2014年普通高等学校招生全国统一考试(广东卷)数学(理科)含答案 (1)
2014年普通高等学校全国统一招生考试理科数学(新课标版)模拟试卷
![2014年普通高等学校全国统一招生考试理科数学(新课标版)模拟试卷](https://img.taocdn.com/s3/m/ee434b1df18583d049645984.png)
2014年普通高等学校全国统一招生考试理科数学模拟试卷(新课标版)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分,考试时间120分钟。
考试结束后,将本试卷和答题纸一并交回。
第Ⅰ卷(选择题 共60分)注意事项:1.答题前,考生在答题纸上务必用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,A ={x |2x (x-2)<1},B ={x |y =ln(1-x )},则右图中阴影部分表示的集合为A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}2.已知x 、y ∈R ,i 为虚数单位,且(x -2)i -y =-1+i ,则(1-i)x +y 的值为A .4B .4+4iC .-4D .2i3.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到的回归直线方程为y ^=x +2,x =x 1+x 2+…+x n n ,y =y 1+y 2+…+y nn,则下列命题中真命题的个数为①直线y ^=x +2必经过点(x ,y ) ②若x 增加一个单位,则y 的估计值增加一个单位 ③当相关系数r >r 0.05时,y 与x 之间具有相关关系A .0B .1C .2D .34.已知双曲线x 2a 2-y 2b 2=1与抛物线y 2=8x 有相同的焦点F ,且该点到双曲线的渐近线的距离为1,则双曲线方程为A .x 2-y 2=2 B .x 23-y 2=1 C .x 2-y 2=3 D .x 2-y 23=15.如右图,程序框图所输出的S 等于A .16B .45C .310D .156.已知|x |≤2,|y |≤2,点P 的坐标为(x ,y ),则当x 、y ∈Z 时,P 满足(x -2)2+(y -2)2≤4的概率为A .625B .35C .34D .567.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“和谐函数”,那么函数的解析式为 y =2x 2+1,值域为{5,19}的“和谐函数”共有A .4个B .6个C .8个D .9个8.“a =2”是“(x -a )6的展开式的第三项是60x 4”的________条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要9.如图,一个半径为10米的水轮按逆时针方向每分钟转4圈,记水轮上的点P到水面的距离为d 米(P 在水面下则d 为负数),则d (米)与时间t (秒)之间满足关系式:d =A sin(ωt +φ)+k (A >0,ω>0),-π2<φ<π2,且当P 点从水面上浮现时开始计算时间,有以下四个结论:(1)A =10;(2)ω=2π15;(3)φ=π6;(4)k =5.则其中所有正确结论的序号是A .(1)(2)(4)B .(2)(4)C .(1)(2)(3)D .(2)(3)(4)10.已知一个几何体的主视图及左视图均是边长为2的正三角形,俯视图是直径为2的圆,则此几何体的外接球的表面积为A .43πB .83πC .163πD .323π11.已知点P (x ,y )在直线x +2y =3上移动,当2x +4y 取得最小值时,过点P (x ,y )引圆(x -12)2+(y +14)2=12的切线,则此切线段的长度为A .62B .32C .12D .3212.已知整数数对列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…则第60个数对是A .(3,8)B .(4,7)C .(4,8)D .(5,7)第Ⅱ卷(非选择题 共90分)注意事项:1.答题前,考生先在答题纸上用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2014年高考理科数学全国卷2(含答案解析)
![2014年高考理科数学全国卷2(含答案解析)](https://img.taocdn.com/s3/m/12b8fb702e3f5727a5e962ce.png)
绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)理科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|(1)4,}M x x x =-<∈R ,{1,0,1,2,3}N =-,则MN = ( )A .{0,1,2}B .{1,0,1,2}-C .{1,0,2,3}-D .{0,1,2,3} 2.设复数z 满足(1i)2i z -=,则z =( )A .1i -+B .1i --C .1i +D .1i -3.等比数列{}n a 的前n 项和为n S .已知32110S a a =+,59a =,则1a =( )A .13B .13-C .19D .19-4.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l m ⊥,l ⊥n ,l α⊄,l β⊄,则( )A .αβ∥且l α∥B .αβ∥且l β⊥C .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.已知5(1)(1)ax x ++的展开式中的2x 的系数为5,则a = ( )A .4-B .3-C .2-D .1-6.执行如图的程序框图,如果输入的10N =,则输出的S = ( ) A .11112310++++B .11112!310++++!!C .11112311++++ D .11112311++++!!!7.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )8.设3log 6a =,5log 10b =,7log 14c =,则( )A .c b a >>B .b a c >>C .a c b >>D .a b c >>9.已知0a >,x ,y 满足约束条件1,3,(3).x x y y a x ⎧⎪+⎨⎪-⎩≥≤≥若2z x y =+的最小值为1,则a = ( )A .14B .12C .1D .210.已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .0x ∃∈R ,0()0f x =B .函数()y f x =的图象是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减D .若0x 是()f x 的极值点,则0()0f x '=11.设抛物线C :22(0)y px p =>的焦点为F ,点M 在C 上,||5MF =.若以MF 为直径的圆过点(0,2),则C 的方程为( )A .24y x =或28y x =B .22y x =或28y x =C .24y x =或216y x = D .22y x =或216y x =12.已知点(1,0)A -,(1,0)B ,(0,1)C ,直线(0)y ax b a =+>将ABC △分割为面积相等的两部分,则b 的取值范围是( )A .(0,1)B .21(1,)22-C .21(1,]23-D .11[,)32第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD =________. 14.从n 个正整数1,2,,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________.15.设θ为第二象限角,若π1tan()42θ+=,则sin cos θθ+=________. 16.等差数列{}n a 的前n 项和为n S .已知100S =,1525S =,则n nS 的最小值为________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)ABC △在内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin a b C c B =+.(Ⅰ)求B ;(Ⅱ)若2b =,求ABC △面积的最大值. 18.(本小题满分12分) --------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________如图,直棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点,122AA AC CB AB ===. (Ⅰ)证明:1BC ∥平面1A CD ; (Ⅱ)求二面角1D AC E --的正弦值.19.(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润. (Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57 000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的频率),利润T 的数学期望.20.(本小题满分12分)平面直角坐标系xOy 中,过椭圆M :22221(0)x y a b a b+=>>右焦点的直线30x y +-=交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(Ⅰ)求M 的方程;(Ⅱ)C ,D 为M 上的两点,若四边形ABCD 的对角线CD AD ⊥,求四边形ABCD 面积的最大值.21.(本小题满分12分)已知函数()e ln()xf x x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明:()0f x >.请考生在第22、23、24三题中任选一题作答,如果多做,则按做的第一题积分.作答时请写清题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,CD 为ABC △外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且BC AE DC AF =,B ,E ,F ,C 四点共圆.(Ⅰ)证明:CA 是ABC △外接圆的直径;(Ⅱ)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC △外接圆面积的比值.23.(本小题满分10分)选修4—4:坐标系与参数方程已知动点P ,Q 都在曲线C :2cos ,2sin x t y t =⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02π)α<<,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.24.(本小题满分10分)选修4—5:不等式选讲设a ,b ,c 均为正数,且1a b c ++=.证明: (Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.2014年普通高等学校招生全国统一考试(全国新课标卷2)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】解不等式2(14)x -<,得13x <<-,即|13{}M x x =<<-,而1,0,1,,3{}2N =-,所以0,}2{1,M N =,故选A .【提示】求出集合M 中不等式的解集,确定出M ,找出M 与N 的公共元素,即可确定出两集合的交集.【考点】集合的基本运算(交集),解一元二次不等式. 2.【答案】A【解析】2i 2i 1i 22i 1i 1i 1i 21+i z (+)-+====-(-)(+)-. 【提示】根据所给的等式两边同时除以1i -,得到z 的表示式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,得到结果. 【考点】复数代数形式的四则运算. 3.【答案】C【解析】设数列{}n a 的公比为q ,若1q =,则由59a =,得19a =,此时327S =,而219+109a a =,不满足题意,因此1q ≠.∵1q ≠时,33111(1)1+10a S a a q q q --==,∴3+0111q qq =--,整理得29q =.(步骤1) ∵4519a a q ==,即1819a =,∴119a =.(步骤2) 【提示】设等比数列{}n a 的公比为q ,利用已知和等比数列的通项公式即可求出. 【考点】等比数列的通项和前n 项和. 4.【答案】D【解析】因为m α⊥,l m ⊥,l α⊄,所以l α∥.同理可得l β∥.又因为m ,n 为异面直线,所以α与β相交,且l 平行于它们的交线.故选D .【提示】由题目给出的已知条件,结合线面平行,线面垂直的判定与性质,可以直接得到正确的结论.【考点】直线与平面的位置关系. 5.【答案】D【解析】因为5(1+)x 的二项展开式的通项为5C 0)5(r rr r x ≤≤∈Z ,,则含x 2的项为221552C +C )0+5(1x ax x a x =,所以10+55a =,1a =-.【提示由题意利用二项展开式的通项公式求得展开式中2x 的系数为221552C +C )0+5(1x ax x a x =,由此解得a 的值.【考点】二项式定理 6.【答案】B【解析】由程序框图知,当1k =,0S =,1T =时,1T =,1S =;当2k =时,12T =,11+2S =; 当k =3时,123T =⨯,111+223S =+⨯;当k =4时,1234T =⨯⨯,1111+223234S =++⨯⨯⨯;;(步骤1)当k =10时,123410T =⨯⨯⨯⨯,1111+2!3!10!S =+++,k 增加1变为11,满足k N >,输出S ,所以B 正确.(步骤2)【提示】从赋值框给出的两个变量的值开始,逐渐分析写出程序运行的每一步,便可得到程序框图表示的算法的功能. 【考点】循环结构的程序框图. 7.【答案】A【解析】如图所示,该四面体在空间直角坐标系O -xyz 的图象为下图:第7题图则它在平面zOx 上的投影即正视,故选A .【提示】由题意画出几何体的直观图,然后判断以zOx 平面为投影面,则得到正视图即可. 【考点】空间直角坐标系,三视图. 8.【答案】D【解析】根据公式变形,lg6lg 21lg3lg3a ==+,lg10lg 21lg5lg5b ==+,lg14lg 21lg 7lg 7c ==+,因为lg 7lg 5g 3l >>,所以lg2lg2lg2lg7lg5lg3<<,即c b A <<.故选D . 【提示】利用log ()log log (0)a a a xy x y x y =+>、,化简a ,b ,c 然后比较3log 2,5log 2,7log 2大小即可.【考点】对数函数的化简和大小的比较. 9.【答案】B【解析】由题意作出1,3x x y ≥⎧⎨+≤⎩所表示的区域如图阴影部分所示,作直线2+1x y =,因为直线2+1x y =与直线1x =的交点坐标为(1,)1-,结合题意知直线(3)y a x =-过点(1,)1-,代入得12a =,所以12a =.第9题图【提示】先根据约束条件画出可行域,设2z x y =+,再利用z 的几何意义求最值,只需求出直线2zx y=+过可行域内的点B 时,从而得到a 值即可. 【考点】二元线性规划求目标函数的最值.10.【答案】C【解析】由于2()32f x x ax b '=++是二次函数,()f x 有极小值点0x ,必定有一个极大值点1x ,若10x x <,则()f x 在区间0(,)x -∞上不单调递减,C 不正确.【提示】利用导数的运算法则得出()00f x '∆>∆≤,分与讨论,即可得出. 【考点】利用导数求函数的极值. 11.【答案】C【解析】设点M 的坐标为00(,)x y ,由抛物线的定义,得052|+MF x p ==|,则052x p =-.(步骤1)又点F 的坐标为,02p ⎛⎫ ⎪⎝⎭,所以以MF 为直径的圆的方程为00+0()()2p x y x x y y ⎛⎫⎪-- ⎝⎭-=.(步骤2)将0x =,2y =代入得00+840px y -=,即02+2480y y -=,所以04y =. 由0202y px =,得16252p p ⎛⎫=- ⎪⎝⎭,解之得2p =,或8p =.(步骤3)所以C 的方程为24y x =或216y x =.故选C .【提示】已知抛物线焦点到抛物线上点的线段的距离和以这条线段为直径的圆上的一点,求出抛物线的方程.【考点】抛物线的定义和抛物线的标准方程. 12.【答案】B【解析】根据题意画出图形,如图(1),由图可知,直线BC 的方程为1x y +=.由1,,x y y ax b +=⎧⎨=+⎩解得1,11b a b M a a -+⎛⎫⎪++⎝⎭. 可求()0,N b ,,0b D a ⎛⎫- ⎪⎝⎭.直线y ax b =+将△ABC 分割为面积相等的两部分,∴12S S =△△BDM ABC .又12BOC ABC S S =△△,CMN ODN S S ∴=△△,即111(1)221b b b b a a -⎛⎫⨯-⨯=-⨯ ⎪+⎝⎭.整理得22(1)1b b a a -=+. 22(1)1b ab a-+∴=,11b ∴-=,11b =即b =,可以看出,当a 增大时,b 也增大.当a →+∞时,12b →,即12b <.当0a →时,直线+y ax b =接近于y b =.当y b =时,如图(2),2222(1)112CDM ABC S CN b S CO -===△△.1b ∴-1b =1b ∴>-. 由上分析可知1122b -<<,故选B .第12题图(1) 第12题图(2)【提示】已知含有参数的直线将三角形分割为面积相等的两部分和点的坐标,求出参数的取值范围.【考点】函数单调性的综合应用.第Ⅱ卷二、填空题 13.【答案】2【解析】以AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,如图所示,则点A 的坐标为(0,0),点B 的坐标为(2,0),点D 的坐标为(0,2),点E 的坐标为(1,2),则1(),2AE =,)2(2,BD =-,所以2AE BD =.第13题图【提示】结合几何的关系,求出向量的数量积. 【考点】平面向量的数量积运算. 14.【答案】8【解析】从1,2,…,n 中任取两个不同的数共有2C n 种取法,两数之和为5的有(1,4),(2,3)2种,所以221C 14n =,即24111142n n n n ==(-)(-),解得8n =.【提示】列出从n 个正整数1,2,…,n 中任意取出两个不同的数的所有取法种数,求出和等于5的种数,根据取出的两数之和等于5的概率为114列式计算n 的值. 【考点】古典概型,排列组合的应用.15.【答案】 【解析】由π1tan 1tan 41tan 2θθθ+⎛⎫+== ⎪-⎝⎭,得tan 13θ=-,即1s 3in cos θθ-=.(步骤1)将其代入22sin +cos 1θθ=,得210cos 19θ=.因为θ为第二象限角,所以10cos θ-=0in 1s θ=,sin +cos 5θθ=-.(步骤2)【提示】已知等式利用两角和与差的正切函数公式及特殊角的三角函数值化简,求出tan θ的值,再根据θ为第二象限角,利用同角三角函数间的基本关系求出sin cos θθ与的值,即可求出sin cos θθ+的值.【考点】两角和与差的正切,同角三角函数的基本关系. 16.【答案】49-【解析】设数列{}n a 的首项为a 1,公差为d ,则110110910+210+450S a d d a =⨯==,① 1151151415215+10525a d a d S =⨯==+.②(步骤1) 联立①②,得13a =-,23d =,所以2(1)211032333n n n n n n S -=-+⨯=-.(步骤2)令()n f n nS =,则32110()33f n n n =-,220()3f n n n '=-.令()0f n '=,得0n =或203n =.(步骤3)当203n >时,()0f n '>,200<<3n 时,()0f n '<,所以当203n =时,()f n 取最小值,而n ∈N +,则(6)48f =-,(7)49f =-,所以当7n =时,()f n 取最小值-49.(步骤4)【提示】已知等差数列前10项和与前15项和,求出n 与前n 项和乘积的最小值. 【考点】等差数列的前n 项,利用导数求函数的最值. 三、解答题 17.【答案】(1)π4(2【解析】(1)由已知及正弦定理得sin sin cos +sin sin A B C C B =.①又()+A B C π=-,故sin sin +sin cos +co )s i (s n A B C B C B C ==.②由①,②和π()0,C ∈得sin cos B B =,即tan 1B =,又π()0,B ∈,所以π4B =.(步骤1) (2)△ABC的面积1sin 2S ac B ==. 由已知及余弦定理得22π2cos 44+ac a c =-.(步骤2)又22+2a c ac ≥,故ac ≤,当且仅当a c =时,等号成立.因此△ABC.(步骤3)【提示】(1)已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式变形,求出tan B 的值,由B 为三角形的内角,利用特殊角的三角函数值即可求出B 的度数;(2)利用三角形的面积公式表示出三角形ABC 的面积,把sin B 的值代入,得到三角形面积最大即为ac 最大,利用余弦定理列出关系式,再利用基本不等式求出ac 的最大值,即可得到面积的最大值.【考点】正弦定理,余弦定理,三角形面积公式,两角和与差的正弦. 18.【答案】(1)连结AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连结DF ,则1BC DF ∥.因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(步骤1) (2)由AC CB AB ==,得AC BC ⊥ 以C 为坐标原点,CA 的方向为x 轴正方向,建立如图所示的空间直角坐标系C -xyz .设2CA =,则()1,1,0D ,()0,2,1E ,12,()0,2A ,(1),1,0CD =,(0),2,1CE =,12,0,2()CA =. 设111,(),n x y z =是平面A 1CD 的法向量,则10,0,n CD n CA ⎧=⎪⎨=⎪⎩即1111+0,2+20.x y x z =⎧⎨=⎩ 可取1),(,11n =--.(步骤2)同理,设m 是平面A 1CE 的法向量,则10,0,m CE m CA ⎧=⎪⎨=⎪⎩可取2,1(),2m =-.(步骤3)从而3cos ,3||||n m m n n m <>==,故6sin ,3m n <>= 即二面角D -A 1C -E .(步骤4)第18题图(1)【提示】(1)通过证明1BC 平行平面1ACD 内的直线DF ,利用直线与平面平行的判定定理证明11BC ACD 平面∥ (2).由AC CB AB ==,得AC BC ⊥以C 为坐标原点,CA 的方向为x 轴正方向,建立如图所示的空间直角坐标系C -xyz .设2CA =,111,(),n x y z =是平面A 1CD 的法向量,同理,设m 是平面A 1CE 的法向量,由3cos ,3||||n m m n n m <>==,故6sin ,3m n <>=【考点】直线与平面的判定,空间直角坐标系,空间向量及其运算.19.【答案】(1)80039000,100130,65000,130150.X X T X -≤<⎧=⎨≤≤⎩ (2)0.7(3)59400【解析】(1)当100[),130X ∈时,50030013()080039000T X X X =--=-,当130[],150X ∈时,50013065000T =⨯=. 所以80039000,10013065000,130150X X T X -≤<⎧=⎨≤≤⎩(步骤1)(2)由(1)知利润T 不少于57000元当且仅当120150X ≤≤.由直方图知需求量120[],150X ∈的频率为0.7,所以下一个销售季度内的利润T 不少于57000元的概率的估计值为0.7(步骤2)(3所以450000.1+530000.2+610000.3+650000.459400ET =⨯⨯⨯⨯=.(步骤3)【提示】(1)由题意先分段写出,当100[),130X ∈时,当130[],150X ∈时,和利润值,最后利用分段函数的形式进行综合即可.(2)由(1)知,利润T 不少于57000元,当且仅当120150X ≤≤再由直方图知需求量120[],150X ∈的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T 不少于57000元的概率的估计值.(3)利用利润T 的数学期望=各组的区间中点值x 该区间的频率之和即得.【考点】频率分布直方图,分段函数的模型,离散型随机变量的数学期望.20.【答案】(1)22163x y +=(2 【解析】(1)设11(),A x y ,22(),B x y ,00(),P x y ,则2211221x y a b +=,2222221x y a b+=,21211y y x x -=--,由此可得22121221211b x x y y a y y x x (+)-=-=(+)-. 因为120+2x x x =,120+2y y y =,0012y x =,所以222a b =(步骤1)又由题意知,M的右焦点为,故223a b -=. 因此26a =,23b =.所以M 的方程为22163x y +=.(步骤2) (2)由220,1,63x y x y ⎧+=⎪⎨+=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩或0,x y =⎧⎪⎨=⎪⎩因此||AB =.(步骤3) 由题意可设直线CD的方程为3y x n n ⎛=+-<< ⎝,设33(),C x y ,44(),D x y .由22,163y x n x y =+⎧⎪⎨+=⎪⎩得223+4+260x nx n -=.于是3,4x (步骤4) 因为直线CD 的斜率为1,所以43|||x x CD - 由已知,四边形ACBD 的面积186||||29S CD AB ==.当n =0时,S 取得最大值,最大值为.所以四边形ACBD .(步骤5)【提示】(1)把右焦点(,0)c 代入直线可解得C .设11(),A x y ,22(),B x y ,线段AB 的中点00(),P x y ,利用“点差法”即可得到a ,b 的关系式,再与222a bc =+联立即可得到a ,b ,c .(2)把直线0x y +=与椭圆的方程联立得到根与系数的关系,即可得到弦长||AB ,由CD AB ⊥,可设直线CD 的方程为y x n =+,与椭圆的方程联立得到根与系数的关系,即可得到弦长||CD .利用1||||2ACBD S AB CD =四边形即可得到关于n 的表达式,利用二次函数的单调性即可得到其最大值.【考点】椭圆的方程、椭圆的简单几何性质、点差法的应用和直线与椭圆的位置关系. 21.【答案】(1)1()e x f x x m=-+. 由0x =是()f x 的极值点得(0)0f '=,所以1m =.于是ln +)1(()xf e x x =-,定义域为()1,+-∞,1()e 1xf x x =-+.(步骤1)函数1()e 1x f x x =-+在()1,+-∞单调递增,且(0)0f '=.因此当,0()1x ∈-时,()0f x '<; 当+()0,x ∈∞时,()0f x '>.所以()f x 在()1,0-单调递减,在(0,+)∞单调递增.(步骤2)(2)当2m ≤,,()+x m ∈-∞时,l ()()n +ln +2x m x ≤,故只需证明当2m =时,()0f x >. 当2m =时,函数1()e 2x f x x =-+在()2,+-∞单调递增. 又1()0f '-<,(0)0f '>,故()0f x '=在()2,+-∞有唯一实根x 0,且0)0(1,x ∈-.(步骤3) 当2+(),x ∈-∞时,()0f x '<;当0(),+x x ∈∞时,()0f x '>,从而当0x x =时,()f x 取得最小值.由0()0f x '=得001e 2x x =+,00ln +2()x x =-,故200000()()+11022f x f x x x x x ≥)=+++=(>. 综上,当2m ≤时,()0f x >.(步骤4)【提示】(1)求出原函数的导函数,因为0x =是函数()f x 的极值点,由极值点处的导数等于0求出m 的值,代入函数解析式后再由导函数大于0和小于0求出原函数的单调区间; (2)证明当2m ≤时,()0f x >,转化为证明当2m =时()0f x >求出当2m =时函数的导函数,可知导函数在(2,)-+∞上为增函数,并进一步得到导函数在(1,0)-上有唯一零点0x ,则当0x x =时函数取得最小值,借助于0x 是导函数的零点证出0()0f x >,从而结论得证. 【考点】利用导数求函数的单调区间和极值,利用导数解决不等式问题. 22.【答案】(1)因为CD 为△ABC 外接圆的切线,所以DCB A ∠=∠,由题设知BC DCFA EA=,故CDB AEF △∽△,所以DBC EFA ∠=∠.(步骤1)因为B ,E ,F ,C 四点共圆,所以CFE DBC ∠=∠,故90EFA CFE ∠=∠=︒.所以90CBA ∠=︒,因此CA 是△ABC 外接圆的直径.(步骤2)(2)连结CE ,因为90CBE ∠=︒,所以过B ,E ,F ,C 四点的圆的直径为CE ,由DB BE =,有CE DC =,又222BC DB BA DB ==,所以222 2.4+6CA DB BC DB ==而2223DC DB D CE DA B ===,故过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值为12. (步骤3)第22题图【提示】(1)已知CD 为ABC △外接圆的切线,利用弦切角定理可得DCB A ∠=∠,及BC DCFA EA=,可知CDB AEF △∽△,于是DBC EFA ∠=∠.利用B 、E 、F 、C 四点共圆,可得CFE DBC ∠=∠,进而得到90EFA CFE ∠=∠=︒即可证明CA 是ABC △外接圆的直径;(2)要求过B 、E 、F 、C 四点的圆的面积与ABC △外接圆面积的比值.只需求出其外接圆的直径的平方之比即可.由过B 、E 、F 、C 四点的圆的直径为CE ,及DB BE =,可得CE DC =,利用切割线定理可得222BC DB BA DB ==,222 2.4+6CA DB BC DB ==,都用DB 表示即可.【考点】弦切角,圆内接四边形的性质.23.【答案】(1)cos cos 2,sin sin 2x y αααα=+⎧⎨=+⎩0()2παα<<为参数, (2)d (02π)α<< M 的轨迹过坐标原点【解析】(1)依题意有2cos (n )2si P αα,,2cos2,2si 2()n Q αα,因此cos +cos2,sin +i ()s n2M αααα.M 的轨迹的参数方程为cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩0()2παα<<为参数,.(步骤1)(2)M 点到坐标原点的距离d =(02π)α<<.当πα=时,0d =,故M 的轨迹过坐标原点.(步骤2)【提示】(1)根据题意写出P ,Q 两点的坐标:2cos (n )2si P αα,,2cos2,2si 2()n Q αα,再利用中点坐标公式得PQ 的中点M 的坐标,从而得出M 的轨迹的参数方程;(2)利用两点间的距离公式得到M 到坐标原点的距离d 证当πα=时,0d =,故M 的轨迹过坐标原点. 【考点】参数方程,轨迹方程.24.【答案】(1)由22+2b a ab ≥,22+2b c bc ≥,22+2c a ca ≥,得222++++a b c ab bc ca ≥.(步骤1)由题设得21)++(a b c =,即222+++2+2+21a b c ab bc ca =.所以3+(+)1ab bc ca ≤,即1++3ab bc ca ≤.(步骤2) (2)因为22a b a b +≥,22b c b c +≥,22c a c a+≥,故222(++(2))a b c a b c a b c b c a +++++≥,(步骤3)即222++a b c a c a c b b ++≥. 所以2221a b c b c a++≥(步骤4)【提示】(1)依题意,由21)++(a b c =,即222+++2+2+21a b c ab bc ca =,利用基本不等式可得3+(+)1ab bc ca ≤,从而得证;(2)利用基本不等式可证得:22a b a b +≥,22b c b c +≥,22c a c a +≥,三式累加即可证得结论.【考点】不等式证明,均值不等式.。
2014年普通高等学校全国统一招生考试(新课标版)模拟卷理科数学
![2014年普通高等学校全国统一招生考试(新课标版)模拟卷理科数学](https://img.taocdn.com/s3/m/6449ef1e52d380eb62946d35.png)
2014年普通高等学校全国统一招生考试(新课标版)模拟卷理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分,考试时间120分钟。
考试结束后,将本试卷和答题纸一并交回。
第Ⅰ卷(选择题 共60分)注意事项:1.答题前,考生在答题纸上务必用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z 1=1+i ,z 2=2+b i ,若z 1z 2为纯虚数,则实数b 等于A .-2B .-1C .1D .2 2.已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N 等于A .{x |x <-2}B .{x |x >3}C .{x |-1<x <2}D .{x |2<x <3} 3.数列{a n }满足a 1=2,a n +1=-1a n +1,则a 2 011等于 A .-32 B .-13 C .2 D .14.已知sin(α+π3)+sin α=-435,-π2<α<0,则cos(α+2π3)等于A .-45B .-35 C.35 D.455.若(x -12x)n 的展开式中第3项的二项式系数是15,则展开式中所有项的系数之和为A .132B .164C .-164D .11286.函数y =log 2|x |x的大致图象是7.有三辆不同的公交车,3名司机,6名售票员,每辆车配备一名司机,2名售票员,则所有的工作安排方法数是A .210B .500C .510D .5408.在六面体ABCDEFG 中,平面ABC ∥平面DEFG ,AD ⊥平面DEFG ,AB ⊥AC ,ED ⊥DG ,EF ∥DG .且AB =AD =DE =DG =2,AC =EF =1.则该六面体的体积是A .1B .2C .3D .49.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1log a x ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是A .(0,1)B .(0,13)C .[17,13)D .[17,1)10.已知圆C 的方程为x 2+y 2=4,直线l :y =kx +1与圆C 相交于P 、Q 两点.过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M 、N 两点,则四边形PMQN 面积的最大值为A .5B .6C .7D .811.函数y =x 2+1(0≤x ≤1)图象上点P 处的切线与直线y =0,x =0,x =1围成的梯形面积等于S ,则S 取得最大值时,点P 的坐标是A .(1,54)B .(12,54)C .(12,1) D .不确定12.已知动圆C 经过点F (0,1),并且与直线y =-1相切,若直线3x -4y +20=0与圆C 有公共点,则圆C 的面积A .有最大值为πB .有最小值为πC .有最大值为4πD .有最小值为4π.第Ⅱ卷(非选择题 共90分)注意事项:1.答题前,考生先在答题纸上用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2014年高考数学广东卷(理科B卷)和参考答案
![2014年高考数学广东卷(理科B卷)和参考答案](https://img.taocdn.com/s3/m/9c749d3b0b4c2e3f5727637d.png)
2014年普通高等学校招生全国统一考试(广东卷)理科数学(B 卷)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1},{0,1,2},M N =−=则M N ∪=A .{1,0,1}−B . {1,0,1,2}−C . {1,0,2}−D . {0,1} 2.已知复数z 满足(34)25,i z +=则z = A .34i − B . 34i + C . 34i −−D . 34i −+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥−⎩且的最大值和最小值分别为m 和n ,则m n −=A .8B .7C .6D .54.若实数k 满足09,k <<则曲线221259x y k −=−与曲线221259x y k −=−的A .离心率相等B .虚半轴长相等C . 实半轴长相等D .焦距相等 5.已知向量()1,0,1,a =−则下列向量中与a 成60°夹角的是 A .(-1,1,0)B . (1,-1,0)C . (0,-1,1)D . (-1,0,1)6.已知某地区中小学学生人数和近视情况分别如图1和如图2所示,为了解该地区中下学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A . 100,10B . 200,10C . 100,20D . 200,207.若空间中四条两两不同的直线1234,,,,l l l l 满足122334,,,l l l l l l ⊥⊥⊥则下面结论一定正确的是 A .14l l ⊥ B .14//l l C .14,l l 既不垂直也不平行 D .14,l l 的位置关系不确定初中高中年级O8.设集合(){}12345=,,,,1,0,1,1,2,3,4,5iA x x x x x x i ∈−=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为 A .130 B .120 C .90 D .60二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分. (一)必做题(9~13题)9.不等式125x x −++≥的解集为10.曲线52x y e −=+在点(0,3)处的切线方程为11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 12.在ABC Δ中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+, 则ab= 13、若等比数列{}n a 的各项均为正数,且512911102e a a a a =+, 则1220ln ln ln a a a +++=(二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=和sin 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,则曲线1C 和2C 交点的直角坐标为_________15.(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且AE EB 2=,AC 与DE 交于点F , 则=ΔΔ的面积的面积AEF CDFCAFD三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数R x x A x f ∈+=),4sin()(π,且53122f π⎛⎞=⎜⎟⎝⎠, (1)求A 的值; (2)若23)()(=−+θθf f ,2,0(πθ∈,求)43(θπ−f .17.(本小题满分13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下: 30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36根据上述数据得到样本的频率分布表如下:分组频数频率[25,30] 3 0.12 (30,35] 5 0.20 (35,40] 8 0.32 (40,45] 1n 1f (45,50]2n2f(1)确定样本频率分布表中121,,n n f 和2f 的值; (2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.18.(本小题满分13分)如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,030DPC ∠=,AF PC ⊥于点F ,//FE CD ,交PD 于点E .(1)证明:CF ADF ⊥平面 (2)求二面角D AF E −−的余弦值19.(本小题满分14分)设数列{}n a 的前n 和为n S ,满足2*1234,n n S na n n n N +=−−∈,且315S =. (1)求123,,a a a 的值;(2)求数列{}n a 的通项公式.20.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为,离心率为3,(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.21.(本小题满分14分)设函数()f x =,其中2k <−,(1)求函数()f x 的定义域D ;(用区间表示) (2)讨论()f x 在区间D 上的单调性;(3)若6k <−,求D 上满足条件()(1)f x f >的x 的集合.A BCD EFp2014年普通高等学校招生全国统一考试(广东卷)理科数学(B 卷)参考答案一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 题次 1 2 3 4 5 6 7 8 答案B ACD B D D A第8题解析:(1)含有4个“0”的情形:①4个0,1个1:155C =;②4个0,1个-1:155C =(2)含有3个“0”的情形: ①3个0,2个1:2510C =;②3个0,1个1,1个-1:115420=C C ⋅;③3个0,2个-1:2510C =(3)含有2个“0”的情形:①2个0,3个1:3510C =;②2个0,2个1,1个-1:215330C C ⋅=;③2个0,1个1,2个-1:215330C C ⋅=;④2个0,3个-1:3510C =. 综上所述,所有的情况数为:5510201010303010130N =++++++++=种. 二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分. (一)必做题(9~13题)9、(][),32,−∞−∪+∞; 10、530x y +−=; 11、16; 12、2; 13、50; (二)选做题(14、15题,考生只能从中选做一题)14、(坐标系与参数方程选做题)()1,1. 15、(几何证明选讲选做题)9. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16、解:(1)依题意有5523sin sin 12124322f A A A ππππ⎛⎞⎛⎞=+===⎜⎟⎜⎟⎝⎠⎝⎠,所以A =(2)由(1)得()),4f x x x R π=+∈,()()3sin sin 442f f ππθθθθθ⎡⎤⎛⎞⎛⎞∴+−=++−+==⎜⎟⎜⎟⎢⎥⎝⎠⎝⎠⎣⎦,cos 4θ∴=,(0,sin 24πθθ∈∴===∵,334444fπππθθθ⎛⎞⎛⎞∴−=−+==⎜⎟⎜⎟⎝⎠⎝⎠.17、解:(1)12127,2,0.28,0.08n n f f====;(2)先计算频率/组距;然后作图即可;(3)由(1)知,任取一人,日加工零件数落在区间(30,35]的概率为15,设该厂任取4零件数落在区间(30,35]的事件为A,则()4414155P A⎛⎞⎛⎞=−=⎜⎟⎜⎟⎝⎠⎝⎠,所以()4436915625=P A⎛⎞=−⎜⎟⎝⎠答:在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率为369625.18、解:(1)证明:PD⊥∵平面ABCD,AD⊂平面ABCD,∴PD AD⊥①∵四边形ABCD为正方形,∴AD CD⊥②AD CD∩∵AD∴⊥平面PCD,CF⊂∵平面PCD,AD CF⊥③AF PC⊥∵即AF CF⊥④且AF AD A∩=,CF∴(2)方法1(传统法)过E作EG DF⊥交DF于G,过GH AF⊥交AF于H,连接EH,EDG∠(过程略)方法2(向量法)由(1)可得,,,AD PD AD DC⊥⊥,建立空间直角坐标系D xyz−,如图所示.设DC a=,在Rt PDCΔ中,,30DPCCD a∠== ,则2,PC a PD==,由(1)知PF DF⊥,所以3cos302PF PD a==,因为//FE CD,所以EF PF PEDC PC PD==,所以34EF a=,4PE=,所以4ED=,所以3(0,0,),(,0,0),,,0),(0,,0)444aA a E F C a,则3,0,),(,,),444aAE a AF a=−=−设平面AEF的法向量为(,,)n x y z=,则00n AE n AF ⎧⋅=⎪⎨⋅=⎪⎩,得043044x az a x y az ⎧−=⎪⎪+−=⎩,取1x =,则,04z y ==,所以(1,0,4n = , 由(1)可知,平面ADF的法向量为,,0)44aCF =−,所以cos ,19||||n CF n CF n CF ⋅<>====⋅ ,设二面角D AF E −−为θ,则cos 19θ=. 19、解:(1)当1n =时,1227a a =− ①当2n =时,123420a a a +=− ②312315S a a a =++= ③由①②③解得1233,5,7a a a ===.(2)当1n >时,21234n n S na n n +=−−①()()()21213141n n S n a n n −=−−−−−② ①—②化简得()122161n n na n a n +=−++(当1n =时也成立),方法1:令()()[]121B 21n n n a A n n a An B ++++=−++⎡⎤⎣⎦,求得21A B =−=−,, 即()()[]122112121n n n a n n a n +−+−=−−−⎡⎤⎣⎦, 令21n n b a n =−−,则()1221n n nb n b +=−,即1212n n n b b n+−=, 因为1230,0,0b b b ===,故必有0n b =,即21n a n =+,方法2:(数学归纳法)由(1)1233,5,7a a a ===,猜想21n a n =+, 下面用数学归纳法证明对,21n x N a n +∀∈=+:当1,2,3n n n ===时,成立, 假设当n k =时成立,即有21k a k =+,()122161k k ka k a k +=−++, 当1+n k =时, ()()21221216146k ka k k k k k +=−+++=+,所以()2146232112k k k a k k k++==+=++,成立,综上所述,对,21n x N a n +∀∈=+.20、解:(1)依题意有3,2c a b ===故所求椭圆C 的标准方程为22194x y +=,(2)当两条切线的斜率存在时,设过00(,)P x y 点的切线为()00y y k x x −=−,联立()0022194y y k x x x y ⎧−=−⎪⎨+=⎪⎩,消去y 得()()()222000049189360k x k y kx x y kx ++−+−−=,判别式()()()22222000018364940=ky kx k y kx ⎡⎤Δ−−+−−=⎣⎦,化简得()2200940y kx k −−−=,即()2220000924x k x y k y −−+−,依题意得201220419y k k x −⋅==−−,即220013x y +=, 当两条切线的斜率有一条不存在时,结合图像得P 是直线3,3,2,2x x y y =−===−, 的四个交点,也满足220013x y +=,故点P 的轨迹方程为2213x y +=,法二:(2)当椭圆22194x y +=的切线的斜率存在且不为0时,设切线方程为y kx m =+,代入22194x y +=,整理得222(49)189360k x mkx m +++−=,令判别式0Δ=,得222(18)4(49)(936)0mk k m −+−=,即2294m k =+, 把切线方程化为m y kx =−,平方,得222()94m y kx k =−=+,整理得222(9)240x k xyk y −−+−=,注意到所有斜率为k 的椭圆的切线都满足该方程,设该方程的根为12,k k ,相应的切线为12,l l ,当12,l l 互相垂直时,2122419y k k x −==−−,即2213x y +=.由于满足2213x y +=的点(,)x y 既在1l 上,也在2l 上, 故2213x y +=就是12,l l 交点的轨迹方程;当切线斜率不存在或斜率为0时,易知点P 的坐标为(3,2)−−或(3,2)−或(3,2)−或(3,2),显然都满足2213x y +=,故所求点P 的轨迹方程为2213x y +=.21、解:(1)依题意有222(2)2(2)30x x k x x k +++++−>,()()222+3210xx k x x k ++⋅++−>,2,31,13k k k <−∴+<−<−∵故222+3=021=0x x k x x k ++++−,均有两根记为:12341111x x x x =−+=−=−+=−−注意到3124x x x x >>>,故不等式()()222+3210x x k x x k ++⋅++−>的解集为:()()()4213,,,x x x x −∞∪∪+∞ ,即()()()4213,,,D x x x x =−∞∪∪+∞.(2)令()222=(2)2(2)3,g x x x k x x k x D +++++−∈,则()()()()'22=2(2)222(22)412+1g x x x k x x x x x k ++⋅+++=+⋅++,令()'0g x =,注意到2,11k k <−+<−,故方程2210x x k +++=有两个不相等的实数根记为5611x x =−+=−,且71x =−,注意到3512641x x x x x x >>>−>>>结合图像可知: 在区间()()23,1,,x x −+∞上()'0g x >,()g x 单调递增,在区间()()41,,1,x x −∞−上()'0g x <,()g x 单调递减,故()f x 在区间()()23,1,,x x −+∞上单调递减,在区间()()41,,1,x x −∞−上单调递增. (3)(1)f ==在区间D 上,令()()1f x f =,即2222(2)2(2)3=812x x k x x k k k +++++−++,()()222(2)2(2)350x x k x x k k k +++++−+⋅+=,()()2223250x x k k x x k k ⎡⎤⎡⎤++−+++++=⎣⎦⎣⎦,22232250x x x x k ⎡⎤⎡⎤+−+++=⎣⎦⎣⎦()∗, 方程22250x x k +++=的判别式8160k Δ=−−>,故此方程()∗有4个不相等的实数根,记为8910111,3,11x x x x ==−=−+=−−,注意到6k <−,故,1211,13x x =−+>=−−<−,故89,x x D ∈,(103110x x −=−+−+=>,故10x D ∈,4112420k k x x −−−−−===>,故11x D ∈,结合()()()4213,,,D x x x x =−∞∪∪+∞和函数的图像,可得()(1)f x f >的解集为()()()()1142981310,,,,x x x x x x x x ∪∪∪.。
2014年高考理科数学试题(广东卷)及参考答案
![2014年高考理科数学试题(广东卷)及参考答案](https://img.taocdn.com/s3/m/77c0d88883d049649b6658db.png)
2014年普通高等学校招生全国统一考试(广东卷)理科数学及参考答案一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1}M =-,{0,1,2}N =,则M N =A.{1,0,1}-B.{1,0,1,2}-C.{1,0,2}-D.{0,1}2.已知复数Z 满足(34)25i z +=,则Z= A.34i -B.34i +C.34i --D.34i -+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为m 和n ,则m n -=A.8B.7C.6D.54.若实数k 满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的 A.离心率相等B.虚半轴长相等C.实半轴长相等D.焦距相等5.已知向量()1,0,1a =-,则下列向量中与a 成60︒夹角的是 A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)6.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是A.200,20B.100,20C.200,10D.100,107.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定小学生 3500名初中生4500名 高中生 2000名小学初中30 高中10 年级50 O近视率/%8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为 A.60B.90C.120D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
★2014年高考试题(广东卷-附答案)——文科数学
![★2014年高考试题(广东卷-附答案)——文科数学](https://img.taocdn.com/s3/m/9a1e562daaea998fcc220ed4.png)
2014年普通高等学校招生全国统一考试(广东卷)数学 (文科)一.选择题:1、已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( ) A. {}2,0 B. {}3,2 C. {}4,3 D. {}5,32、已知复数z 满足25)43(=-z i ,则=z ( )A.i 43--B. i 43+-C. i 43-D. i 43+3、已知向量)1,3(),2,1(==b a,则=-a b ( )A. )1,2(-B. )1,2(-C. )0,2(D. )3,4(4、若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的最大值等于( )A. 7B. 8C. 10D. 11 5、下列函数为奇函数的是( ) A.x x212-B.x x sin 3C.1cos 2+xD.xx 22+ 6、为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) A.50 B.40 C.25 D.207、在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是“B A sin sin ≤”的( ) A.充分必要条件 B.充分非必要条件 C.必要非充分条件 D.非充分非必要条件8、若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( ) A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等9、若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( ) A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个命题: ①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*; ③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( ) A.1 B.2 C.3 D.4二、填空题:(一)必做题(11—13题)11.曲线53x y e =-+在点()0,2-处的切线方程为________.12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a _____. (二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin cos22=与1cos =θρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则______=∆∆的周长的周长AEF CDF三.解答题:16、已知函数()sin(),3f x A x x R π=+∈,且532()122f π=(1) 求A 的值;(2)若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-17、某车间20名工人年龄数据如下表: (1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3) 求这20名工人年龄的方差.18、如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF. (1)证明:CF ⊥平面MDF (2)求三棱锥M-CDE 的体积.19、设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222.(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a20、已知椭圆()01:2222>>=+b a by a x C 的一个焦点为()0,5,离心率为35。
2014年普通高等学校全国统一招生考试模拟(新课程)卷理科数学
![2014年普通高等学校全国统一招生考试模拟(新课程)卷理科数学](https://img.taocdn.com/s3/m/44e29300844769eae009ed3b.png)
2014年普通高等学校全国统一招生考试模拟试题(新课程卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分,考试时间120分钟。
考试结束后,将本试卷和答题纸一并交回。
第Ⅰ卷(选择题 共60分)注意事项:1.答题前,考生在答题纸上务必用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集S ={1,2,a 2-2a +3},A ={1,a },∁S A ={3},则实数a 等于A .0或2B .0C .1或2D .2 2.复数z 满足z =2-i1-i,则z 等于A .1+3iB .3-i C.32+12i D.12+32i3.终边与单位圆交点的横坐标是-22的钝角为 A .2π3 B .3π4 C .5π6 D .5π44.如图,在平行四边形ABCD 中,AC →=(1,2),BD →=(-3,2),则AD →·AC →等于A .1B .3C .5D .65.如图,一个简单组合体的正(主)视图和侧(左)视图相同,是由一个正方形 与一个正三角形构成,俯视图中,圆的半径为 3.则该组合体的表面积等于 A .15π B .18π C .21π D .24π6.已知函数y =f (x )sin x 的一部分图象如图所示,则函数f (x )的表达式可以是A .2sin xB .2cos xC .-2sin xD .-2cos x7.双曲线x 2b 2-y 2a2=1的两条渐近线互相垂直,那么该双曲线的离心率是A .2B . 3C . 2D .328.如图所示,正四棱锥P -ABCD 底面的四个顶点A ,B ,C ,D 在球O 的同一个大圆上,点P 在球面上,如果V P -ABCD =163,则球O 的表面积是 A .4πB .8πC .12πD .16π9.若在(x 2-13x)n 的展开式中,只有第5项的二项式系数最大,则展开式中常数项是A .7B .-7C .-28D .2810.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤02x -1,x >0,若f (x )≥1,则x 的取值范围是A .(-∞,-1]B .[1,+∞)C .(-∞,0]∪[1,+∞)D .(-∞,-1]∪[1,+∞)11.已知命题p :函数y =log 0.5(x 2+2x +a )的值域为R ,命题q :函数y =-(5-2a )x 是减函数.若p 或q 为真命题,p 且q 为假命题,则实数a 的取值范围是A .a ≤1B .a <2C .1<a <2D .a ≤1或a ≥212.定义max{a ,b }=⎩⎪⎨⎪⎧a (a ≥b )b (a <b ),已知实数x ,y 满足|x |≤2,|y |≤2,设z =max{4x +y,3x -y },则z 的取值范围是A .[-7,10]B .[-6,10]C .[-6,8]D .[-7,8]第Ⅱ卷(非选择题 共90分)注意事项:1.答题前,考生先在答题纸上用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2014年普通高等学校招生全国统一考试(广东卷)理科综合(物理部分)答案详细解析试卷类型AB通用
![2014年普通高等学校招生全国统一考试(广东卷)理科综合(物理部分)答案详细解析试卷类型AB通用](https://img.taocdn.com/s3/m/c90c88c305087632311212cc.png)
绝密★启用前 试卷类型:A (物理试题试卷类型B 与A 题目及顺序完全相同)2014年普通高等学校招生全国统一考试(广东卷)理科综合(物理部分)一、单项选择题:本大题共4小题,每小题4分,共16分。
在每小题给出的四个选项中,只有一个选项最符合题目要求。
选对的得4分,错选或不答的得0分。
13.图6是物体做直线运动的v-t 图象,由图可知,该物体 A .第1 s 内和第3 s 内的运动方向相反 B. 第3 s 内和第4 s 内的加速度相同 C. 第1 s 内和第4s 内的位移大小不等D .0~2s 内和0~4s 内的平均速度大小相等14.如图7所示,水平地面上堆放着原木,关于原木P 在支撑点M 、N 处受力的方向,下列说法正确的是 A .M 处受到的支持力竖直向上 B. N 处受到的支持力竖直向上 C. M 处受到的摩擦力沿MN 方向D .N 处受到的摩擦力沿水平方向15.如图8所示,上下开口、内壁光滑的铜管P 和塑料管Q 竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块 A .在P 和Q 中都做自由落体运动 B. 在两个下落过程中的机械能都守恒 C. 在P 中的下落时间比在Q 中的长 D .落至底部时在P 中的速度比在Q 中的长16.图9是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫块,楔块与弹簧盒、垫块间均有摩擦,在车厢相互撞击时弹簧压缩过程中A .缓冲器的机械能守恒 B. 摩擦力做功消耗机械能 C. 垫块的动能全部转化成内能 D .弹簧的弹性势能全部转化为动能二、双项选择题:本大题共9个小题,每小题6分,共54分。
每小题给出的四个选项中,有两个选项符合题目要求,全部选对者的得6分,只选1个且正确的得3分;有错选或不答的得0分。
17.用密封性好、充满气体的塑料袋包裹易碎品,如图10外界无热交换,则袋内气体A .体积减小,内能增大 B. 体积减小,压强减小 C. 对外界做负功,内能增大 D .对外界做正功,压强减小18. 在光电效应实验中,用频率为ν的光照射光电管阴极,发生了光电效应,下列说法正确的是 A .增大入射光的强度,光电流增大图9B. 减小入射光的强度,光电效应现象消失C. 改变频率小于ν的光照射,一定不发生光电效应 D .改变频率大于ν的光照射,光电子的最大初动能变大19. 如图11所示的电路中,P 为滑动变阻器的滑片,保持理想变压器的输入电压U 1不变,闭合电键S ,下列说法正确的是A .P 向下滑动时,灯L 变亮B. P 向下滑动时,变压器的输出电压不变C. P 向上滑动时,变压器的输入电流变小D .P 向上滑动时,变压器的输出功率变大20.如图12所示,光滑绝缘的水平桌面上,固定着一个带电量为+Q 的小球P ,带电量分别为-q 和+2q 的小球M 和N ,由绝缘细杆相连,静止在桌面上,P 与M 相距L ,P 、M 和N 视为点电荷,下列说法正确的是 A .M 与N 的距离大于L B. P 、M 和N 在同一直线上 C. 在P 产生的电场中,M 、N 处的电势相同 D .M 、N 及细杆组成的系统所受合外力为零21.如图13所示,飞行器P 绕某星球做匀速圆周运动,星球相对飞 行器的角度为θ,下列说法正确的是 A .轨道半径越大,周期越长 B. 轨道半径越大,速度越长C. 若测得周期和张角,可得到星球的平均密度 D .若测得周期和轨道半径,可得到星球的平均密度 34.(1)(8分)某同学设计的可调电源电路如图22(a)所示,R 0为保护电阻,P 为滑动变阻器的滑片,闭合电键S .①用电压表测量A 、B 两端的电压;将电压表调零,选择0-3V 档,示数如图22(b),电压值为 V . ②在接通外电路之前,为了保证外电路的安全,滑片P 应先置于 端.③要使输出电压U 变大,滑片P 应向 端(滑动,高考题漏了2个字).④若电源电路中不接入R 0,则在使用过程中,存在 的风险(填“断路”或“短路”).(2)(10分)某同学根据机械能守恒定律,设计实验探究弹簧的弹性势能与压缩量的关系.①如图23(a),将轻质弹簧下端固定于铁架台,在上端的托盘中依次增加砝码,测得相应的弹簧长度,部分数据如下表,有数据算得劲度系数k = N/m ,(g 取9.8m/s 2)②取下弹簧,将其一端固定于气垫导轨左侧,如图23(b)所示;调整导轨,是滑块自由滑动时,通过两图12图130 1 2 3 V 0 5 10 15 (b)图22 图11个光电门的速度大小 .③用滑块压缩弹簧,记录弹簧的压缩量x ;释放滑块,记录滑块脱离弹簧后的速度v ,释放滑块过程中,弹簧的弹性势能转化为 .④重复③中的操作,得到v 与x 的关系如图23(c )。
2014年广东高考理科数学真题及答案
![2014年广东高考理科数学真题及答案](https://img.taocdn.com/s3/m/7b224b6ae3bd960590c69ec3d5bbfd0a7856d544.png)
图1高中生2000名小学生3500名初中生4500名图2近视率/ %301050O 小学 初中 高中 年级2014年广东高考理科数学真题及答案一、选择题: 本大题共8小题,每小题5分,满分40分, 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则{1,0,1}M =-{0,1,2}N =M N = A . B . C . D .{0,1}{1,0,2}-{1,0,1,2}-{1,0,1}-2.已知复数满足,则z (34)25i z +=z =A . B . C . D .34i -+34i --34i +34i -3.若变量满足约束条件, 且的最大值和最小值分别为和,则,x y 11y x x y y ⎧⎪+⎨⎪-⎩≤≤≥2z x y =+m n m n -=A .5 B .6 C .7 D .84.若实数满足, 则曲线与曲线的 k 09k <<221259x y k -=-221259x y k -=-A .焦距相等 B .实半轴长相等 C .虚半轴长相等 D .离心率相等5.已知向量,则下列向量中与成夹角的是(1,0,1)-a =a 60 A . B . C . D .(1,1,0)-(1,1,0)-(0,1,1)-(1,0,1)-6.已知某地区中小学生人数和近视情况分别如图1和图2所示. 为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2 %的学生进行调查,则样本容量和抽取的高中生近视人数分别为A .200,20B .100,20C .200,10D .100,10 7.若空间中四条两两不同的直线,满足,,,则下列结论一定正确的是1234,,,l l l l 12l l ⊥23l l ⊥34l l ⊥A . B . C .与既不垂直也不平行 D .与的位置关系不确定14l l ⊥14//l l 1l 4l 1l 4l 8.设集合,那么集合中满足条件 (){}{}12345,,,,|1,0,1,1,2,3,4,5iA x x x x x x i =∈-=A “”的元素个数为1234513x x x x x ++++≤≤A .60 B .90 C .120 D .130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.A F E D C B图3(一)必做题(9 ~ 13题)9.不等式的解集为 .125x x -++≥10.曲线在点处的切线方程为 .25+=-x e y )3,0(11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 .12.在中,角所对应的边分别为. 已知,则ABC ∆C B A ,,c b a ,,b B c C b 2cos cos =+ . =ba 13.若等比数列的各项均为正数,且,则{}n a 512911102e a a a a =+ .1220ln ln ln a a a +++= (二)选做题(14 ~ 15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线和的方程分别为和1C 2C 2sin cos ρθθ=.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,则曲线和sin 1ρθ=x 1C 2C 交点的直角坐标为 .15.(几何证明选讲选做题)如图3,在平行四边形中,点在上且,与ABCD E AB 2EB AE =AC DE交于点,则= . F CDF AEF ∆∆的面积的面积三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数,,且. ()sin()4f x A x π=+x ∈R 23)125(=πf (1)求的值;A (2)若,,求. 23)()(=-+θθf f )2,0(πθ∈)43(θπ-f图4P A BC ED F17.(本小题满分12分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组 频数频率 [25,30] 30.12 (30,35] 50.20(35,40]8 0.32(40,45] 1n 1f (45,50] 2n2f (1)确定样本频率分布表中和的值;121,,n n f 2f (2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间的(30,35]概率.18.(本小题满分14分)如图4,四边形为正方形,平面, ABCD PD ⊥ABCD ,于点,∥,交于点.30DPC ∠= AF PC ⊥F FE CD PD E (1)证明:平面;CF ⊥ADF (2)求二面角的余弦值.D AFE --19.(本小题满分14分)设数列的前项和为,满足,,且. {}n a n n S n S 21234n n S na n n +=--*n ∈N 315S =(1)求的值;123,,a a a (2)求数列的通项公式.{}n a20.(本小题满分14分)已知椭圆的一个焦点为,离心率为. 2222:1x y C a b +=(0)a b >>(5,0)53(1)求椭圆的标准方程;C (2)若动点为椭圆外一点,且点到椭圆的两条切线相互垂直,求点的轨迹方00(,)P x y C P C P 程.21.(本小题满分14分)设函数,其中.2221()(2)2(2)3f x x x k x x k =+++++-2k <-(1)求函数的定义域(用区间表示);()f x D (2)讨论在区间上的单调性;()f x D (3)若,求上满足条件的的集合(用区间表示).6k <-D ()(1)f x f >xx2014年普通高等学校招生全国统一考试(广东卷)数 学(理科)参考答案一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.题号1 2 3 4 5 6 7 8 答案 C D B A B A D D二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9 ~ 13题)9. 10. 11.12. 2 13.50 (,3][2,)-∞-+∞ 530x y +-=16(二)选做题(14 ~ 15题,考生只能从中选做一题)14. 15.9(1,1)三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)16. 解:(1),解得. 55233()sin()sin 12124322f A A A ππππ=+===3A =(2)由(1)得, ()3sin()4f x x π=+所以 ()()3sin()3sin()44f f ππθθθθ+-=++- 222233(cos sin )3(cos sin )6cos 22222θθθθθ=++-==所以,又因为,所以, 6cos 4θ=)2,0(πθ∈210sin 1cos 4θθ=-=所以. 331030()3sin()3sin()3sin 344444f ππθπθπθθ-=-+=-==⨯=17.(本小题满分12分)17. 解:(1),,,. 17n =22n =170.2825f ==220.0825f ==(2)所求的样本频率分布直方图如图所示:频率组距0.0400.0240.0160.0560.064P A B C E D F G H P A B C E DF x yz(3)设“该厂任取4人,至少有1人的日加工零件数落在区间”为事件, (30,35]A ,即至少有1人的日加工零件数落在区间概率为.4()1(10.2)0.5904P A =--=(30,35]0.590418.(本小题满分14分)18.(1)证明:因为平面,平面,所以.PD ⊥ABCD AD ⊂ABCD PD AD ⊥因为在正方形中,又,所以平面.ABCD CD AD ⊥CD PD D = AD ⊥PCD 因为平面,所以.CF ⊂PCD AD CF ⊥因为,,所以平面.AF CF ⊥AF AD A = CF ⊥ADF (2)方法一:以为坐标原点,、、分别为、、轴建立空间直角坐标系D DP DC DA x y z 设正方形的边长为1,ABCD 则. 333(0,0,0),(0,0,1),(0,1,0),(3,0,0),(,0,0),(,,0)444D A C P E F 由(1)得是平面的一个法向量.(3,1,0)CP =- BCDE 设平面的法向量为, AEF (,,)x y z =n ,, 3(0,,0)4EF = 3(,0,1)4EA =- 所以. 304304EF y EA x z ⎧⋅==⎪⎪⎨⎪⋅=-+=⎪⎩ n n 令,则,,所以是平面的一个法向量. 4x =0y =3z =(4,0,3)=n AEF 设二面角的平面角为,且D AFE --θ(0,)2πθ∈所以, 43257cos 19219CP CP θ⋅===⨯⋅ n n 所以二面角的平面角的余弦值为. D AF E --25719方法二:过点作于,过点作于,连接.D DG AE ⊥G D DH AF ⊥H GH 因为,,,所以平面.CD PD ⊥CD ED ⊥ED AD D = CD ⊥ADE 因为∥,所以平面.FE CD FE ⊥ADE 因为平面,所以.DG ⊂ADE FE DG ⊥因为,所以平面.AE FE E = DG ⊥AEF 根据三垂线定理,有, GH AF ⊥所以为二面角的平面角. DHG ∠D AF E --设正方形的边长为1,ABCD 在△中,,,所以. Rt ADF 1AD =32DF =217DH =在△中,因为,所以,所以. Rt ADE 1124FC CD PC ==1344DE PD ==5719DG =所以, 226133133GH DH DG =-=025 30 35 40 45 50 日加工零件数所以, 257cos 19GH DHG DH ∠==所以二面角的平面角的余弦值为. D AF E --2571919.(本小题满分14分)19. 解:(1)当时,,2n =2123420S a a a =+=-又,所以,解得.312315S a a a =++=3342015a a -+=37a =当时,,又,解得.1n =11227S a a ==-128a a +=123,5a a ==所以.1233,5,7a a a ===(2) ①21234n n S na n n +=--当时, ②2n ≥212(1)3(1)4(1)n n S n a n n -=-----①②得.-12(22)61n n n a na n a n +=----整理得,即. 12(21)61n n na n a n +=-++1216122n n n n a a n n +-+=+猜想,. 以下用数学归纳法证明:21n a n =+*n ∈N 当时,,猜想成立;1n =13a =假设当时,,n k =21k a k =+当时,, 1n k =+21216121614161(21)232(1)122222k k k k k k k k a a k k k k k k k k+-+-+-++=+=++==+=++猜想也成立,所以数列的通项公式为,. {}n a 21n a n =+*n ∈N20.(本小题满分14分)20. 解:(1)依题意得,, 5c =53c e a ==所以,,3a =2224b a c =-=所以椭圆的标准方程为 C 22194x y +=(2)当过点的两条切线的斜率均存在时,P 12,l l 设,则 100:()l y y k x x -=-2001:()l y y x x k-=--联立, 2200194()x y y y k x x ⎧+=⎪⎨⎪-=-⎩得,2220000(49)18()9()360k x k y kx x y kx ++-+--=所以,22220000(18)()4(49)[9()36]0k y kx k y kx ∆=--+--=整理得,2200()49y kx k -=+即,2220000(9)240x k x y k y --+-=因为,所以, 12l l ⊥201220419y k k x -==--整理得; 220013x y +=当过点的两条切线一条斜率不存在,一条斜率为0时,P 12,l l 为或,均满足. P (3,2)±(3,2)-±220013x y +=综上所述,点的轨迹方程为.P 2213x y +=21.(本小题满分14分)21. 解:(1), 221()(23)(21)f x x x k x x k =+++++-由,得或,22(23)(21)0x x k x x k +++++->223x x k ++<-221x x k ++>即或,2(1)2x k +<--2(1)2x k +>-+所以或或,其中.1212k x k ----<<-+--12x k <---+12x k >-+-+2k <-所以函数的定义域.()f x (,12)(12,12)(12,)D k k k k =-∞---+⋃-----+--⋃-+-++∞(2)令,则, 222()(2)2(2)3g x x x k x x k =+++++-1()()f xg x =x D ∈,22()2(2)(22)2(22)4(1)(21)g x x x k x x x x x k '=+++++=++++令,解得,,,其中.()0g x '=11x k =---21x =-31x k =-+-2k <-因为,131********k x k k x k ---+<<----<-<-+--<<-+-+所以随的变化情况如下表:(),()g x g x 'xx (,12)k -∞---+ (12,1)k ----- 1-(1,12)k --+-- (12,)k -+-++∞()g x ' - +0 - + ()g x ↘ ↗ 极大值↘ ↗ 因为函数与在区间上的单调性相反,()y f x =()y g x =D 所以在和上是增函数,()f x (,12)k -∞---+(1,12)k --+-- 在和上是减函数.(12,1)k -----(12,)k -+-++∞(3)因为,所以,(1)(1)g x g x --=-+(1)(1)f x f x --=-+所以函数与的图象关于直线对称,()y f x =()y g x =1x =-所以.(1)(3)f f =-因为,所以.6k <-123112k k ----<-<<-+--①当时,(12,12)x k k ∈-----+--要使,则;()(1)f x f >(12,3)(1,12)x k k ∈-----⋃-+--②当时,(,12)(12,)x k k ∈-∞---+⋃-+-++∞令,即,,()(1)f x f =()(1)g x g =22(23)(21)(6)(2)x x k x x k k k +++++-=++令,则,22t x x k =++(1)t >(3)(1)(6)(2)t t k k +-=++整理得,即,222(815)0t t k k +-++=[(3)][(5)]0t k t k -+++=因为且,所以,即,1t >6k <-(5)t k =-+225x x k k ++=--所以,解得, 22250x x k +++=124x k =-±--(,12)(12,)k k ∈-∞---+⋃-+-++∞所以.()(1)(124)f x f f k ==-±--要使,则.()(1)f x f >(124,12)(12,124)x k k k k ∈-------+⋃-+-+-+--综上所述, 当时,在上满足条件的的集合为 6k <-D ()(1)f x f >x .(124,12)(12,3)(1,12)(12,124)k k k k k k -------+⋃-----⋃-+--⋃-+-+-+--。
2014年广东高考理科数学试题含答案(Word版)
![2014年广东高考理科数学试题含答案(Word版)](https://img.taocdn.com/s3/m/75d7d1b96bd97f192379e984.png)
2014年普通高等学校招生全国统一考试(广东卷)数学(理)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1} 答案:B2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+ 答案:A 2525(34)25(34):=34,.34(34)(34)25i i z i i i i --===-++-提示故选A3.若变量,x y 满足约束条件121y xx y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.5:(),(2,1)(1,1)3,3,6,.CM m M m C --==-∴-=答案:提示画出可行域略易知在点与处目标函数分别取得最大值与最小值选4.若实数k 满足09,k <<则曲线221259x y k-=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等09,90,250,(9)34(25)9,k k k k k k <<∴->->+-=-=-+答案:D提示:从而两曲线均为双曲线,又25故两双曲线的焦距相等,选D.5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)0222222:11,,60,.2210(1)1(1)0B B =∴++-⋅+-+答案提示即这两向量的夹角余弦值为从而夹角为选6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为 A. 200,20 B. 100,20 C. 200,10 D. 100,10::(350045002000)2%200,20002%50%20,.AA ++⋅=⋅⋅=∴答案提示样本容量为抽取的高中生近视人数为:选7.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定 答案:D 8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130 答案: D1234511122252551311225254:1,2,31:C 10;:C 40;:C C C 80.104080130, D.x x x x x C C A C C ++++=+=+=++=提示可取和为的元素个数为和为2的元素个数为和为3的元素个数为故满足条件的元素总的个数为选二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 .(][)(][),32,:12532,,32,.-∞-+∞---∞-+∞答案:提示数轴上到与距离之和为的数为和故该不等式的解集为:10.曲线25+=-xey 在点)3,0(处的切线方程为 . '5'0:530:5,5,35,530.x x x y y e y y x x y -=+-==-∴=-∴-=-+-=答案提示所求切线方程为即11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 .367101:6:67,36,136,.6C C =答案提示要使为取出的个数中的中位数则取出的数中必有个不大于另外个不小于故所求概率为12.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+, 则=ba. 2222222:2::cos cos ,2, 2.sin cos sin cos 2sin ,sin()2sin ,sin 2sin ,2, 2.::2,24,222, 2.ab Cc B a a b bB C C B B B C B aA B a b ba b c a c b b b a ab ab ac aa b b+==∴=+=+=∴==∴=+-+-⋅+==∴==答案提示解法一由射影定理知从而解法二:由上弦定理得:即即解法三由余弦定理得即即13.若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= . 51011912101112202019151201011:50,,ln ln ln ,ln ln ln ,220ln 20ln 20ln 100,50.a a a a a a e S a a a S a a a S a a a a e S =∴==+++=+++∴====∴=答案提示:设则(二)选做题(14~15题,考生从中选做一题)14.(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__221212:(1,1):(sin )cos ,,:1,(1,1).C y x C y C C ρθρθ===∴答案提示即故其直角坐标方程为:的直角坐标方程为与的交点的直角坐标为15.(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则CDF AEF ∆∆的面积的面积=___22:9:,()()9.CDF AEF CDF CD EB AE AEF AE AE∆∆∴∆+===∆答案提示显然的面积的面积三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和 演算步骤.16、(12分)已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf ,(1)求A 的值; (2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f . 55233:(1)()sin()sin , 3.121243223(2)(1):()3sin(),4()()3sin()3sin()443(sin coscos sin )3(sin()cos cos()sin )4444323cos sin 6cos 426cos ,(0,),42f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴+-=++-+=++-+-===∴=∈解由得10sin 4331030()3sin()3sin()3sin 3.44444f θπππθθπθθ∴=∴-=-+=-==⨯=17、(13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中121,,n n f 和2f 的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.121272:(1)7,2,0.28,0.08;2525(2):n n f f ======解频率分布直方图如下所示(](](]044(3),30,350.2,30,35(4,0.2),130,35:1(0.2)(0.8)10.40960.5904.B C ξξ-=-=根据频率分布直方图可得工人们日加工零件数落在区间的概率为设日加工零件数落在区间的人数为随机变量,则故4人中,至少有人的日加工零件数落在区间的概率为18.(13分)如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =030,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E.(1)证明:CF ⊥平面ADF ; (2)求二面角D -AF -E 的余弦值.:(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则00,CD 2,30,130,==1,21324,,,,,22333EG .,423EHG D AF E DPC CDF CF CDDE CF CP EF DC DEDF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴=⋅======⋅∴====为二面角的平面角设从而∥还易求得EF=从而易得故cos GH EHG EH ∴∠==12:,,,,,2,1(0,0,2),C(0,2,0),,(23,22,0),,,431,0),ADF CP (3,1,0),22AEF (x DP DC DA x y z DC A CF CP F DF CF F E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,19||||2n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为19.(14分)设数列{}n a 的前n 和为n S ,满足2*1234,n n S na n n n N +=--∈,且315S =. (1)求123,,a a a 的值; (2)求数列{}n a 的通项公式;211222122331212121331221232121:(1)2314127+=432424()204(15)20,+83,,1587,53,5,7,(2)2342,2(1)3(1)4(n n n n a S a a a a S a S a a a a a a a a S a a a a a a S na n nn S n a n n +-==-⨯-⨯=-=-⨯-⨯=---=---∴==⎧∴=--=-=⎨=⎩====--∴≥=-----解①②联立①②解得综上③当时11121)2161,22(1)21,:()(1),1,3211,;(),,21,21611,22211(21)322411322232(1)11n n n k k k n n a a n na n i n a ii n k a k k k n k a a k k k k k k k k k k k n k ++-+-=+=+===⨯+==+-+=+=+-=⋅+++-=++=+=++=+④③④并整理得:由猜想以下用数学归纳法证明由知当时猜想成立假设当时猜想成立即则当时这就是说,,,2 1.n n N a n *∈=+时猜想也成立从而对一切20.(14分)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为,离心率为3,(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.2222200220022:(1)3,954,1.94(2),,4(3,2),(3,2).(),(),194(94)18(c c e a b a c a x y C x y y y k x x x y y k x x y k x k y ====∴==-=-=∴+=-±±-=-=-++=++解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:2000022222200000022220000012202200)9()40,,0,(18)()36()4(94)0,4()4(94)0,4(9)240,,1,:1,913,(3,2),(3,2)kx x y kx k y kx y kx k y kx k y x k x y k y k k x x y ⎡⎤-+--=∆=⎣⎦⎡⎤----+=--+=⎣⎦-∴--+-=∴=-=--∴+=-±±依题意即:即两切线相互垂直即显然这四点也满足以上方22,13.P x y ∴+=程点的轨迹方程为21.(本题14分)设函数()f x =2k <-,(1)求函数()f x 的定义域D (用区间表示); (2)讨论()f x 在区间D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示).222222122222:(1)(2)2(2)30,2123:210,44(1)4(2)0(2),21=01210:11230,23044(3)x x k x x k x x k x x k x x k k k k x x k x x k x x x x k x x k k +++++->++>++<-++->∆=--=-><-∴++--∴++-><->-++++<+++=∆=-+=解则①或②由①得方程的解为由得由②得:方程的判别式23'24(2)0(2),1230:112,11111(,1(12,12)(12,).(2)0,1()2(2k k x x k x k D k k k u f x u x ---><-∴-+++<--<<-<-∴-<-<-<--+∴=-∞------+---+-+∞==-⋅⋅该方程的解为由得设则23222'2'22)(22)2(22)2(1)(21)()(,1,10,21110,()0;()(11),10,21310,()0;()(1,1,10,21310,x k x x u x x x k i x x x x k f x ii x x x x k f x iii x x x x k f -⎡⎤++⋅+++⎣⎦=-+⋅+++∈-∞-+<+++>+>∴>∈--+<+++<-+<∴<∈--++>+++<-+<∴当时当时当时'2'()0;()(1),10,21110,()0.,():(,11,1,():(11),(1).x iv x x x x k f x f x D f x D >∈-+∞+>+++>+>∴<-∞------++∞当时综上在上的单调增区间为在上的单调减区间为22222222222(3)g(x)(2)2(2)3,(1),x D ,g(x)0;g(1)(3k)2(3)3(6)(2),,6,(1)0,()(1)()(1),()(1)[(2)2(2)3][(3k)2(3)3][(2)(3k)]x x k x x k k k k k g f x f g x g g x g x x k x x k k x x k =+++++-∈>=+++-=++<->>⇔<-=+++++--+++-=++-+设由知当时又显然当时从而不等式2222[(2)(3)](3)(1)(225),()(3)(1)0,()(1),()(6,111311111,1111),2250,k x x k k x x x x k i x x x f x f g x x g x k x x +++-+=+-++<-∴-<----<<-+<--+--+<+->∴><+<<-+++<当欲使即亦即即2222(3)(1)0,225(2)(5)3(5)0,()(1),()(1);(1iii)31,(3)(1)0,2253(5)0,()(1),;(iv)1(()13,13)(1)0,,2ii x x x x x k x x k k k g x g f x f x x x x x k k g x g x x x x x <+->+++=++++<-++<<>-<<+---<<--+<+++<-++<∴><<+->++时此时即时不合题意21,11253(5)0,()(1),;(v)(3)(1)0,()(1),2250,()(1)11,11(13)(1(1(,11k k g x x g x x x g x g x x x k f x f --<<-+<-++<∴<>+->∴<++-+<---⋃--⋃-+⋃-+-+++<>从而综合题意欲使则即的解集为:上所述。
2014全国统一高考数学真题及逐题详细解析(理科)—广东卷
![2014全国统一高考数学真题及逐题详细解析(理科)—广东卷](https://img.taocdn.com/s3/m/105a7704bb68a98271fefab1.png)
2014年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃= A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1}2.已知复数Z 满足(34)25,i z +=则Z= A .34i - B. 34i + C. 34i -- D. 34i -+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.54.若实数k 满足09,k <<则曲线221259x y k-=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等 5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0)B. (1,-1,0)C. (0,-1,1)D. (-1,0,1)6.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是A.200,20B.100,20C.200,10D.100,107.若空间中四条两两不同的直线1234,,,,l l l l 满足122334,,,l l l l l l ⊥⊥⊥则下面结论一定正确的是 A .14l l ⊥ B .14//l l C .14,l l 既不垂直也不平行 D .14,l l 的位置关系不确定小学 初中 高中 年级O8.设集合(){}12345=,,,,1,0,1,1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A .60 B90 C.120 D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
2014年普通高等学校全国统一招生考试模拟试题(新课标版)理科数学
![2014年普通高等学校全国统一招生考试模拟试题(新课标版)理科数学](https://img.taocdn.com/s3/m/2fdc0f26cfc789eb172dc8ec.png)
2014年普通高等学校全国统一招生考试模拟卷(新课标版)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分,考试时间120分钟。
考试结束后,将本试卷和答题纸一并交回。
第Ⅰ卷(选择题 共60分)注意事项:1.答题前,考生在答题纸上务必用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
一、选择题(本大题共12题,每小题5分,共60分.在每小题给出的四个选项中,其中有一项是符合题目要求的)1.设集合A ={x|1≤x ≤3},B ={x|x>a},若A ⊆B ,则a 的取值范围是A .a <1B .a ≤1C .a <2D .a ≤2 2.cos(-1 530°)的值是A .0 B.22 C .-22 D .-323.将一枚质地均匀的硬币连续抛掷三次,设X 为正面向上的次数,计算P(0≤X ≤2)的值为A .14B .12C .18D .784.已知i 是虚数单位,则i (i -1)1+i=A .-1B .1C .-iD .i5.已知S n 是等差数列{a n }的前n 项和,且S 1=1,S 19=95,计算a 19的值为A .4B .9C .15D .166.已知函数f(x)=⎩⎪⎨⎪⎧ln|x| (x <0)x -1-1 (x>0),计算f(f(2))的值为A .2B .-ln2C .-2D .-0.697.(3x -1)6的展开式中x 2的系数为A .15B .135C .120D .2408.右边的程序框图中,若输出的S 值是16,那么在程序框图中,判断框内应填写的条件是A .i >5B .i >6C .i <5D .i <69.四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,PA =AB =1,AD =3,点F 是PB 的中点,点E 在边BC 上移动.设m =||CE|-|EB||,若PE ⊥AF ,则m 的取值范围是A .{3}B .{1,3,0}C .[0,3]D .R 10.如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0x -2y +1≤0x +y -2≤0,点Q 在曲线y +x 2+1=0上,那么|PQ|的最小值为A . 2B .2C .1182D .2340511.定义集合A ={a ,b ,c ,d}上的二元运算ζ如表所示,如果有一个元素 e ∈A ,对于任意的x ∈A ,都有eζx =xζe =x ,则称e 为A 关于运算ζ的幺 元.判断A 关于运算ζ的幺元是A .aB .bC .cD .d 12.已知a 1<a 2<a 3<0,则使得(a i x -2)2<4(i =1,2,3)都成立的x 取值范围是A .(4a i,0)B .(4a 1,0)C .(4a 2,0)D .(4a 3,0)第Ⅱ卷(非选择题 共90分)注意事项:1.答题前,考生先在答题纸上用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2014年普通高等学校招生全国统一考试分类汇编4—三角函数及解三角形(理科)S
![2014年普通高等学校招生全国统一考试分类汇编4—三角函数及解三角形(理科)S](https://img.taocdn.com/s3/m/55430e3ba32d7375a4178075.png)
C.在区间 上单调递减D.在区间 上单调递增
5.14.(2014新课标II)设函数 .若存在 的极值点 满足 ,则m的取值范围是()
A. B. C. D.
15.(2014浙江)为了得到函数 的图像,可以将函数 的图像()
A.向右平移 个单位B.向左平移 个单位C.向右平移 个单位D.向左平移 个单位
A. B. C. D.
二.填空题
1.(2014大纲)若函数 在区间 是减函数,则 的取值范围是.
2. (2014江苏)已知函数 与 (0≤ ),它们的图象有一个横坐标为 的交点,则 的值是.
3.(2014上海)设常数a使方程 在闭区间[0,2 ]上恰有三个解 ,则 。
4(2014安徽)若将函数 的图像向右平移 个单位,所得图像关于y轴对称,则 的最小正值是.
A. 5B. C. 2D. 1
19.(2014江西)在 中,内角A,B,C所对应的边分别为 ,若 则 的面积()
A.3B. C. D.
20.(2014重庆)已知 的内角A,B,C,满足sin2A+sin(A-B+C=sin(C-A-B)+ ,面积满足1 ,a,b,c为三内角A,B,C所对的边,则下列不等式成立的是()
A. B. C. D.
11. (2014陕西)函数 的最小正周期是()
12、(2014四川)为了得到函数 的图象,只需把函数 的图象上所有的点()
A、向左平行移动 个单位长度B、向右平行移动 个单位长度
C、向左平行移动 个单位长度D、向右平行移动 个单位长度
13.(2014辽宁)将函数 的图象向右平移 个单位长度,所得图象对应的函数()
13. (2014新课标I)已知 分别为 的三个内角 的对边, =2,且 ,则 面积的最大值为.
2014年广东高考试卷理科数学(含全部答案)
![2014年广东高考试卷理科数学(含全部答案)](https://img.taocdn.com/s3/m/ab2e452aa5e9856a5612601b.png)
2014年普通高等学校招生全国统一考试(广东卷)数学(理)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1} 答案:B2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+ 答案:A 2525(34)25(34):=34,.34(34)(34)25i i z i i i i --===-++-提示故选A 3.若变量,x y 满足约束条件121y xx y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.5:(),(2,1)(1,1)3,3,6,.CM m M m C --==-∴-=答案:提示画出可行域略易知在点与处目标函数分别取得最大值与最小值选4.若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等09,90,250,(9)34(25)9,k k k k k k <<∴->->+-=-=-+答案:D提示:从而两曲线均为双曲线,又25故两双曲线的焦距相等,选D.5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)0222222:(1,0,1)(1,1,0)11:,,60,.2210(1)1(1)0B B -⋅-=∴++-⋅+-+答案提示即这两向量的夹角余弦值为从而夹角为选6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为 A. 200,20 B. 100,20 C. 200,10 D. 100,10::(350045002000)2%200,20002%50%20,.AA ++⋅=⋅⋅=∴答案提示样本容量为抽取的高中生近视人数为:选7.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是 A.14l l ⊥ B.14//l l C.14,l l 既不垂直也不平行 D.14,l l 的位置关系不确定 答案:D 8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5i A x x x x xx i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130答案: D1234511122252551311225254:1,2,31:C 10;:C 40;:C C C 80.104080130,D .x x x x x C C A C C ++++=+=+=++=提示可取和为的元素个数为和为2的元素个数为和为3的元素个数为故满足条件的元素总的个数为选二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 .(][)(][),32,:12532,,32,.-∞-+∞---∞-+∞答案:提示数轴上到与距离之和为的数为和故该不等式的解集为:10.曲线25+=-xe y 在点)3,0(处的切线方程为 .'5'0:530:5,5,35,530.xx x y y eyy x x y -=+-==-∴=-∴-=-+-=答案提示所求切线方程为即11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 .367101:6:67,36,136,.6C C =答案提示要使为取出的个数中的中位数则取出的数中必有个不大于另外个不小于故所求概率为12.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+, 则=ba. 2222222:2::cos cos ,2, 2.sin cos sin cos 2sin ,sin()2sin ,sin 2sin ,2, 2.::2,24,222, 2.ab Cc B a a b bB C C B B B C B aA B a b ba b c a c b b b a ab ab ac aa b b+==∴=+=+=∴==∴=+-+-⋅+==∴==答案提示解法一由射影定理知从而解法二:由上弦定理得:即即解法三由余弦定理得即即13.若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220l n l n l n a a a +++= .51011912101112202019151201011:100:,,ln ln ln ,ln ln ln ,220ln 20ln 20ln 100.a a a a a a e S a a a S a a a S a a a a e =∴==+++=+++∴====答案提示设则(二)选做题(14~15题,考生从中选做一题)14.(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sincos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__221212:(1,1):(sin )cos ,,:1,(1,1).C y x C y C C ρθρθ===∴答案提示即故其直角坐标方程为:的直角坐标方程为与的交点的直角坐标为15.(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则CDF AEF ∆∆的面积的面积=___22:9:,()()9.CDFAEF CDF CD EB AE AEF AE AE∆∆∴∆+===∆答案提示显然的面积的面积三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和 演算步骤.16、(12分)已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf , (1)求A 的值; (2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f . 552332:(1)()sin()sin , 3.121243223(2)(1):()3sin(),4()()3sin()3sin()443(sin cos cos sin )3(sin()cos cos()sin )444423cos sin 46cos 326cos ,(0,),42f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴+-=++-+=++-+-===∴=∈解由得10sin 4331030()3sin()3sin()3sin 3.44444f θπππθθπθθ∴=∴-=-+=-==⨯=17、(13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中121,,n n f 和2f 的值; (2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,50]的概率.(](]12120044472:(1)7,2,0.28,0.08;2525(2);(3),30,50:10.120.88,130,503:1(0.88)(0.12)1().25n n f f C ======-=-=-解略根据频率分布直方图可得工人们日加工零件数落在区间的概率为故至少有人的日加工零件数落在区间的概率为18.(13分)如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =030,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E.(1)证明:CF ⊥平面ADF ;(2)求二面角D -AF -E 的余弦值.:(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则0022,CD 2,30,130,==1,213324,,,=,,,3,2222333319322EG .,7,,42231933193193622,()()474747EHG D AF E DPC CDF CF CD DE CF DE CP EF DC DE DF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴==⋅⋅======⋅⋅∴====-=为二面角的平面角设从而∥即还易求得EF=从而易得故3,476347257cos .1947319GH EHG EH ∴∠==⋅=12:,,,,,2,1(0,0,2),C(0,2,0),P(23,0,0),,(23,22,0),,,43331(,,0),(,0,0),ADF CP (3,1,0),2222AEF (x DP DC DA x y z DC A CF CP F DF CF F E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,43257(4,0,3),.19||||219n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为19.(14分)设数列{}n a 的前n 和为n S ,满足2*1234,n n S na n n n N +=--∈,且315S =. (1)求123,,a a a 的值; (2)求数列{}n a 的通项公式;211222122331212121331221232121:(1)2314127+=432424()204(15)20,+83,,1587,53,5,7,(2)2342,2(1)3(1)4(n n n n a S a a a a S a S a a a a a a a a S a a a a a a S na n nn S n a n n +-==-⨯-⨯=-=-⨯-⨯=---=---∴==⎧∴=--=-=⎨=⎩====--∴≥=-----解①②联立①②解得综上③当时11121)2161,22(1)21,:()(1),1,3211,;(),,21,21611,22211(21)322411322232(1)11n n n k k k n n a a n na n i n a ii n k a k k k n k a a k k k k k k k k k k k n k ++-+-=+=+===⨯+==+-+=+=+-=⋅+++-=++=+=++=+④③④并整理得:由猜想以下用数学归纳法证明由知当时猜想成立假设当时猜想成立即则当时这就是说,,,2 1.n n N a n *∈=+时猜想也成立从而对一切20.(14分)已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为(5,0),离心率为53,(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.222220022002255:(1)5,,3,954,31.94(2),,4(3,2),(3,2).(),(),194(94)18(c c e a b a c a a x y C x y y y k x x x y y k x x y k x k y ====∴==-=-=∴+=-±±-=-=-++=++解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:2000022222200000022220000012202200)9()40,,0,(18)()36()4(94)0,4()4(94)0,4(9)240,,1,:1,913,(3,2),(3,2)kx x y kx k y kx y kx k y kx k y x k x y k y k k x x y ⎡⎤-+--=∆=⎣⎦⎡⎤----+=--+=⎣⎦-∴--+-=∴=-=--∴+=-±±依题意即:即两切线相互垂直即显然这四点也满足以上方22,13.P x y ∴+=程点的轨迹方程为21.(本题14分)设函数2221()(2)2(2)3f x x x k x x k =+++++-,其中2k <-,(1)求函数()f x 的定义域D (用区间表示); (2)讨论()f x 在区间D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示). .解:(1)可知222(2)2(2)30x x k x x k +++++->,22[(2)3][(2)1]0x x k x x k ∴+++⋅++->, 223x x k ∴++<-或221x x k ++>,2(1)2x k ∴+<--(20)k -->或2(1)2x k +>-(20)k ->,|1|2x k ∴+<--或|1|2x k +>-,12k ∴----<12x k <-+--或12x k <---或12x k >-+-, 所以函数()f x 的定义域D 为(,12)k -∞---(12,k ----12)k -+--(12,)k -+-+∞; (2)232222(2)(22)2(22)'()2(2)2(2)3x x k x x f x x x k x x k +++++=-+++++-23222(21)(22)(2)2(2)3x x k x x x k x x k ++++=-+++++-, 由'()0f x >得2(21)(22)0x x k x ++++<,即(1)(1)(1)0x k x k x +++-+<,1x k ∴<---或11x k -<<-+-,结合定义域知12x k <---或112x k -<<-+--, 所以函数()f x 的单调递增区间为(,12)k -∞---,(1,12)k --+--,同理递减区间为(12,1)k -----,(12,)k -+-+∞;(3)由()(1)f x f =得2222(2)2(2)3(3)2(3)3x x k x x k k k +++++-=+++-,2222[(2)(3)]2[(2)(3)]0x x k k x x k k ∴++-++++-+=, 22(225)(23)0x x k x x ∴+++⋅+-=,(124)(124)(3)(1)0x k x k x x ∴++--+---⋅+-=, 124x k ∴=----或124x k =-+--或3x =-或1x =, 6k <-,1(1,12)k ∴∈--+--,3(12,1)k -∈-----,12412k k ----<---,12412k k -+-->-+-, 结合函数()f x 的单调性知()(1)f x f >的解集为(124,12)k k -------(12,3)k -----(1,12)k -+--(12,124)k k -+--+--..。
广东省2014年普通高等学校招生全国统一考试(模拟卷)数学(文)试题(二)
![广东省2014年普通高等学校招生全国统一考试(模拟卷)数学(文)试题(二)](https://img.taocdn.com/s3/m/6b15af12fc4ffe473368ab8e.png)
广东省2014年普通高等学校招生全国统一考试(模拟卷)数学(文)试题(二)本试卷共5页,21小题, 满分150分.考试用时120分钟 参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 用最小二乘法求线性回归方程:()()()1122211.nniiiii i nniii i x x y y x y nx yb a y bx x x xnx====---===---∑∑∑∑,本试卷共6页,21小题,试卷满分:150分。
考试用时:l20分钟。
一、选择题:本大题共l0小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合{}01832<--∈=x x N x A ,[)8,2=B ,则B A =( )A.[)6,2B.()8,3-C.{}5,4,3,2D.{}7,6【原创】考察一元二次不等式的解法,特殊数集的记忆,区间的理解,集合的运算。
2.复数i z 32-=的共轭复数记为z ,则iz的实部是 ( ) A.2 B.-2 C.3 D.-3【原创】考察复数概念、共轭复数概念,以及复数乘除法运算。
3.向量)1,1(=a ,)3,2(-=b ,若b a k 2-与a 垂直,则实数k =( ) A .1 B .-1 C .0 D .-2 【原创】考察向量的坐标运算以及向量垂直。
4.给出下列四个函数:31x y =,x y )23(=,x y ln =,x y sin =,其中既是奇函数,又在()+∞,0上是增函数的有( )A .0个B .1个C .2 个D .3个 【原创】考察基本初等函数的基本性质。
5.若r n m ,,为正整数,在等比数列{}n a 中:“r 是m 和n 的等差中项”是“r a 是m a 和n a 的等比中项”成立的( )A.充分必要条件B.必要非充分条件C.充分非必要条件D.既不充分也不必要条件【原创】考察逻辑推理与证明。
2014年普通高等学校招生全国统一考试冲刺1:理科数学(新课标全国卷)(含答案)(word版)
![2014年普通高等学校招生全国统一考试冲刺1:理科数学(新课标全国卷)(含答案)(word版)](https://img.taocdn.com/s3/m/2617882e192e45361066f538.png)
【新课标全国卷】
2014年普通高等学校招生全国统一考试冲刺1
数学(理科)
第Ⅰ卷(选择题 共60分)
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 集合{||1|2}A x x =-<,1{|
39}3x B x =<<,则A B = A .(1,2) B .(1,2)-
C .(1,3)
D .(1,3)- 2.设S n 是公差为(0)d d ≠的无穷等差数列{}n a 的前n 项和,则“d < 0”是“数列{}n S 有最大项”的
A .充要条件
B .充分不必要条件
C .必要不充分条件
D .既不充分也不必要条件
3.ΔABC 中,(cos ,sin )m A A = ,(cos ,sin )n B B =- ,若12
m n ⋅= ,则角C 为 A .3π B .23π C .6
π D .56π 4.已知11e a dx x =⎰,则61()x ax
-展开式中的常数项为 A .20 B .-20 C .-15 D .15
5.正三棱柱ABC —A 1B 1C 1的所有棱长都为2,则异面直线AB 1与BC 1所成角的余弦值为
A .12
B .14
C .23 D
6.已知函数()sin())(0,||)2f x x x πωφωφωφ=++><
,其图象相邻的两条对称轴方程为0x =与2x π
=,则
A .()f x 的最小正周期为2π,且在(0,)π上为单调递增函数
B .()f x 的最小正周期为2π,且在(0,)π上为单调递减函数。
2014年普通高等学校招生全国统一考试(广东模拟卷)数学(文)试题(一) Word版含答案
![2014年普通高等学校招生全国统一考试(广东模拟卷)数学(文)试题(一) Word版含答案](https://img.taocdn.com/s3/m/1ec36f1a5f0e7cd1842536da.png)
2014年普通高等学校招生全国统一考试(广东模拟卷)数学(文科)试题参考答案及评分标准本试卷共5页,21小题, 满分150分.考试用时120分钟 参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 用最小二乘法求线性回归方程:()()()1122211.nniiiii i nniii i x x y y x y nx yb a y bx x x xnx====---===---∑∑∑∑,一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【原创题】已知集合{}{}210,230A x x B y y y =->=+->,则AB =A .()1+∞,B .()(),31-∞-+∞,C. ()1-∞, D .()3-∞-, 【命题意图:考查解简单不等式、集合运算等知识】2.【原创题】已知i 是虚数单位,则31i +=A .iB .i -C .1i +D .1i - 【命题意图:考查复数的化简】3.【原创题】函数()()()()1,0,00,0x x f x x x π+>⎧⎪==⎨⎪<⎩,则(){}1f f f -=⎡⎤⎣⎦A .0B .πC .1π+D .1 【命题意图:考查分段函数求值】 4.【原创题】若()=1,3a ,()=2,x b ,且1a b = ,则x = A .0 B .13 C .1 D .13- 【命题意图:考查向量及向量的数量积运算】5.【原创题】直线0x y -=截圆222210x y x y +--+=所得弦长为 A .2 B .1 C. D【命题意图:考查直线与圆的综合应用】6.【原创题】如果执行图1的程序框图,那么输出的S 是A .6B .24C .120D .720 【命题意图:考查程序框图】7.【原创题】已知某几何体的三视图如图2所示,则该几何体的表面积是 A .9 B .172 C .112D .1【命题意图:考查空间几何体的三视图、求表面积等知识】8.【原创题】设标量x ,y 满足约束条件,1,2,y x y x x k ≤⎧⎪⎪≥⎨⎪≤⎪⎩且目标函数2z x y =-的最大值为4,则k =A .4B .43 C .2 D .83【命题意图:考查直线、线性规划求最优解等知识】9.【改编题】设ABC ∆的内角A BC 、、所对的边分别是a b c 、、,若c o s c o s s i n a B b A c C +=,则ABC ∆的形状为A .直角三角形B .锐角三角形C .钝角三角形D .不确定 【命题意图:考查正弦定理、三角函数的诱导公式等知识】10.【原创题】已知方程()log 0,0,1a x b a a -=>≠有且只有二个解,则A .=1bB .=0bC .1b >D .0b >【命题意图:考查函数思想与数形结合思想的应用】二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.【原创题】设32παπ⎛⎫∈ ⎪⎝⎭,,且3tan 4α=,则sin α= . 【命题意图:考查同角异名三角函数求值】12.【原创题】某产品的广告费用x (万元)与销售额y (万元)的统计数据表如下表:根据上表得回归直线方程=9.4y x a +,据此模型预报广告费用为6万元的销售额为:_________万元.【命题意图:考查回归直线系数的计算,并能对回归直线方程进行简单应用】13.【原创题】已知数列{}n a ,满足113,21n n a a a +==+,则9=a . 【命题意图:考查递推数列】(二)选做题(14~15题,考生只能从中选做一题) 14.【原创题】(坐标系与参数方程选做题)在极坐标系中,圆2cos 2sin ρθθ=-的圆心O 到直线sin 4πρθ⎛⎫-= ⎪⎝⎭的距离为 . 【命题意图:考查极坐标系、直线、圆、点到直线的距离等知识】15.【原创题】(几何证明选讲选做题)如图3,AB 是圆O 的直径,AD DE =,10AB =,8BD =,则DC = . 【命题意图:考查圆周角定理、相似三角形的性质等知识】三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.【原创题】(本小题满分12分)已知函数()cos2cos f x x x x =-⋅. (1)求()f x 最小正周期及最值;(2)若2παπ⎛⎫∈⎪⎝⎭,,且()2f α=,求()3f πα+的值.【命题意图:考查三角函数的化简、三角函数的周期性与最值、同角三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力】 17.【原创题】(本小题满分12分)为了解某地区用电高峰期居民的用电量,抽取一个容量为200的样本,记录某天各户居民的用电量(单位:度),制成频率分布直方图,如图4. (1) 求样本数据落在区间[10,12]内的频数;(2) 若打算从[4,6)和[6,8)这两组中按分层抽样抽取4户居民作进一步了解,问各组分别抽取多少人?(3) 在(2)的基础上,为答谢上述4户居民的参与配合,从中再随机选取2户居民发放奖品,求这2户居民来不同组的概率是多少?【命题意图:考查统计、分层抽样、频率分布直方图、古典概型等基础知识,考查化归与转化的数学思想方法,以及数据处理能力与应用意识】 18.【原创题】(本小题满分14分)如图5,在四棱锥P ABCD -中,ABCD ,AB AD ⊥,2CD AB =,平面PAD ⊥平面ABCD ,PA AD ⊥.E 和F 分别是CD 和PC 的中点.(1)求证:PA ⊥底面ABCD ;(2)求证:BE平面PAD ;(3)若2PA =,1AB =,3AD =,求三棱锥B EFC -的体积.【命题意图:考查空间线面关系、求几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力】19.【原创题】本小题满分14分)已知数列{}n a 的前n 项和2=n S n ,*n ∈N ,数列{}n b 满足:2n n n b a =⋅,且{}n b 的前n项和记为n T .(1)求数列{}n a 与{}n b 的通项公式; (2)证明:对任意*n ∈N ,2n T ≥恒成立.【命题意图:考查等差数列、错位相减法求数列的前n 项和、不等式、恒成立等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识】20.【改编题】(本小题满分14分)已知直线:1l x my =+过椭圆C :()222210x y a b a b+=>>的右焦点F ,抛物线2x =的焦点为椭圆C 的上顶点,且直线l 交椭圆C 于A 、B 两点.(1)求椭圆C 的方程;(2)若直线l 交y 轴与点M ,且1M A AF λ=,2MB BF λ=,当m 变化时,12λλ+是否为定值?若是,求出这个定值;若不是,请说明理由.【命题意图:考查直线、椭圆的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力】21.【改编题】(本小题满分14分)已知函数()()3221132a f x x a x ax =+--. (1)若曲线()y f x =在点()()11f ,处的切线方程为820x y +-=,求a 的值; (2)当0a ≠时,求函数()f x 的单调区间与极值;(3)若=1a 时,存在实数m ,使得方程()f x m =恰好有三个不同的解,求m 的取值范围.【命题意图:考查函数的导数、曲线的切线方程、函数的极值、函数的单调性、函数的图象等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识】2014年普通高等学校招生全国统一考试(广东模拟卷)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准只给出了一种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共10小题,每小题,满分50分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共5小题,每小题,满分20分.其中14~15题是选做题,考生只能选做一题.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分)(本小题主要考查三角函数的化简、三角函数的周期性与最值、同角三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力)解:(1)1()cos 2cos =2sin 2cos 2=2sin 226f x x x x x x x π⎛⎫⎛⎫=-⋅--⋅-- ⎪ ⎪ ⎪⎝⎭⎝⎭, …3分所以2=2T ππ=.…………………………………………………………………………………………4分 ()max 2f x =⎡⎤⎣⎦;()min 2f x =-⎡⎤⎣⎦.………………………………………………………………………6分(2)由(1)得,()2sin 2=26f παα⎛⎫=--⎪⎝⎭, 得:sin 2=16πα⎛⎫-- ⎪⎝⎭,即32=2,62k k Z ππαπ-+∈.得:5=,6k k Z παπ+∈…………………8分又因为2παπ<<,所以5=6πα.………………………………………………………………………10分 577()()=()=2sin 2363666f f f ππππππα⎛⎫+=+-⋅- ⎪⎝⎭=132sin 6π⎛⎫-⎪⎝⎭=2sin6π-=12=12-⋅-……………………………………………………………………………………12分17.(本小题满分)(本小题主要考查统计、分层抽样、频率分布直方图、古典概型等基础知识,考查化归与转化的数学思想方法,以及数据处理能力与应用意识)解:(1)数据落在区间[10,12]的频率为:()10.0220.0520.1520.192=0.18-⨯+⨯+⨯+⨯……2分数据落在区间[10,12]的频数为:2000.18=36⨯ 人. …………………………………………………4分 (2)数据落在区间[4,6)的频数为:2000.052=20⨯⨯人; 数据落在区间[6,8)的频数为:2000.152=60⨯⨯人.二组频数之比为1:3,……………………………………………………………………………………6分故:从用电量在区间[4,6)度中抽取的人数为:14=14⨯人; (7)分从用电量在区间[6,8)度中抽取的人数为:34=34⨯人;……………………………………………8分(3)记“这2户居民来自不同组”为事件A ,用电量在区间[6,8)度中的3人编号为:1、2、3用电量在区间[4,6)度中的1人编号为:a ………………………………………………………9分则从4户居民中依次随机抽取2户的基本事件有:()1,2,()1,3,()1,a ,()2,3,()2,a ,()3,a 共6种. ………………………………………………………………………………………10分事件B 包含的基本事件有:()1,a ,()2,a ,()3,a ,共3种. ………………………………………………………………11分则31()62P B ==. 所以从4户居民中随机抽取2户,抽到的2户居民来自不同组的概率为12.………………12分18.(本小题满分)(本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)(1)证明:PAD ABCD ⊥面面,且=PAD ABCD AD 面面又PA AD ⊥PA ABCD ∴⊥面………………………………………………………………………………………4分(2)证明:由已知得:AB DE ,ABCD ∴四边形为平行四边形.………………………………6分BE AD ∴,又AD PAD ⊂面,BE PAD ⊄面BE PAD ∴面……………………………………………………………………………………………8分(3)解:B EFC F BEC V V --=,且点F 到平面A B C D的距离等于PA 的一半. ………………………10分1131=13322B EFC F BEC BEC V V S h --=⨯=⨯⨯=.故几何体ABFED 的体积为12.………………………………………………………………………14分 19.(本小题满分)(本小题主要考查等差数列、错位相减法求数列的前n 项和、不等式、恒成立等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识)解:(1)当1n =时,111a S ==;…………………………………………………………………2分当2n ≥时,()221121n n n a S S n n n -=-=--=-.…………………………………………4分21n a n ∴=-,*n N ∈ ………………………………………………………………………………6分()212n n b n ∴=-⋅,*n N ∈…………………………………………………………………………8分(2)123n n T b b b b =++++即()123123252212n n T n =⋅+⋅+⋅+⋅⋅⋅+-⋅------------○1 ○1⨯2:2()2341123252212n nT n +=⋅+⋅+⋅+⋅⋅⋅+-⋅ -----------------○2 ○1-○2:()12312222222212n n n T n +-=+⋅+⋅+⋅⋅⋅+⋅-- ()()123122222212n n n +=+++⋅⋅⋅+--()()114122221212n n n -+-=+---()6426nn =--……………………………………………………………………………12分()4626n n T n ∴=-+n T 随着n 的增大而增大,12n T T ∴≥=,2n T ∴≥,对任意n N *∈恒成立. …………………………………………………………………………14分20.(本小题满分)(本小题主要考查直线、椭圆的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解:因直线:1l x my =+过椭圆()222210x y C a b a b +=>>:的右焦点F ,令0y =得1x =,所以()1,0F ,即1c =,又抛物线的焦点坐标为()0,3,,所以b =………………………………………1分由222a b c =+得:24a =,…………………………………………………………………………………2分所以椭圆C 的方程为:22143x y += ………………………………………………………………………4分 (2)证明:由题意知0m ≠,且直线l 交y 轴于点10M m ⎛⎫- ⎪⎝⎭,,………………………………………5分设直线l 交椭圆于点()11,A x y ,()22,B x y .联立方程221143x my x y =+⎧⎪⎨+=⎪⎩,消去x 得()2234690my my ++-=.所以()()()222=6363414410m m m ++=+>,由根与系数的关系知:122634m y y m +=-+,122934y y m ⋅=-+.………………………………………………………………9分 又由1MA AF λ=得()111111,1,x y x y m λ⎛⎫+=-- ⎪⎝⎭,所以111=1my λ--, 同理,221=1my λ--,所以1212111=2m y y λλ⎛⎫+--+ ⎪⎝⎭…………………………………………11分因为1222121211692===34343y y m my y y y m m +⎛⎫+-⋅- ⎪⋅++⎝⎭,…………………………………………12分 所以1212111=2m y y λλ⎛⎫+--+ ⎪⎝⎭=12128=233m m λλ+--=-. 即当m 变化时,12λλ+为定值83-.…………………………………………………………………14分21.(本小题满分)(本小题主要考查函数的导数、曲线的切线方程、函数的极值、函数的单调性、函数的图象等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识)解:(1)因为()()221f x ax a x a '=+--由题意可得()()211=8f a a a '=+---,2=9a ,解得=3a ±.………………………………………2分当=3a 时,()3243f x x x x =--,()16f =-,()2383f x x x '=+--,()18f '=-,故曲线()y f x =在点()()1,1f 处的切线方程为()681y x +=--.即820x y +-=; 当=3a -时,()3243f x x x x =--+,()12f =-,切点为()1,2-,曲线()y f x =在点()()1,1f 处的切线方程为()281y x +=--.即860x y +-=不合题意舍去.综上,=3a .……………………………………………………………………………………………………4分(2)()()221f x ax a x a '=+--=()()1x a ax -+=()1a x a x a ⎛⎫-+⎪⎝⎭.……………………………5分分二种情况讨论:当0a >时,令()0f x '=,解得11x a=-,2x a =.当x 变化时,()f x '、()f x 的变化情所以()f x 在区间1,a ⎛⎫-∞- ⎪⎝⎭,(),a +∞内为增函数,在区间1,a a ⎛⎫- ⎪⎝⎭内为减函数. ……………6分 函数()f x 在2x a=处取得极小值()f a ,且()f a =()3224211113262a a a a a a a a ⨯+--⨯=--,函数()f x 在11x a=-出取得极大值1f a ⎛⎫- ⎪⎝⎭,且()3221111=1132a f a a a a ⎛⎫⎛⎫-⨯-+-⨯+ ⎪ ⎪⎝⎭⎝⎭ 21162a =+.………………………………………………………………………………………………………7分当0a <时,令()0f x '=,解得1x a =,21x a=-,当x 变化时,()f x '、()f x 的变化所以()f x 在区间(),a -∞,1,a ⎛⎫-+∞ ⎪⎝⎭内为减函数,在区间1a a⎛⎫- ⎪⎝⎭,内为增函数. ………………8分 函数()f x 在1x a=处取得极小值()f a ,且()f a =()3224211113262a a a a a a a a ⨯+--⨯=--,函数()f x 在21x a=-处取得极大值1f a ⎛⎫- ⎪⎝⎭,且()32211111=132a f a a a a a a ⎛⎫⎛⎫⎛⎫-⨯-+-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21162a =+.…………………………………………………………………………………………………10分 (3)当=1a 时,()313f x x x =-,()2=1f x x '-,由(2)知()313f x x x =-在区间()1-∞-,, ()1+∞,内为增函数,在区间()11-,内为减函数. ………………………………………………………11分 函数()f x 在21x =处取得极小值()1f ,且()1121=623f --=-,…………………………………12分函数()f x 在11x =-处取得极大值()1f -,且()1121=623f --=,…………………………………13分如图,分别作出()313f x x x =-与直线x m =的图象,从图象上可以看出当2233x -<<时,两个函数的图象有三个不同的交点,即方程()f x m =有三个不同的解.故m 的取值范围是2233⎛⎫- ⎪⎝⎭,.……………………………………………………………………………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年普通高等学校招生全国统一考试(广东卷)数学(理科)cbw一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1}M =-,{0,1,2}N =,则M N = A.{1,0,1}- B.{1,0,1,2}- C.{1,0,2}- D.{0,1} 2.已知复数Z 满足(34)25i z +=,则Z=A.34i -B.34i +C.34i --D.34i -+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为m 和n ,则m n -=A.8B.7C.6D.54.若实数k 满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的 A.离心率相等B.虚半轴长相等C.实半轴长相等D.焦距相等5.已知向量()1,0,1a =-,则下列向量中与a 成60︒夹角的是A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)6.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是A.200,20B.100,20C.200,10D.100,107.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是 A.14l l ⊥ B.14//l l C.14,l l 既不垂直也不平行 D.14,l l 的位置关系不确定 8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
10.曲线25+=-xe y 在点)3,0(处的切线方程为 。
11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 。
12.在AB C ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+,则=ba。
13.若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220l n l n l n a a a +++= 。
(二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=和小学 初中高中 年级 Osin 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,则曲线1C 和2C 交点的直角坐标为_________.15.(几何证明选讲选做题)如图3,在平行四边形ABCD 中, 点E 在AB 上且AE EB 2=,AC 与DE 交于点F ,则=∆∆的面积的面积AEF CDF三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf , (1)求A 的值; (2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f 。
17.(本小题满分13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36,根据上述数据得到样本的频率分布表如下:分组 频数 频率 [25,30 ] 3 0.12 (30,35 ] 5 0.20 (35,40 ] 8 0.32 (40,45 ] n 1 f 1 (45,50 ] n 2 f 2(1)确定样本频率分布表中121,,n n f 和2f 的值; (2)根据上述频率分布表,画出样本频率分布直方图; (3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率。
18.(本小题满分13分)如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,030DPC ∠=,AF PC ⊥于点F ,//FE CD ,交PD 于点E . (1)证明:CF ADF ⊥平面(2)求二面角D AF E --的余弦值。
19.(本小题满分14分)设数列{}n a 的前n 和为n S ,满足2*1234,n n S na n n n N +=--∈,且315S =, (1)求123,,a a a 的值;(2)求数列{}n a 的通项公式。
20.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程。
21.(本小题满分14分)设函数()f x =,其中2k <-,(1)求函数()f x 的定义域D (用区间表示); (2)讨论函数()f x 在D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示)。
CA FD A B CD EFP2014年普通高等学校招生全国统一考试(广东卷)数学(理科)参考答案 成本文 6/8/20141-8:BACD BADD;8.解:A 中元素为有序数组()12345,,,,x x x x x ,题中要求有序数组的5个数中仅1个数为1±、仅2个数为1±或仅3个数为1±,所以共有123555222222130C C C ⨯+⨯⨯+⨯⨯⨯=个不同数组;9.(,3)(2,)-∞-+∞; 10.53y x =-+; 11.16; 12.2; 13.50; 14.(1,1); 15.9;11.解:6之前6个数中取3个,6之后3个数中取3个,336331016C C P C ⋅==; 16.解:(1)553()sin()121242f A πππ=+=,32A ∴=,A =()f -θ()f θ(2)3()()))f f +-=+-+=ππθθθθ,3cos )sin cos )]2+-+=θθθθ,32=θ,cos =θ,又)2,0(πθ∈,sin ∴==θ,)43(θπ-f )=-==πθθ.17. 解:(1)127,2n n ==,120.28,0.08f f ==;(2)样本频率分布直方图为(3)根据样本频率分布直方图,每人的日加工零件数落在区间(30,35]的概率0.2, 设所取的4人中,日加工零件数落在区间(30,35]的人数为ξ,则~(4,0.2)B ξ,4(1)1(0)1(10.2)10.40960.5904P P ξξ≥=-==--=-=,所以4人中,至少有1人的日加工零件数落在区间(30,50]的概率约为0.5904.18.(1)PD ⊥平面ABCD ,PD AD ∴⊥,又CD AD ⊥,PD CD D =, AD ∴⊥平面PCD ,AD PC ∴⊥,又AF PC ⊥,PC ∴⊥平面ADF ,即CF ADF ⊥平面;(2)设1AB =,则Rt PDC ∆中,1CD =,又DPC ∠=2PC ∴=,PD =,由(1)知CF DF ⊥DF ∴=AF ==12CF ∴,又//FE CD ,14DE CF PD PC ∴==,DE ∴=,同理3344EF CD ==,如图所示,以D 为原点,建立空间直角坐标系,则(0,0,1)A E ,3,0)F ,P ,(0,1,0)C ,设(,,)m x y z =是平面AEF 的法向量,则m AE m EF ⎧⊥⎨⊥⎩,又3(3(0,,0)4AE EF ⎧=⎪⎨=⎪⎩,所以304304m AE x z m EF y ⎧⋅=-=⎪⎨⋅==⎪⎩,令4x =,得z =m =, 由(1)知平面ADF 的一个法向量(,0)PC =, 设二面角D AF E --的平面角为θ,可知θ为锐角,||cos |cos ,|||||m PC m PC m PC ⋅=<>==⋅θ=,即所求.19.解:23420S a =-,3233520S S a a =+=-,又315S =,37a ∴=,234208S a =-=,又212222(27)37S S a a a a =+=-+=-, 25a ∴=,112273a S a ==-=, 综上知13a =,25a =,37a =;(2)由(1)猜想21n a n =+,下面用数学归纳法证明. ①当1n =时,结论显然成立;②假设当n k =(1k ≥)时,21k a k =+,则3(21)357(21)(2)2k k S k k k k ++=++++=⨯=+,又21234k k S ka k k +=--,21(2)234k k k ka k k +∴+=--,解得1246k a k +=+, 12(1)1k a k +∴=++,即当1n k =+时,结论成立;由①②知,*,21n n N a n ∀∈=+.20.解:(1)可知c =c a =3a ∴=,2224b a c =-=,椭圆C 的标准方程为22194x y +=; (2)设两切线为12,l l ,①当1l x ⊥轴或1//l x 轴时,对应2//l x 轴或2l x ⊥轴,可知(3,2)P ±±;②当1l 与x 轴不垂直且不平行时,03x ≠±,设1l 的斜率为k ,则0k ≠,2l 的斜率为1k-,1l 的方程为00()y y k x x -=-,联立22194x y +=, 得2220000(94)18()9()360k x y kx kx y kx ++-+--=,因为直线与椭圆相切,所以0∆=,得222200009()(94)[()4]0y kx k k y kx --+--=,2200364[()4]0k y kx ∴-+--=,2220000(9)240x k x y k y ∴--+-=所以k 是方程2220000(9)240x x x y x y --+-=的一个根, 同理1k-是方程2220000(9)240x x x y x y --+-=的另一个根,1()k k ∴⋅-=202049y x --,得220013x y +=,其中03x ≠±, 所以点P 的轨迹方程为2213x y +=(3x ≠±),因为(3,2)P ±±满足上式,综上知:点P 的轨迹方程为2213x y +=.21.解:(1)可知222(2)2(2)30x x k x x k +++++->,22[(2)3][(2)1]0x x k x x k ∴+++⋅++->, 223x x k ∴++<-或221x x k ++>,2(1)2x k ∴+<--(20)k -->或2(1)2x k +>-(20)k ->,|1|x ∴+<|1|x +>1∴-1x <-或1x <-或1x >- 所以函数()f x 的定义域D 为(,1-∞-(1-1-(1)-+∞;(2)22(2)(22)2(22)'()x x k x x f x +++++=-2(21)(22)x x k x ++++=-, 由'()0f x >得2(21)(22)0x x k x ++++<,即(111)0x x x +++<,1x ∴<-11x -<<-,结合定义域知1x <-或11x -<<-,所以函数()f x的单调递增区间为(,1-∞-,(1,1--,同理递减区间为(11)--,(1)-+∞;(3)由()(1)f x f =得2222(2)2(2)3(3)2(3)3x x k x x k k k +++++-=+++-,2222[(2)(3)]2[(2)(3)]0x x k k x x k k ∴++-++++-+=, 22(225)(23)0x x k x x ∴+++⋅+-=,(11(3)(1)0x x x x ∴++⋅+-=,1x ∴=-1x =-或3x =-或1x =,6k <-,1(1,1∴∈--,3(11)-∈--,11--11->- 结合函数()f x 的单调性知()(1)f x f >的解集为(11--(13)--(1,1-(11--.侨中成本文于2014-6-8。