大学运筹学课程知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.用图解法求解下列线性规划问题,并指出问题具有惟一最优解、无穷多最优解、无界解还是无可行解。
⎪⎩
⎪⎨⎧≤≤≤≤≤++=8
3105120106max 21212
1x x x x x x z
2.将下述线性规划问题化成标准形式。
(1)⎪⎪⎩⎪⎪⎨
⎧≥≥-++-≤+-+-=-+-+-+-=无约束
4,03,2,12321422245243min 43214
32143214
321x x x x x x x x x x x x x x x x x x x x z
解:令z z -=','
'4'
44x x x -=
⎪⎪⎩⎪⎪⎨⎧≥=-+-++-=+-+-+=-+-+-+-+-=0,,,,,,23214
2222455243'max 6
5''4'43216'
'4'43215'
'4'4321''4'4321''4'4321x x x x x x x x x x x x x x x x x x x x x x x x x x x x x z 3.分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基可行解对应
图解法中的可行域的哪个顶点。
⎪
⎩
⎪
⎨
⎧
≥
≤
+
≤
+
+
=
,
8
2
5
9
4
3
5
10
max
2
1
2
1
2
1
2
1
x
x
x
x
x
x
x
x
z
解:①图解法:
②单纯形法:将原问题标准化:
⎪
⎩
⎪
⎨
⎧
≥
=
+
+
=
+
+
+
=
,
,
,
8
2
5
9
4
3
5
10
max
4
2
1
3
2
1
2
1
x
x
x
x
x
x
x
x
x
x
x
x
z
C j10 5 0 0
θ
对应图解法
中的点
C B B b x1x2x3x4
0 x39 3 4 1 0 3
O点
0 x48 [5] 2 0 1 8/5
σj 0 10 5 0 0
0 x321/5 0 [14/5] 1 -3/5 3/2
C点
10 x18/5 1 2/5 0 1/5 4
σj-16 0 1 0 -2
5 x23/2 0 1 5/14 -3/14
B点
10 x1 1 1 0 -1/7 2/7
σj35/2 0 0 -5/14 -25/14
单纯型法步骤:转化为标准线性规划问题;找到一个初始可行解,列出初始单纯型表;最优性检验,求cj-zj ,若所有的值都小于0,则表中的解便是最优解,否则,找出最大的值的那一列,求出bi/aij ,选取最小的相对应的xij ,作为换入基进行初等行变换,重复此步骤。
4.写出下列线性规划问题的对偶问题。
(1)()()()⎪⎪
⎪⎪⎩⎪
⎪⎪⎪⎨⎧==≥=====
∑∑∑∑====n j m i x n j b x m i a x t s x c
z ij j
m i ij i
n
j ij m i n
j ij
ij
,,1;,,10
,,1,,1..min 1111
()⎪⎩⎪⎨⎧==≤++=+=+=∑∑无约束
j i ij
j m i n
i m
j j m i i i y x n j m i c y y t s y b y a w ,,,1;,,1..max 1
1
(2)()()()()⎪⎪
⎪⎪⎩⎪⎪⎪⎪⎨⎧+=<=≥++==<=≤=∑∑∑===n n j x n n j x m m m i b x a m m i b x a t s x c z j j i n j j ij i
n
j j ij n
j j
j ,,1,10,,2,1,1..max 11111
11
1 无约束
()()()()⎪
⎪⎪⎩⎪⎪⎪⎨⎧+=<=≥+==<=≥=∑∑∑===m m i y m m i y n n j c y a n n j c y a t s y b w i i j
m
i i ij j
m
i i ij m
i i
i ,,1,2,10,,1,2,1..min 1111
11
1
无约束