2,2≤f(1)≤4,则f(-2)的范围是().A .[3,12]B .(3,12)C .(5,10)D .[5,10]错解:由于f (-2)=4a -2b ,要求f (-2)的范围,可先求a 与b 的范围.由f (-1)=a -b ,f (1)=a +b ,得错误!两式相加得32≤a ≤3,又-2≤b -a ≤-1.③ ②式与③式相加得0≤b ≤错误!。

《简单的线性规划》教学设计2

《简单的线性规划》教学设计2

《简单的线性规划》教学设计一、内容和内容解析线性规划主要用于解决生活、生产中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。

涉及更多个变量的线性规划问题不能用初等方法解决。

本节课为该单元的第3课时,主要内容是线性规划的相关概念和简单的线性规划问题的解法.重点是如何根据实际问题准确建立目标函数,并依据目标函数的几何含义运用数形结合方法求出最优解。

与其它部分知识的联系,表现在:二、目标和目标解析本课时的目标是:1.了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等相关概念.了解线性规划模型的特征:一组决策变量表示一个方案;约束条件是一次不等式组;目标函数是线性的,求目标函数的最大值或最小值.熟悉线性约束条件(不等式组)的几何表征是平面区域(可行域).体会可行域与可行解、可行域与最优解、可行解与最优解的关系.2.掌握实际优化问题建立线性规划模型并运用数形结合方法进行求解的基本思想和步骤.会从实际优化问题中抽象、识别出线性规划模型.能理解目标函数的几何表征(一族平行直线).能依据目标函数的几何意义,运用数形结合方法求出最优解和线性目标函数的最大(小)值,其基本步骤为建、画、移、求、答.3.培养学生数形结合的能力.对模型中z的最小值的求解,通过对式子的变形,变为,利用数形结合思想,把看作斜率为的平行直线系在y轴上的截距.平移直线,使其与y轴的交点最高,观察图象直线经过M(4,2),得出最优解x=4,y=2.三、教学问题诊断分析线性规划问题的难点表现在三个方面:一是将实际问题抽象为线性规划模型;二是线性约束条件和线性目标函数的几何表征;三是线性规划最优解的探求.其中第一个难点通过第1课时已基本克服;第二个难点线性约束条件的几何意义也在第2课时基本解决,本节将继续巩固;第三个难点的解决必须在二元一次不等式(组)表示平面区域的基础上,继续利用数形结合的思想方法把目标函数直观化、可视化,以图解的形式解决之.将决策变量x,y以有序实数对(x,y)的形式反映,沟通问题与平面直角坐标系的联系,一个有序实数对就是一个决策方案.借助线性目标函数的几何意义准确理解线性目标函数在y轴上的截距与z的最值之间的关系;以数学语言表述运用数形结合得到求解线性规划问题的过程。

人教版高二数学教案-高二数学(30)

人教版高二数学教案-高二数学(30)

课 题:7.4简单的线性规划(二)教学目的:1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题3.培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力 教学重点:用图解法解决简单的线性规划问题. 教学难点:准确求得线性规划问题的最优解 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 教学过程:一、复习引入:1.二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)由于对在直线Ax +By +C =0同一侧的所有点(x ,y ),把它的坐标(x ,y )代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点)2.先分别作出x =1,x -4y +3=0,3x +5y -25=0三条直线,再找出不等式组所表示的平面区域(即三直线所围成的封闭区域).再作直线0l :2x +y =0然后,作一组与直线的平行的直线:l :2x +y =t ,t ∈R (或平行移动直线0l ),从而观察t 值的变化:]12,3[2∈+=y x tt=3C(1,225)B(5,2)A(1,1)TC(1,225)B(5,2)A(1,1)t=7.47Tt=12C(1,225)B(5,2)A(1,1)T二、讲解新课:1. 请同学们来看这样一个问题:设t =2x +y ,式中变量x 、y 满足下列条件⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x求t 的最大值和最小值分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域ABC.作一组与直线的平行的直线:l :2x +y =t ,t ∈R (或平行移动直线0l ),从而观察t 值的变化:]12,3[2∈+=y x tt=3C(1,225)B(5,2)A(1,1)TC(1,225)B(5,2)A(1,1)t=7.47Tt=12C(1,225)B(5,2)A(1,1)T从图上可看出,点(0,0)不在以上公共区域内,当x =0,y =0时,t =2x +y =0. 点(0,0)在直线0l :2x +y =0上.作一组与直线0l 平行的直线(或平行移动直线0l )l :2x +y =t ,t ∈R . 可知,当l 在0l 的右上方时,直线l 上的点(x ,y )满足2x +y >0, 即t >0.而且,直线l 往右平移时,t 随之增大(引导学生一起观察此规律). 在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点B (5,2)的直线2l 所对应的t 最大,以经过点A (1,1)的直线1l 所对应的t 最小.所以: m ax t =2×5+2=12,min t =2×1+3=32. 目标函数, 线性目标函数线性规划问题,可行解,可行域, 最优解: 诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.t =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于t =2x +y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示. 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z =2x +y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解三、讲解范例:例1 已知x 、y 满足不等式组⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+0025023002y x y x y x ,试求z =300x +900y 的最大值时的整点的坐标,及相应的z 的最大值分析:先画出平面区域,然后在平面区域内寻找使z =300x +900y 取最大值时的整点解:如图所示平面区域AOBC ,点A (0,125),点B (150,0),点C 的坐标由方程组⎪⎪⎩⎪⎪⎨⎧==⇒⎩⎨⎧=+=+3200335025023002y x y x y x 得C (3200,3350), 令t =300x +900y , 即y =-90031tx +, 欲求z =300x +900y 的最大值,即转化为求截距900t的最大值,从而可求t 的最大值,因直线y =-90031t x +与直线y =-31x 平行,故作与y =-31x 的平行线,当过点A (0,125)时,对应的直线的截距最大,所以此时整点A 使z 取最大值,z m ax =300×0+900×125=112500例2求z =600x +300y 的最大值,使式中的x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+≤+0,025023003y x y x y x 的整数值.l:x+3y=0x+2y=2502x+y=300xy250150COB A分析:画出约束条件表示的平面区域即可行域再解. 解:可行域如图所示:四边形AOBC ,易求点A (0,126),B (100,0)由方程组:⎪⎪⎩⎪⎪⎨⎧==⇒⎩⎨⎧=+=+5191536925223003y x y x y x 得点C 的坐标为(6953,9151) 因题设条件要求整点(x ,y )使z =600x +300y 取最大值,将点(69,91),(70,90)代入z =600x +300y ,可知当⎩⎨⎧==9070y x 时,z 取最大值为z m ax =600×70+300×900=69000例3 已知x 、y 满足不等式⎪⎩⎪⎨⎧≥≥≥+≥+0,01222y x y x y x ,求z =3x +y 的最小值分析:可先找出可行域,平行移动直线l 0:3x +y =0,找出可行解,进而求出目标函数的最小值解:不等式x +2y ≥2,表示直线x +2y =2上及右上方的点的集合;不等式2x +y ≥1表示直线2x +y =1上及右上方的点的集合.可行域如图所示:作直线0l :3x +y =0,作一组与直线0l 平行的直线l :3x +y =t ,(t ∈R )∵x 、y 是上面不等式组表示的区域内的点的坐标. 由图可知:当直线l :3x +y =t 通过P (0,1)时,t 取到最小值1,即z m in =1. 评述:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;2x+y=0x+2y=2523x+y=300xy 252100COB A3x+y=0x+2y=22x+y=1xy20.5OP(3)在可行域内求目标函数的最优解 四、课堂练习:1.请同学们结合课本P 64练习1来掌握图解法解决简单的线性规划问题.(1)求z =2x +y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y解:不等式组表示的平面区域如图所示: 当x =0,y =0时,z =2x +y =0 点(0,0)在直线0l :2x +y =0上. 作一组与直线0l 平行的直线l :2x +y =t ,t ∈R .可知,在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大.所以z m ax =2×2-1=3.(2)求z =3x +5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x 解:不等式组所表示的平面区域如图所示: 从图示可知,直线3x +5y =t 在经过不等式组所表示的公共区域内的点时,以经过点(-2,-1)的直线所对应的t 最小,以经过点(817,89)的直线所对应的t 最大.所以z m in =3×(-2)+5×(-1)=-11.z m ax =3×89+5×817=14 五、小结 :用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域);2.设t =0,画出直线0l3.观察、分析,平移直线0l ,从而找到最优解4.最后求得目标函数的最大值及最小值x y(12,12)(-1,-1)(2,-1)2x+y=0x+y-1=0x-y=0C B A O21-1-2-1123x y(98,178)3x+5y=05x+3y-15=0x-y+1=0C BA O 3x-5y-3=0-1-115六、课后作业:1.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6000元,运费不超过2000元,那么此工厂每月最多可生产多少千克产品?分析:将已知数据列成下表甲原料(吨) 乙原料(吨) 费用限额 成本 1000 1500 6000 运费 500 400 2000 产品90100解:设此工厂每月甲、乙两种原料各x 吨、y 吨,生产z 千克产品,则:⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥200040050060001500100000y x y x y x z =90x +100y作出以上不等式组所表示的平面区域,即可行域:由⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧=+=+72071220451232y x y x y x 得令90x +100y =t ,作直线:90x +100y =0即9x +10y =0的平行线90x +100y =t ,当90x +100y =t 过点M (720,712)时,直线90x +100y =t 中的截距最大. 由此得出t 的值也最大,最大值z m ax =90×720100712⨯+=440.答:工厂每月生产440千克产品.2.某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A 、B 型桌子分别需要1小时和2小时,漆工油漆一张A 、B 型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大?解:设每天生产A 型桌子x 张,B 型桌子y 张5M(127,207)o644xy则⎪⎩⎪⎨⎧≥≥≤+≤+0,09382y x y x y x 目标函数为:z =2x +3y 作出可行域:把直线l :2x +3y =0向右上方平移至l '的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z =2x +3y 取最大值解方程⎩⎨⎧=+=+9382y x y x 得M 的坐标为(2,3).答:每天应生产A 型桌子2张,B 型桌子3张才能获得最大利润七、板书设计(略)八、课后记:3x+y=9M(2,3)ox+2y=839xy。

简单的线性规划教学设计

简单的线性规划教学设计

简单的线性规划问题教学设计探究问题(二)如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排现实际的生产安排与数学问题之间的联系,画出相应的图形数学建模思想及作图能力,并能够找到与实际应用问题相关的可行区域探究问题(三)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?设生产甲产品x件,乙产品y件时,工厂获得的利润为z,则z=2x+3y.这样,上述问题就转化为:当x,y满足不等式(1)并且为非负整数时,z的最大值是多少?把z=2x+3y变形为233zy x=-+,这是斜率为23-,在y轴上的截距为3z的直线.当z变化时,可以得到一组互相平行的直线,如图:由于这些直线的斜率是确定的,因此只要给定一个点,(例如(1,2)),就能确定一条直线(2833y x=-+),这说明,截距3z可以由平面内的一个点的坐标唯一确定。

可以看到,直线233zy x=-+与不等式组表示的平面区域的交点满足不等式组,而且当截距3z最大时,z取得最大值.因此,问题可以转化为当直线233zy x=-+与不等式组确定的平面区域有公共点时,在区域内找一个点P,使直线经过点P时以老师讲授为主,学生配合讨论,归纳总结出求解目标函数最优解的方法通过本环节培养学生探索、发现、解决问题的能力,渗透实际应用问题转化为数学问题的数学建模思想,在实际解决问题的过程中培养学生的观察能力,提高数形结合解题的意识,让学生体会到数学无处不在,体会数学之美。

简单的线性规划(第二课时)最优解、整数解

简单的线性规划(第二课时)最优解、整数解

简单的线性规划(第2课时)最优解、整数解(邓开印)教学目的;1.了解简单的线性规划问题.2.了解线性规划的意义.3.会用图解法解决简单的线性规划问题教学重点:用图解法解决简单的线性规划问题.教学难点:准确求得线性规划问题的最优解、整数解教学方法:讲练结合教学设计:一、复习1:作不等式组表示的平面区域503x yx yx-+≥⎧⎪+≥⎨⎪≤⎩并求2x y+的最大值和最小值二、线性规划的概念1:线性目标函数:z ax by=+2:线性约束条件:不等式组3:在线性约束条件下的平面区域内求线性目标函数:z ax by=+的最大值和最小值叫线性规划。

4:可行解:满足线性约束条件的所有解(,x y)叫线性规划的可行解5:可行域:线性规划的可行解组成的平面区域6:最优解:在线性约束条件下的平面区域内求线性目标函数:z ax by=+的最大值和最小值叫线性规划的最优解。

三、及时巩固练习1:在约束条件503x yx yx-+≥⎧⎪+≥⎨⎪≤⎩下,()12x y+求的最大值最小值。

(2)求2x y+取最大值和最小值的整数解.(方法:格点法)(3)求33yx++取最大值和最小值的整数解.(方法:格点法).三:线性规划应用题1:课本67P例32: 课本68P例4(方法:格点法)四、练习:70P1、2五、作业:71p习题7.4 2、4、5六:课后小结通过本节学习,要掌握用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z=0,画出直线l0.即基本目标函数3.观察、分析,平移直线l0,从而找到最优解.4.最后求得目标函数的最大值及最小值.。

简单的线性规划(二)

简单的线性规划(二)

课题:简单的线性规划(二)教学目标:了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.2010年考试说明要求A 级。

知识点回顾:○1目标函数z=ax+by 转化为直线在y 轴上的截距 ○2目标函数ax by z --=转化为两点斜率 ○3目标函数22)()(b y a x z -+-=转化为两点距离 基础训练:1.已知复数z=x+yi,且2z -=y x 的最大值 。

2.已知实数x,y 满足条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,i yi x z (+=为虚数单位),则|21|i z +-的最大值和最小值分别是 .6. 若实数对(x ,y )满足约束条件0230x y x x y >⎧⎪≥⎨⎪+-≤⎩,则x y 1+的最小值为 .3.已知实数x 、y 满足203500x y x y x y -≤⎧⎪-+≥⎪⎨>⎪⎪>⎩,则y x z )21()41(⋅=的最小值为 .4.已知2()2f x x x =-,则满足条件()()0()()0f x f y f x f y +≤⎧⎨-≥⎩的点(,)x y 所形成区域的面积为5.设集合}0|,2||),{(≥-≥=x x y y x A ,}|),{(b x y y x B +-≤=,B A y x ∈),(,且y x 2+的最大值为9,则b 的值是7、已知实数,x y 满足不等式组001x y x y ≥⎧⎪≥⎨⎪+≤⎩,则2222x y x y +--的最小值为 ;典型例题:若x ,y 满足约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,①求函数P=11++x y 最大值; ②P=22x y +最小值。

已知点(,)P x y 满足1023-504310x x y x y -⎧⎪+⎨⎪+-⎩≤≤≥,点(,)Q x y 在圆22(2)(2)1x y +++=上,则PQ 的最大值与最小值为课堂检测:1.已知非负实数x 、y 同时满足2x+y-4≤0,x+y-1≥0,则z=x 2+y 2+y 的最小值是2.平面上满足约束条件⎪⎩⎪⎨⎧≤--≤+≥01002y x y x x 的点()y x ,形成的区域为D ,区域D 关于直线x y 2=对称的区域为E ,则区域D 和E 中距离最近两点的距离为3.设实数,x y 满足2025020x y x y y --⎧⎪+-⎨⎪-⎩≤,≥,≤, 则y x u x y =-的取值范围是4.动点(,)P a b 在不等式组2000x y x y y +-≤⎧⎪-≥⎨⎪≥⎩表示的平面区域内部及其边界上运动,则13--+=a b a y 的取值范围是 .10.如果实数⎪⎩⎪⎨⎧≥≥≤+0012,y x y x y x 满足,则31624--+x y x 的最大值为_________11.已知集合P=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧≥≤-+≥+-0y 06y 3403y 4x 3|),(x y x ,Q={(x,y)|(x-a)2+(y-b)2≤r 2(r>0), 若“点M ∈P ”是“点M ∈Q ”的必要条件,则当r 最大时ab 的值是_______。

简单的线性规划问题

简单的线性规划问题

三、新知建构,典例分析
某工厂用A,B两种配件生产甲,乙两种产品, 每生产一件甲种产品使用4个A配件耗时1h, 每生产一件乙种产品使用4个B配件耗时2h, 该厂每天最多可从配件厂获得16个A配件和 12个B配件,按每天工作8小时计算,该厂所有 可能的日生产安排是什么?
若生产1件甲种产品获利2万元,生产1 件乙 种产品获利3万元,采用哪种生产安排利润最大?
x2y 8
44
x y
16 12
象这样关于x,y一次不等 式组的约束条件称为 线性约束条件
x
0
Z=2x+3y称为目标函数,(因这里 目标函数为关于x,y的一次式,又
y 0
称为线性目标函数
在线性约束下求线性目标函数 的最值问题,统称为线性规划,
满足线性约束的解(x,y)叫做可行解, 所有可行解组成的集合叫做可行域 使目标函数取得最值的可行解叫做这个 问题的最优解
y4x z 3 28
z 28 是直线在y轴上
的截距,当截距最
5/7 M
小时,z的值最小。 3/7
3、移
如图可见,当直线z= 28x+21y 经过可行 域上的点M时,纵截距 最小,即z最小。
o
3/7
y4x 3
/ 57 6/7 x
4、求 M点是两条直线的交点,解方程组
7 x 7 y 5
14x 7 y 6
二、新课引入,任务驱动
1、二元一次不等式表示哪个平面区域的判断方法:
“直线定界、特殊点定域”
2、二元一次不等式组表示的平面区域
各个不等式所表示的平面区域的公共部分
二、新课引入,任务驱动
通过本节的学习你能掌握简单的线性规 划问题的解法及步骤吗?
三、新知建构,典例分析

3.3.2简单线性规划(1_2)--上课用

3.3.2简单线性规划(1_2)--上课用
2、画出Z=2x+y对应的 方程0=2x+y的图像
y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,

3.3.2简单的线性规划问题2

3.3.2简单的线性规划问题2

[规范作答] 设需截第一种钢板 x 张,第二种钢板 y 张. 2x+y≥15, x+2y≥18, 可得 x+3y≥27, x≥0,y≥0.
且 x、y 都是整数,
求目标函数 z=x+y 取最小值时的 x、y.2 分 作可行域如图所示,6 分
18 x= 5 , x + 3 y = 27 , ∵ ∴ 2x+y=15, y=39, 5 平移直线
18 39 ∴A 5 , 5
18 39 z=x+y,可知直线经过点 5 , 5 ,此时
x+y
18 39 57 18 39 =5, 但 5 与 5 都不是整数, 所以可行域内的点 A 5 , 5 不
是最优解.8 分
方法一:平移求解法 首先在可行域内打网格,其次描出
下取得最大值时的最优解只有一个, 则实数 a
的取值范围是________. 解析:
x+y-3≥0 作出线性约束条件2x-y≤0 y≤a
表示的平面
区域, 如图中阴影部分所示.
• 因为取得最大值时的最优解只有一个,所以目 标函数对应的直线与平面区域的边界线不平行, 根据图形及直线的斜率,可得实数 a的取值范 围是[2,+∞). • 答案: [2,+∞)
∴A′(3,3)是最优解. 所以,甲、乙两种药片各用 3 片配餐最好.

已知变量x,y满足约束条件1≤x+y≤4,-2≤x -y≤2.若目标函数z=ax+y(其中a>0)仅在点(3,1) 处取得最大值,则a的取值范围为________.
• 由题目可获取以下主要信息: • ①可行域已知; • ②目标函数z=ax+y(a>0)仅在(3,1)处取得最大 值. • 解答本题可先画出可行域,利用数形结合求解.
• 1 . 用图解法解决线性目标函数的最优解问题的 一般步骤 • (1)画:根据线性约束条件,在直角坐标系中,把 可行域表示的平面图形准确地画出来,可行域可 以是封闭的多边形,也可以是一侧开放的无限大 的平面区域. • (2)移:运用数形结合的思想,把线性目标函数看 成直线系,把目标函数表示的直线平行移动,最 先通过或最后通过的顶点便是所需要的点. • (3)求:解方程组求最优解,进而求出目标函数的 最大值和最小值.

简单的线性规划一(篇二)

简单的线性规划一(篇二)

简单的线性规划(一)教学目标(1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;(2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;(3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;(5)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.教学建议一、知识结构教科书首先通过一个具体问题,介绍了二元一次不等式表示平面区域.再通过一个具体实例,介绍了线性规化问题及有关的几个基本概念及一种基本解法-图解法,并利用几道例题说明线性规化在实际中的应用.二、重点、难点分析本小节的重点是二元一次不等式(组)表示平面的区域.对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生、抽象的概念,按高二学生现有的知识和认知水平难以透彻理解,因此学习二元一次不等式(组)表示平面的区域分为两个大的层次:(1)二元一次不等式表示平面区域.首先通过建立新旧知识的联系,自然地给出概念.明确二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域不包含边界直线(画成虚线).其次再扩大到所表示的平面区域是包含边界直线且要把边界直线画成实线.(2)二元一次不等式组表示平面区域.在理解二元一次不等式表示平面区域含义的基础上,画不等式组所表示的平面区域,找出各个不等式所表示的平面区域的公共部分.这是学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题的基础.难点是把实际问题转化为线性规划问题,并给出解答.对许多学生来说,从抽象到的化归并不比从具体到抽象遇到的问题少,学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,即不会建模.所以把实际问题转化为线性规划问题作为本节的难点,并紧紧围绕如何引导学生根据实际问题中的已知条件,找出约束条件和目标函数,然后利用图解法求出最优解作为突破这个难点的关键.对学生而言解决应用问题的障碍主要有三类:①不能正确理解题意,弄清各元素之间的关系;②不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;③孤立地考虑单个的问题情景,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,将本课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在学生面前,以利于理解;分析完题后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法.三、教法建议(1)对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生的概念,不象二元一次方程表示直线那样已早有所知,为使学生对这一概念的引进不感到突然,应建立新旧知识的联系,以便自然地给出概念(2)建议将本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.(3)要举几个典型例题,特别是似是而非的例子,对理解二元一次不等式(组)表示的平面区域的含义是十分必要的.(4)建议通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,这对培养学生观察、联想、猜测、归纳等数学能力是大有益处的.(5)对作业、思考题、研究性题的建议:①作业主要训练学生规范的解题步骤和作图能力;②思考题主要供学有余力的学生课后完成;③研究性题综合性较大,主要用于拓宽学生的思维.(6)若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.如果可行域中的整点数目很少,采用逐个试验法也可.(7)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.线性规划教学设计方案(一)教学目标使学生了解并会作二元一次不等式和不等式组表示的区域.重点难点了解二元一次不等式表示平面区域.教学过程【引入新课】我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?【二元一次不等式表示的平面区域】1.先分析一个具体的例子我们知道,在平面直角坐标系中,以二元一次方程的解为坐标的点的集合是经过点(0,1)和(1,0)的一条直线l(如图)那么,以二元一次不等式(即含有两个未知数,且未知数的最高次数都是1的不等式)的解为坐标的点的集合是什么图形呢?在平面直角坐标系中,所有点被直线l分三类:①在l上;②在l的右上方的平面区域;③在l的左下方的平面区域(如图)取集合A的点(1,1)、(1,2)、(2,2)等,我们发现这些点都在l的右上方的平面区域,而点(0,0)、(-1,-1)等等不属于A,它们满足不等式,这些点却在l的左下方的平面区域.由此我们猜想,对直线l右上方的任意点成立;对直线l左下方的任意点成立,下面我们证明这个事实.在直线上任取一点,过点P作垂直于y轴的直线,在此直线上点P右侧的任意一点,都有∴ 于是所以因为点,是L上的任意点,所以,对于直线右上方的任意点,都成立同理,对于直线左下方的任意点,都成立所以,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集点.是直线右上方的平面区域(如图)类似地,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集合是直线左下方的平面区域.2.二元一次不等式和表示平面域.(1)结论:二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域.把直线画成虚线以表示区域不包括边界直线,若画不等式就表示的面区域时,此区域包括边界直线,则把边界直线画成实线.(2)判断方法:由于对在直线同一侧的所有点,把它的坐标代入,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点,以的正负情况便可判断表示这一直线哪一侧的平面区域,特殊地,当时,常把原点作为此特殊点.【应用举例】例1 画出不等式表示的平面区域解;先画直线(画线虚线)取原点(0,0),代入,∴ ∴ 原点在不等式表示的平面区域内,不等式表示的平面区域如图阴影部分.例2 画出不等式组表示的平面区域分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.解:不等式表示直线上及右上方的平面区域,表示直线上及右上方的平面区域,上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分.课堂练习作出下列二元一次不等式或不等式组表示的平面区域.(1)(2)(3)(4)(5)总结提炼1.二元一次不等式表示的平面区域.2.二元一次不等式表示哪个平面区域的判断方法.3.二元一次不等式组表示的平面区域.布置作业1.不等式表示的区域在的().A.右上方 B.右下方 C.左上方 D.左下方2.不等式表示的平面区域是().3.不等式组表示的平面区域是().4.直线右上方的平面区域可用不等式表示.5.不等式组表示的平面区域内的整点坐标是.6.画出表示的区域.答案:1.B 2.D 3.B 4. 5.(-1,-1)6.。

简单的线性规划问题(二)

简单的线性规划问题(二)

3 .在△ ABC 中,三顶点坐标为 A (2,4) , B(-1,2),C(1,0),点P(x,y)在△ABC内部 及边界运动,则z=x-y的最大,最小值分 别是 ( ) A.3,1 B.-1,-3 C.1,-3 D.3,-1

解析:本题运用线性规划问题的图象解 法.只需画出约束条件对应的可行域,即 一个封闭的三角形区域(含边界),再平移直 线x-y=0使之经过可行域,观察图形,找 出动直线纵截距最大时和最小时经过的点, 然后计算可得答案. 答案:C
x-y=-1, 解方程组 x+y=5,
得 A(2,3),
所以 zmin=2×2-3×3=-5. 当直线经过点 B 时, 直线的纵截距最小, 此时 z 最大.
x-y=3, 解方程组 x+y=1,
得 B(2,-1),
所以 zmax=2×2-3×(-1)=7. 所以 2x-3y 的取值范围是[-5,7]
[点评] 对于线性规划中的最优整数解的问 题,当解方程组得到的解不是整数解时, 可用下面的方法求解: ①平移直线法:先在可行域内打网格,再 描整点,平移直线 l ,最先经过或最后经过 的整点坐标是整点最优解. ②检查优值法:当可行域内整点个数较少 时,也可将整点坐标逐一代入目标函数求 值,经比较得出最优解. ③调整优值法:先求非整点最优解及最优 值,再借助不定方程知识调整最优值,最
[解] 设隔出大房间 x 间,小房间 y 间,获得收 益为 z 元,则
18x+15y≤180, 1000x+600y≤8000, x≥0,y≥0,且x,y∈N, 6x+5y≤60,① 即5x+3y≤40,② x≥0,y≥0,且x,y∈N.
目标函数为 z=200x+150y, 画出可行域如右图 8 所示.

高中数学人教A版必修5第三章3.3.2简单的线性规划问题(二)课件

高中数学人教A版必修5第三章3.3.2简单的线性规划问题(二)课件

学段 初中 高中
硬件建设 班级学生数 配备教师数 万元
45
2
26/班
40
3
54/班
教师年薪 万元
2/人 2/人
分别用数学关系式和图形表示上述限制条件。若 根据有关部门的规定,初中每人每年可收学费1600 元,高中每人每年可收学费2700元。那么开设初中 班和高中班多少个?每年收费的学费总额最多?
解:设开设初中班x个,高中班y个。因办学规模以 20~30个班为宜,所以, 20≤x+y≤30
2x+y=15 x+y=12 x+2y=18
x 27
x+3y=27
当直线经过点A时z=x+y=11.4, 但它不是最优整数解. 作直线x+y=12
B(3,9)和C(4,8)在直线上,且在可行域内, 整点是B(3,9)和C(4,8),它们是最优解. 答(略)
{2x+y≥15, x+2y≥18, x+3y≥27, x≥0, x∈N* y≥0 y∈N*
目标函数t = x+y
y 15
B(3,9)
9
C(4,8)
A(18/5,39/5)
打网格线法
x+y =0
2 1 0 12 78
x
18
27
作出直线 x+y=0,
2x+y=15
x+2y=18 x+3y=27
当直线经过点A时t=x+y=11.4,但它不是最优整数解,
在可行域内打出网格线, 将直线x+y=11.4继续向上平移,
7 x 7 y 5
14x 7 y 6
x
1 7
得M点的坐标为:

简单线性规划(2)

简单线性规划(2)

课题:简单的线性规划(3)主备人:审核:【目标要求】1、了解线性规划的背景及定义,掌握线性约束条件、目标函数、可行域、可行解、最优解等基本概念;2、重点掌握利用线性规划求最优解问题.3、能利用线性规划的基础知识解决一些实际问题.【课内探究】一、含参数问题例1、已知变量x,y满足约束条件1422x yx y≤+≤⎧⎨-≤-≤⎩,若目标函数z=ax+y(其中a>0)仅在点(3,1)处取得最大值,则a的取值范围是________________________.【变式探究】(09陕西)已知变量x,y满足约束条件x+y1122x yx y≥⎧⎪-≥-⎨⎪-≤⎩,目标函数z=ax+2y仅在点(1,0)处取得最小值,则a的取值范围是()A.(-1,2)B.(-4,2)C.(-4,0)D.(-2,4)二、整数解问题例2、预算用2000元购买单价为50元的桌子和20元的椅子,希望使桌、椅的总数尽可能的多,但椅子数不能少于桌子数,且不多于桌子数的1.5倍.问桌子、椅子各买多少才合适?【课堂小结】怎样寻找最优解?尤其是整数解的寻找方法【当堂检测】已知实数x,y满足121yy xx y m≥⎧⎪≤-⎨⎪+≤⎩,如果目标函数z=x-y的最小值为-1,则实数m等于()A.7B.5C.4D.3【课后拓展】1、已知平面区域D由以A(1,3)、B(5,2)、C(3,1)为顶点的三角形内部和外界组成.若在区域D内有无数多个点(x,y)可使目标函数z=x+my取得最小值,则m为()A.-2B.-1C.1D.42、某运输公司接受了向抗洪救灾地区每天送至少180t支援物资的任务.该公司有8辆载重6t的A型卡车与4辆载重为10t的B型卡车,有10名驾驶员,每辆卡车每天往返的次数为A型卡车4次,B型卡车3次;每辆卡车每天往返的成本费A型为320元,B型为504元.请为公司安排一下,应如何调配车辆,才能使公司所花费的成本费最低?若只安排A型或B型卡车,所花费的成本费分别是多少?。

简单的线性规划典型例题

简单的线性规划典型例题

简单的线性规划典型例题篇一:典型例题:简单的线性规划问题典型例题【例1】求不等式|x-1|+|y-1|≤2表示的平面区域的面积.【例2】某矿山车队有4辆载重量为10 t的甲型卡车和7辆载重量为6 t的乙型卡车,有9名驾驶员此车队每天至少要运360 t矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次甲型卡车每辆每天的成本费为252元,乙型卡车每辆每天的成本费为160元.问每天派出甲型车与乙型车各多少辆,车队所花成本费最低?参考答案例1:【分析】依据条件画出所表达的区域,再根据区域的特点求其面积.【解】|x-1|+|y-1|≤2可化为或其平面区域如图:或或∴面积S=×4×4=8【点拨】画平面区域时作图要尽量准确,要注意边界.例2:【分析】弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解.【解】设每天派出甲型车x辆、乙型车y辆,车队所花成本费为z元,那么z=252x+160y,作出不等式组所表示的平面区域,即可行域,如图作出直线l0:252x+160y=0,把直线l向右上方平移,使其经过可行域上的整点,且使在y轴上的截距最小.观察图形,可见当直线252x+160y=t经过点(2,5)时,满足上述要求.此时,z=252x+160y取得最小值,即x=2,y=5时,zmin=252×2+160×5=1304.答:每天派出甲型车2辆,乙型车5辆,车队所用成本费最低.【点拨】用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系f(x,y)=t的斜率要画准,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.篇二:不等式线性规划知识点梳理及经典例题及解析线性规划讲义【考纲说明】(1)了解线性规划的意义、了解可行域的意义;(2)掌握简单的二元线性规划问题的解法.(3)巩固图解法求线性目标函数的最大、最小值的方法;(4)会用画网格的方法求解整数线性规划问题.(5)培养学生的数学应用意识和解决问题的能力.【知识梳理】简单的线性规划问题一、知识点1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验. 3. 平移直线y=-kx+P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一.1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B0时,Ax0+By0+C0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同,(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反,即:1.点P(x1,y1)和点Q(x2,y2)在直线Ax+By+C=0的同侧,则有(Ax1+By1+C)( Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)①二元一次不等式Ax+By+C>0(或②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。

3.3.3简单的线性规划问题(2)

3.3.3简单的线性规划问题(2)

3.3.3简单的线性规划问题(2)
一、学习目标
1.通过本节学习,能解决与线性规划相关的实际问题,学会从实际情境中抽象出二元线性规划的模型;
2.培养学生观察、联想以及作图能力,渗透集合以及数形结合的数学思想。

教学重点、难点 :从实际问题中抽象出线性规划问题的模型。

二、课前自学
在约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+0
921432y x y x y x 下,求目标函数的S =3x +2y 的最大值,
并求出此时的x ,y 的取值.
三、问题探究
例1.投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米,可获利润300万元;投资生产B 产品时,每生产100米需要资金300万元,需场地100平方米,可获利润200万元.现某单位可使用资金1400万元,场地900平方米,问:应作怎样的组合投资,可获利最大?
例2.某运输公司向某地区运送物资,每天至少运送180t. 该公司有8辆载重为6t的A型卡车与4辆载重为10t的B型卡车,有10名驾驶员。

每辆卡车每天往返次数为A型车4次,B型车3次。

每辆卡车每天往返的成本费A型车320元,B型车为504元。

试为该公司设计调配车辆方案,使公司花费的成本最低。

四、反馈小结
反馈:必修五P86 练习4
1.某人承揽一项业务,需做文字标牌4个,绘画标牌6个。

现有两种规格原料,甲规格每张3平方米,可做文字标牌1个,绘画标牌2个;乙种规格每张2平方米,可做文字标牌2个,绘画标牌1 个。

求两种规格的原料各用多少张,才能使总的用料面积最小?
小结。

3.3[简单的线性规划(2)]课件(新人教a版必修5)

3.3[简单的线性规划(2)]课件(新人教a版必修5)

y
1
x+y-1>0
1
O
x+y-1<0 x+y-1=0
x
复习二元一次不等式表示平面区域的范例
例1 画出不等式2x+y-6<0表示的平面区域。 y
6
注意:把直
线画成虚线以 表示区域不包 括边界
O
2x+y-6=0
3
x
复习二元一次不等式表示平面区域的范例
例2 画出不等式组 x+y=0
x y 5 0 x y 0 x 3
修Ⅱ甘肃青海宁夏贵州新疆等地区)第16题)
解下列线性规划问题:求z=2x+y的最大值, 使式中x、y满足下列条件: x y 1, y x, y 0, 答案:当x=1,y=0时,z=2x+y有最大值2。
探索结论
线性规划
练习2 解下列线性规划问题: 求z=3x+y的最大值,使式中 y 8 x、y满足下列条件:
探索结论
复习判断二元一次不等式表示哪 一侧平面区域的方法
由于对在直线ax+by+c=0同 一侧所有点(x,y),把它的坐标 (x,y)代入ax+by+c,所得的实 数的符号都相同,故只需在这条 直线的某一侧取一特殊点(x0,y0) 以ax0+by0+c的正负的情况便可 判断ax+by+c>0表示这一直线 哪一侧的平面区域,特殊地,当 c≠0时常把原点作为此特殊点
y
5
x-y+5=0
O
3
x
表示的平面区域。 x=3

复习二元一次不等式表示平面区域的范例
例3 画出不等式组

高二数学 简单的线性规划课件2 大纲人教

高二数学 简单的线性规划课件2 大纲人教
2. 把A、B、C、D四点的坐标代 入x+y-1中所得的值相等吗?它们 的大小与什么有关?
一般性结论:
• 在满足ax+by+c<0的平面区域中, 离直线ax+by+c=0距离越远的点的 坐标,代入ax+by+c中所得的值越 小。
• 在满足ax+by+c>0的平面区域中, 离直线ax+by+c=0距离越远的点的 坐标,代入ax+by+c中所得的值越 大;
B
o
x-4y=-3
A
3x+5y=25
x
设z=2x+y,式中变量x、y满足下列条件
求z的最大值Leabharlann 最小值。y x=1x-4y≤-3 3x+5y≤25,
x≥1
C
B
o
x-4y=-3

3x+5y=25
x
解线性规划问题的步骤:
画 1、 画出线性约束条件所表示的可行域; 移 2、 在线性目标函数所表示的一组平行线
探究: 在直角坐标系中,如何判断点离
直线的远近呢?
————平移
x -4y≤ - 3
画出不等式组 3x+5y≤ 25 表示的平面区域。
x≥1
x-4y≤-3 3x+5y≤25 x≥1
y x=1
C
在该平面区域上
问题 1:x有无最大(小)值? 问题2:y有无最大(小)值? 问题3:2x+y有无最大(小)值?
7.4 简单的线性规划
2. 线性规划
复习:
• 问题1 二元一次方程表示什么图形?
• 问题2 画二元一次方程表示的平面区域的 方法是什么?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单的线性规划(2)
一.课题:简单的线性规划(2)
二.教学目标:1.了解线性规划的意义及线性约束条件、线性目标函数、可行解、可行域、最优解
等概念;
2.能根据条件建立线性目标函数;
3.了解线性规划问题的图解法,并会用图解法求线性目标函数的最大值、最小值.
三.教学重、难点:线性规划问题的图解法;寻求线性规划问题的最优解. 四.教学过程: (一)复习练习:
1.画出下列不等式表示的平面区域:
(1)()(233)0x y x y -+-<; (2)|341|5x y +-<.
(二)新课讲解:
1.引例:设2z x y =+,式中变量,x y 满足条件4335251x y x y x -≤-⎧⎪
+≤⎨⎪≥⎩
,求z 的最大值和最小值.
问题:能否用不等式的知识来解决以上问题?(否)
那么,能不能用二元一次不等式表示的平面区域来求解呢?怎样求解?
由题意,变量,x y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域。

由图知,原点(0,0)不在公共区域内,当0,0x y ==时,20z x y =+=,即点(0,0)在直线
0l :20x y +=上,
作一组平行于0l 的直线l :2x y t +=,t R ∈, 可知:当l 在0l 的右上方时,直线l 上的点(,)x y 满足20x y +>,即0t >,
而且,直线l 往右平移时,t 随之增大。

由图象可知,
当直线l 经过点(5,2)A 时,对应的t 最大, 当直线l 经过点(1,1)B 时,对应的t 最小, 所以,max 25212z =⨯+=,min 2113z =⨯+=.
2.有关概念
在上述引例中,不等式组是一组对变量,x y 的约束条件,这组约束条件都是关于,x y 的一次不等式,所以又称为线性约束条件。

2z x y =+是要求最大值或最小值所涉及的变量,x y 的解析式,叫目标函数。

又由于2z x y =+是,x y 的一次解析式,所以又叫线性目标函数.
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。

满足线性约束条件的解(,)x y 叫做可行解,由所有可行解组成的集合叫做可行域。

在上述问题中,可行域就是阴影部分表示的三角形区域。

其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.
O
y
x
A
C
430x y -+=
1x = 35250x y +-=
简单的线性规划(2)
(三)例题分析:
例1.设610z x y =+,式中,x y 满足条件4335251x y x y x -≤-⎧⎪
+≤⎨⎪≥⎩
,求z 的最大值和最小值.
解:由引例可知:直线0l 与AC 所在直线平行,
则由引例的解题过程知,
当l 与AC 所在直线35250x y +-=重合时z 最大,此时满足条件的最优解有无数多个, 当l 经过点(1,1)B 时,对应z 最小,
∴max 61050z x y =+=,min 6110116z =⨯+⨯=.
说明:1.线性目标函数的最大值、最小值一般在可行域的顶点处取得;
2.线性目标函数的最大值、最小值也可在可行域的边界上取得,即满足条件的最优解有无数
多个。

例2.已知,x y 满足不等式组230236035150x y x y x y -->⎧⎪
+-<⎨⎪--<⎩
,求使x y +取最大值的整数,x y .
解:不等式组的解集为三直线1l :230x y --=,2l :2360x y +-=,3l :35150x y --=所围成的三角形内部(不含边界),设1l 与2l ,1l 与3l ,2l 与3l 交点分别为,,A B C ,则,,A B C 坐标分别
为153(
,)84A ,(0,3)B -,7512
(,)1919
C -, 作一组平行线l :x y t +=平行于0l :0x y +=, 当l 往0l 右上方移动时,t 随之增大,
∴当l 过C 点时x y +最大为63
19
,但不是整数解,
又由75
019
x <<知x 可取1,2,3,
当1x =时,代入原不等式组得2y =-, ∴1x y +=-; 当2x =时,得0y =或1-, ∴2x y +=或1; 当3x =时,1y =-, ∴2x y +=,
故x y +的最大整数解为20x y =⎧⎨=⎩
或3
1x y =⎧⎨=-⎩.
说明:最优整数解常有两种处理方法,一种是通过打出网格求整点,关键是作图要准确;另一种是本题采用的方法,先确定区域内点的横坐标范围,确定x 的所有整数值,再代回原不等式组,得出y 的一元一次不等式组,再确定y 的所有相应整数值,即先固定x ,再用x 制约y .
A
C
x
y
O
1l
3l
2l
简单的线性规划(2)
例3.设,,x y z 满足约束条件组1320101
x y z y z x y ++=⎧⎪+≥⎪
⎨≤≤⎪⎪≤≤⎩,求264u x y z =++的最大值和最小值.
解:由1x y z ++=知1z x y =--+,代入32y z +≥中,得21y x -≥,224u x y =-++,
∴原约束条件组可化为21001
y x x y -≥⎧⎪≤≤⎨⎪≤≤⎩,
如图,作一组平行线l :x y t -+=平行于0l :0x y -+=,
由图象知,当l 往0l 左上方时,l 往左上方移动时u 随之增大,
当l 往0l 右下方移动时,u 随之减小,
所以,当直线l 经过(1,1)A 时,min 212144u =-⨯+⨯+=; 当直线l 经过(0,1)B 时,max 202146u =-⨯+⨯+=.
五.小结:1.线性规划问题的有关概念;
2.线性规划问题的图解法求目标函数的最大、最小值; 3.线性规划问题的最优整数解.
六.作业:课本第65页 第2题.
O y x 1 l 0l A B。

相关文档
最新文档