简单三角恒等变换,一轮复习总结

合集下载

三角恒等变换专题总结复习

三角恒等变换专题总结复习

三角恒等变换【知识分析】1、本章网络结构2、要点概述(1)求值常用的方法:切割化弦法,升幂降幂法,和积互化法,辅助元素法,“1”的代换法等。

(2)要熟悉角的拆拼、变换的技巧,倍角与半角的相对性,如是的半角,是的倍角等。

(3)要掌握求值问题的解题规律和途径,寻求角间关系的特殊性,化非特殊角为特殊角,正确选用公式,灵活地掌握各个公式的正用、逆用、变形用等。

(4)求值的类型:①“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合和差化积、积化和差、升降幂公式转化为特殊角并且消降非特殊角的三角函数而得解。

②“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系。

③“给值求角”:实质上可转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角。

(5)灵活运用角和公式的变形,如:,等,另外重视角的范围对三角函数值的影响,因此要注意角的范围的讨论。

(6)合一变形(辅助角公式)把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的形式。

,其中.(7)化简三角函数式常有两种思路:一是角的变换(即将多种形式的角尽量统一),二是三角函数名称的变化(即当式子中所含三角函数种类较多时,一般是“切割化弦”),有时,两种变换并用,有时只用一种,视题而定。

(8)三角恒等变换方法观察(角、名、式)→三变(变角、变名、变式)① “变角”主要指把未知的角向已知的角转化,是变换的主线,如α=(α+β)-β=(α-β)+β, 2α=(α+β)+ (α-β), 2α=(β+α)-(β-α),α+β=2·,= (α-)-(-β)等.②“变名”指的是切化弦(正切余切化成正弦余弦),③“变式’指的是利用升幂公式和降幂公式升幂降幂,利用和角和差角公式、合一变形公式展开和合并等。

三角恒等变换高考数学中的关键知识点总结

三角恒等变换高考数学中的关键知识点总结

三角恒等变换高考数学中的关键知识点总结三角恒等变换是高考数学中的重要内容,涉及到三角函数的性质和等价关系。

在解决三角函数相关题目时,熟练掌握三角恒等变换可帮助我们简化计算和推导过程,提高解题效率。

本文将对三角恒等变换中的关键知识点进行总结。

一、基本恒等式1. 余弦、正弦和正切的平方和恒等式:$cos^2(x) + sin^2(x) = 1$$1 - tan^2(x) = sec^2(x)$$1 - cot^2(x) = csc^2(x)$这些恒等式是三角函数中最为基础的恒等式,也是其他恒等式的基础。

通过这些基本恒等式,我们可以推导出其他更复杂的恒等式。

2. 三角函数的互余关系:$sin(\frac{\pi}{2} - x) = cos(x)$$cos(\frac{\pi}{2} - x) = sin(x)$$tan(\frac{\pi}{2} - x) = \frac{1}{cot(x)}$$cot(\frac{\pi}{2} - x) = \frac{1}{tan(x)}$互余关系表明,角度x和其余角之间的三角函数之间存在特定的关系。

3. 三角函数的倒数关系:$sin(-x) = -sin(x)$$cos(-x) = cos(x)$$tan(-x) = -tan(x)$$cot(-x) = -cot(x)$三角函数的倒数关系表明,对于同一角度的正负,其正弦、余弦、正切和余切的值也是相反的。

二、和差恒等式和差恒等式是三角恒等变换中的重要内容,它们可用于将角度的和或差转化为其他三角函数表示,从而简化解题过程。

1. 正弦和差恒等式:$sin(x \pm y) = sin(x)cos(y) \pm cos(x)sin(y)$2. 余弦和差恒等式:$cos(x \pm y) = cos(x)cos(y) \mp sin(x)sin(y)$3. 正切和差恒等式:$tan(x \pm y) = \frac{tan(x) \pm tan(y)}{1 \mp tan(x)tan(y)}$这些和差恒等式在解决角度和为特定值时的三角函数计算中起到了重要的作用。

5.5.2-简单的三角恒等变换 2025年高考数学知识点题型及考项复习

5.5.2-简单的三角恒等变换 2025年高考数学知识点题型及考项复习

+ cos

2


sin
2
2


2
,
= cos


cos
2
2
+ sin


sin ,
2
2
即 sin

2
所以sin
即tan

2

2
π
4

2
− cos

2
− cos
cos

2
= 1或tan

2

2
= 0或cos

2
故 =
π
4
=

2

2
= 0,
− sin

2
= 0,
= 1,又, ∈ 0, π
故 = 或 = .
cos = ± 1 −
π−
所以cos
2
=
5 2
13
=
π−
,则底角为
,由题意可知sin
2
12
π−
± ,所以cos
13
2
26 5 26

.
26
26
=

sin
2
=
1−cos
2
5
,所以
13
=
12
=
1±13
2
,
sin 4
6.化简:
1+cos 4

cos 2
1+cos 2
cos

1+cos
的交点,则( ABD
)
图5.5.2-1

2025年高考数学一轮复习-5.3.2-简单的三角恒等变换【课件】

2025年高考数学一轮复习-5.3.2-简单的三角恒等变换【课件】

因为由二倍角公式可知:cos
因为tan




1+cos
2
2
θ=2cos -1,所以cos =
,因此(3)错误;
2
2

2


sin 2 2sin 2 cos 2
sin
sin 2 2sin 2 cos 2 1−cos
= =
,tan = =
,所以(4)正确.
=
=
2
2
2 cos
π
提醒:以上变换,结合二倍角公式可将2x的三角函数与 ±x的三角函数联系在一起.
4
角度3
给值求角
[例4](1)已知α为锐角,且sin α·( 3-tan 10°)=1,则α= 40°
【解析】由已知得sin α=
=
cos10°
=
sin80°
2sin50° 2sin50°
1
3−tan10°
2sin40°cos40°
考向
高考命题常以角为载体,考查二倍角公式、升幂降幂公式、半角公
考法
式;三角函数求值是高考热点,常以选择题或填空题的形式出现.
预测
高考可能单独考查,也可能与三角函数的图象与性质、向量等知识
综合考查,选择题、填空题、解答题中均有可能出现.
必备知识·逐点夯实
知识梳理·归纳
1.二倍角的正弦、余弦、正切公式

(2cos2 −1)2
cos2 2
=
=
π
π
π
4sin( 4 −)cos( 4 −) 2sin( 2 −2)
cos2 2 1
=
= cos
2cos2 2

简单的三角恒等变换(一轮复习)

简单的三角恒等变换(一轮复习)

—————
————————————
公式 asin x+bcos x= a2+b2sin(x+φ)的应用及注意事项
(1)利用 asin x+bcos x= a2+b2sin(x+φ)把形如 y= asin x+bcos x+k 的函数化为一个角的某种函数的一次 式,可以求三角函数的周期、单调区间、值域和最值、对 称轴等. (2)该公式是逆用两角和的正弦公式得到的. φ 为特 当 3 a 殊角即|b|的值为 1 或 3 时要熟练掌握.对 φ 是非特殊 3 角时,只要求会求最值即可.
—————
————————————
已知三角函数式的值, 求其他三角函数式值的一般思路
(1)先化简所求式子;
(2)观察已知条件与所求式子之间的联系(从三角函数 名及角入手); (3)将已知条件代入所求式子,化简求值. ————————————————————————
π 3 12 2.已知 sin(2α-β)=5,sin β=-13,且 α∈2,π,β∈ π - ,0,求 sin α 的值. 2 π 解:∵2<α<π,∴π<2α<2π.
1-cos 2α-sin 2α 保持本例条件不变,求 的值. 1+cos 2α-sin 2α
1-cos 2α-sin 2α 2sin2α-2sin αcos α 解: = 1+cos 2α-sin 2α 2cos2α -2sin αcos α 2sin αsin α-cos α 1 = =-tan α=3. 2cos αcos α-sin α
-sin 20° 1 = 2sin 20°=-2.
答案:B
2sin 2-1 π 3.若 f(x)=2tan x- x x ,则 f12的值为 sin2cos2 4 A.-3 3 B.8

年高考数学一轮总复习三角恒等变换的证明与综合运用题解析

年高考数学一轮总复习三角恒等变换的证明与综合运用题解析

年高考数学一轮总复习三角恒等变换的证明与综合运用题解析三角恒等变换是高中数学学科中的重要内容,它是通过对三角函数中等式关系的变换和推导,来解决问题和证明定理的方法之一。

在高考数学中,三角恒等变换经常被用来解决各种类型的综合运用题。

本文将对三角恒等变换的证明与综合运用题进行解析。

一、三角恒等变换的基本形式三角恒等变换是指将一个三角函数的表达式转化为另一个等价的三角函数的表达式,或者将一个三角函数的等式变换为另一个等价的三角函数的等式。

根据等式的关系,三角恒等变换可以分为以下几种基本形式:1. 三角函数的平方和差恒等变换:\[ \sin^2 \theta + \cos^2 \theta = 1 \]\[ \sin^2 \theta - \cos^2 \theta = \sin^2 \theta - (1 - \sin^2 \theta) = 2\sin^2 \theta - 1 \]\[ \cos^2 \theta - \sin^2 \theta = \cos^2 \theta - (1 - \cos^2 \theta) =2\cos^2 \theta - 1 \]2. 三角函数的倍角恒等变换:\[ \sin 2\theta = 2\sin \theta \cos \theta \]\[ \cos 2\theta = \cos^2 \theta - \sin^2 \theta \]\[ \tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta} \]3. 三角函数的半角恒等变换:\[ \sin \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{2}} \]\[ \cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{2}} \]\[ \tan \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \]二、三角恒等变换的证明三角恒等变换的证明通常需要运用基本的三角函数定义和三角函数的性质,以及一些代数化简的方法。

2023年高考数学一轮总复习第20讲:三角恒等变换

2023年高考数学一轮总复习第20讲:三角恒等变换
2sinθ cos θ+2 sin2 θ
sinθ


=tan θ.
2sinθ cos θ+2 cos2 θ cos θ
sin 2α+β
(2)化简:
sin α
-2cos (α+β)=________.
sin β
sin α
答案:
sin 2α+β −2 sin α cos α+β
sin α
sin α+ α+β −2 sin α cos α+β
2 2 cos 5°− 2 sin 5°

cos 5°−sin 5°
= 2.
角度2|给值求值
[例3] (1)[2020·全国卷Ⅰ]已知α∈(0,π),且3cos 2α-8cos α=5,
则sin α=(
)
A.
5
3
2
B.
3
1
C.
3
D.
5
9
答案:A
解析:由3cos 2α-8cos α=5,得3(2cos2α-1)-8cosα-5=0,即3cos2α-
周期为________,最小值为________.
答案:π 2
解析:f(x)= 3sin2x+cos 2x+1+3
= 3sin 2x+cos 2x+4
π
=2sin 2x + +4.
6
∴最小正周期为T=π,最小值为2.
题组三 易错自纠
1.设α、β是锐角,且cos α=
2 5
A.
5
2 5 2 5
C. 或



1−tanx
1−tanx
cos
7 2

高考一轮复习简单的三角恒等变换

高考一轮复习简单的三角恒等变换

【解析】(1)错误.α在第一象限时, 在第一或第三象限. 当 在第一象限时, sin 1 cos ,当 在第三象限时,
2 1 cos sin . 2 2 2
2
2
2
(2)错误.此式子必须使tan 有意义且1+cosα≠0.即
≠kπ+ 且α≠2kπ+π,即α≠(2k+1)π(k∈Z). 2 2 2
θ θ θ θ θ cos 2cos 2 )(sin -cos ) 2 2 2 2 2 【解析】原式= θ 4cos 2 2 θ θ θ θ cos (sin 2 -cos 2 ) -cos cos θ 2 2 2 2 , θ θ | cos | | cos | 2 2 (2sin
因为0<θ<π,所以0< θ π ,所以cos θ >0,
x 2 +1=cos 1 x+2, 【解析】因为y=2· 2 2 所以函数的最小正周期T= 2π =4π. 1 2 1 cos
.
答案:4π
(2)(必修4 P143B组T2改编)若sin80°=m,则用含m的式子表示
cos5°=
.
【解析】由题意,得sin80°=cos10°=m, 又cos10°=2cos25°-1, 所以2cos25°-1=m,cos25°= 所以cos5°= 答案: 2 2m
1 2
=_______.
【解析】原式=
2cos 2 x cos 2 x 1
π π 2tan( x) sin 2 ( x) 4 4 1 1 1 2 2cos 2 xsin 2 x sin 2x 2 2 2 = = π π 2sin( x) 2cos( x) π π 4 4 sin 2 ( x) sin 2 ( x) π π 4 4 cos( x) sin( x) 4 4 1 cos 2 2x 1 = 2 = cos 2x. π sin ( 2x) 2 2 答案: 1 cos 2x 2

高中数学三角恒等变换知识点归纳总结

高中数学三角恒等变换知识点归纳总结

高中数学三角恒等变换知识点归纳总结1. 基本定义三角恒等变换是指在三角函数运算中,通过等式的变换,得到具有相同意义但表达形式不同的等价关系。

2. 基本恒等式- 正弦函数的基本恒等式:$\sin^2\theta + \cos^2\theta = 1$- 余弦函数的基本恒等式:$1 + \tan^2\theta = \sec^2\theta$- 正切函数的基本恒等式:$1 + \cot^2\theta = \csc^2\theta$3. 和差恒等式- 正弦函数的和差恒等式:$\sin(\alpha \pm \beta) =\sin\alpha\cos\beta \pm \cos\alpha\sin\beta$- 余弦函数的和差恒等式:$\cos(\alpha \pm \beta) =\cos\alpha\cos\beta \mp \sin\alpha\sin\beta$- 正切函数的和差恒等式:$\tan(\alpha \pm \beta) =\dfrac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha\tan\beta}$4. 二倍角恒等式- 正弦函数的二倍角恒等式:$\sin2\theta = 2\sin\theta\cos\theta$ - 余弦函数的二倍角恒等式:$\cos2\theta = \cos^2\theta -\sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$- 正切函数的二倍角恒等式:$\tan2\theta = \dfrac{2\tan\theta}{1 - \tan^2\theta}$5. 三倍角恒等式- 正弦函数的三倍角恒等式:$\sin3\theta = 3\sin\theta -4\sin^3\theta$- 余弦函数的三倍角恒等式:$\cos3\theta = 4\cos^3\theta -3\cos\theta$- 正切函数的三倍角恒等式:$\tan3\theta = \dfrac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$6. 半角恒等式- 正弦函数的半角恒等式:$\sin\dfrac{\theta}{2} = \sqrt{\dfrac{1 - \cos\theta}{2}}$- 余弦函数的半角恒等式:$\cos\dfrac{\theta}{2} =\sqrt{\dfrac{1 + \cos\theta}{2}}$- 正切函数的半角恒等式:$\tan\dfrac{\theta}{2} = \dfrac{1 -\cos\theta}{\sin\theta} = \dfrac{\sin\theta}{1 + \cos\theta}$7. 和角恒等式- 正弦函数的和角恒等式:$\sin(\alpha + \beta) =\sin\alpha\cos\beta + \cos\alpha\sin\beta$- 余弦函数的和角恒等式:$\cos(\alpha + \beta) =\cos\alpha\cos\alpha - \sin\alpha\sin\beta$以上是高中数学中常用的三角恒等变换知识点的归纳总结。

高考一轮复习 三角恒等变换复习 知识点+例题+练习

高考一轮复习 三角恒等变换复习 知识点+例题+练习

1.两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=±;βαβαβαsin sin cos cos )cos( =±; tan tan tan()1tan tan αβαβαβ±±=。

2.二倍角公式αααcos sin 22sin =;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;22tan tan 21tan ααα=-。

3.三角函数式的化简常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。

(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。

(1)降幂公式ααα2sin 21cos sin =;22cos 1sin 2αα-=;22cos 1cos2αα+=。

(2)辅助角公式()sin cos sin a x bx x ϕ+=+,sin cos ϕϕ==其中4.三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。

5.三角等式的证明(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。

第5章+第3讲+第2课时+简单的三角恒等变换2024高考数学一轮复习+PPT(新教材)

第5章+第3讲+第2课时+简单的三角恒等变换2024高考数学一轮复习+PPT(新教材)

解析 答案
6.(2021·辽宁省本溪满族自治县高级中学模拟)数学家华罗庚倡导的
5-1 “0.618 优选法”在各领域都应用广泛,0.618 就是黄金分割比 m= 2 的
m 4-m2 近似值,黄金分割比还可以表示成 2sin18°,则2cos227°-1等于( )
A.4
B. 5+1
C.2
D. 5-1
解析 答案
2.化简:22tcaonsπ44x--x2scions22π4x++12x=________.
答案
1 2cos2x
解析
原式=212·cs4oicnsoπ4sπ44--x-xx4·ccooss22xπ4+-1x=4sin2π4c-osx2xc-os1π42-x=2sicnoπ2s2-2x2x
∴-π<2α-β<0,∴2α-β=-34π. 解析
通过求角的某种三角函数值来求角,在选取函数时应遵循 的原则
(1)已知正切函数值,则选正切函数. (2)已知正、余弦函数值,则选正弦或余弦函数.若角的范围是0,π2, 则选正、余弦函数皆可;若角的范围是(0,π),则选余弦函数较好;若角的 范围为-π2,π2,则选正弦函数较好.
A.π6
B.π6或76π
C.π3
D.π3或43π
答案
解析 f(x)= 2sinωx+51π2-π4= 2sinωx+π6.因为 f(x)的图象关于直线 x=1 对称,所以 ω+π6=kπ+π2,k∈Z,解得 ω=kπ+π3,k∈Z,因为 0<ω<6, 所以 ω=π3或 ω=43π,故选 D.
解析
(2)(2021·海口调研)如图,已知 OPQ 是半径为 1,圆心角为π3的扇形, 点 A 在弧 PQ 上(异于点 P,Q),过点 A 作 AB⊥OP,AC⊥OQ,垂足分别为 B,C,记∠AOB=θ,四边形 ACOB 的周长为 l.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档