天然气水合物形成原因及影响因素分析
天然气管道输送过程中的水合物形成机制分析

天然气管道输送过程中的水合物形成机制分析天然气是一种在现代社会中广泛使用的清洁能源,其在国家的工业、民生生产中扮演着至关重要的角色。
为了满足日益增长的能源需求,我们需要建设更加完善的天然气输送系统。
然而,在天然气运输过程中,常常会遇到水合物的形成问题。
本文将讨论天然气管道输送过程中的水合物形成机制,并探讨其防治措施。
一、水合物形成的原因1、低温低压环境下天然气和水分子结合而形成水合物。
当天然气的温度和压力在水的存在下降到临界点以下时,天然气中的甲烷、乙烷等气体分子会被水分子“包裹”起来形成水合物。
2、管道内的杂质和微生物会促进水合物的形成。
管道内存在的异物如污垢、灰尘、油脂等均可作为水合物形成的催化剂。
另外,管道中的微生物也是水合物形成的重要催化剂。
二、水合物的危害水合物的形成会导致管道内径变小,阻力增大,甚至堵塞管道。
此外,水合物的形成也会引起管道的腐蚀和破裂,严重危害天然气输送系统的安全性。
三、水合物防治措施1、控制温度和压力。
通过控制天然气输送管道内部的温度和压力,可以减缓水合物的形成速度。
一般情况下,提高管道内的温度和压力可以抑制水合物的形成。
2、清洗管道。
经常对管道进行清洗和维护,可有效减少管道中的异物,从而减少水合物形成的催化剂。
3、使用添加剂。
可添加一定量的防水合物剂,如甲醇、乙醇等混合物,以减少水合物的形成。
4、提高管道的质量。
在天然气输送管道的铺设和设计上,应严格按照标准施工,尽可能减少管道内径变小、弯曲或坡度变化的情况,从而降低水合物形成的风险。
总之,天然气管道输送过程中的水合物形成机制是一个既有理论支撑又有实践指导的工程问题。
合理运用各种技术手段和防治措施,能有效降低水合物对天然气输送系统的危害,提高系统的可靠性和安全性。
第四篇 第一章 天然气水合物

1第一章 天然气水合物第一节 水合物的形成及防止一、天然气的水汽含量天然气在地层温度和压力条件下含有饱和水汽。
天然气的水汽含量取决于天然气的温度、压力和气体的组成等条件。
天然气含水汽量,通常用绝对湿度、相对湿度、水露点三种方法表示。
1.天然气绝对湿度每立方米天然气中所含水汽的克数,称为天然气的绝对湿度,用e 表示。
2.天然气的相对湿度在一定条件下,天然气中可能含有的最大水汽量,即天然气与液态平衡时的含水汽量,称为天然气的饱和含水汽量,用e s 表示。
相对湿度,即在一定温度和压力条件下,天然气水汽含量e 与其在该条件下的饱和水汽含量e s 的比值,用φ表示。
即:se e =φ (1-1)3.天然气的水露点天然气在一定压力条件下与e s 相对应的温度值称为天然气的水露点,简称露点。
可通过天然气的露点曲线图查得,如图1-1所示。
图中,气体水合物生成线(虚线)以下是水合物形成区,表示气体与水合物的相平衡关系。
该图是在天然气相对密度为0.6,与纯水接触条件下绘制的。
若天然气的相对密度不等于0.6和(或)接触水为盐水时,应乘以图中修正系数。
非酸性天然气饱和水含量按下式计算:W =0.983WoC RD Cs (1-2)式中 W ——非酸性天然气饱和水含量,mg/m 3; W 0——由图1-1查得的含水量,mg/m 3; C RD ——相对密度校正系数,由图1-1查得;Cs ——含盐量校正系数,由图1-1查得。
对于酸性天然气,当系统压力低于2100kPa (绝)时,可不对H 2S 和(或)CO 2含量进行修正。
当系统压力高于2100kPa (绝)时,则应进行修正。
酸性天然气饱和水含量按下式计算:2 图1-1 天然气的露点3)W y W y W 0.983(yW S H S H CO CO HC HC2222++= (1-3)式中 W —酸性天然气饱和水含量,mg/m 3;2CO y ,S H 2y ——气体中CO 2,H 2S 的摩尔含量;HC y ——气体中除CO 2,H 2S 以外的其它组分的摩尔含量;W HC ——由图1-1查得的含水量,mg/m 3;2CO W ——CO 2气体含水量,由图1-2查得; S H 2W ——H 2S 气体含水量,由图1-3查得。
天然气水合物形成条件

04
深海环境中天然气水合物形成特 点
深海环境特征描述
01
02
03
高压低温
深海环境具有极高的压力 和相对较低的温度,这是 天然气水合物形成的基本 条件。
沉积物丰富
深海底部沉积物丰富,为 天然气水合物的形成提供 了充足的物质来源。
地质稳定
深海环境地质相对稳定, 有利于天然气水合物的长 期保存和聚集。
未来发展趋势预测
技术进步
随着天然气水合物勘探开发技术的不断进步,未来有望实现商业 化开发,降低开采成本,提高产量和效率。
环保要求
在环保要求日益严格的背景下,天然气水合物开发将更加注重环境 保护和可持续发展。
能源转型
在全球能源转型的大背景下,天然气水合物作为一种清洁、高效的 能源,有望在未来能源结构中占据重要地位。
可燃冰名称由来
01
因其外观像冰,遇火即燃,因此 被 称 为 “ 可 燃 冰”( Combustible ice )。
02
同时,这种天然气水合物又被 称 为“固体瓦斯”或“气冰” ,以 突出其可燃性和固态特征。
02
天然气水合物形成条件概述
高压低温环境要求
压力
天然气水合物的形成需要较高的压力,通常存在于深海沉积 物或高纬度地区的永久冻土中。在这些环境中,压力可以使 气体分子被压缩并接近水分子,从而形成水合物。
06
天然气水合物资源潜力及开发前 景
全球资源潜力评估
资源丰富
全球天然气水合物资源量巨大,据估算,其总有机碳储量是全球 已知煤、石油和天然气总储量的两倍以上。
分布广泛
天然气水合物分布于世界各大洋和陆地永久冻土带,其中海底天 然气水合物资源占主导地位。
天然气水合物的危害与防止(2021年)

( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改天然气水合物的危害与防止(2021年)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes天然气水合物的危害与防止(2021年)一、天然气水合物在一定的温度和压力条件下,含水天然气可生成白色致密的结晶固体,称为天然气水合物(NGHnaturalgashydrate),其密度约为0.88~0.99g/cm3。
天然气水合物是水与烃类气体的结晶体,外表类似冰和致密的雪,是一种笼形晶状包络物,即水分子借氢键结合成笼形晶格,而烃类气体则在分子间作用力下被包围在晶格笼形孔室中。
NGH共有两种结构,低分子的气体(如CH4,C2H6,H2S)的水合物为体心立方晶格;较大的气体分子(如C3H8,iC4H10)则是类似于金钢石的晶体结构。
当气体分子充满全部晶格的孔室时,天然气各组分的水合物分子式可写为CH4·6H20,C2H6·6H20,C3H8·17H20,iC4H10·17H20,H2S·6H20,CO2·6H20。
水合物是一种不稳定的化合物,一旦存在的条件遭到破坏,就会分解为烃和水。
天然气水合物是采输气中经常遇到的一个难题之一。
二、天然气水合物的危害及成因1.天然气水合物的危害在天然气管道输送过程中,天然气水合物是威胁输气管道安全运行的一个重要因素。
能否生成水合物与天然气组成(包括含水量)、压力、温度等条件有关。
天然气通过阻力件(如节流阀、调压器、排污阀等)时,天然气压力升高,气体温度下降。
天然气水合物的形成及处理

汇报完毕 谢谢大家!
天然气水合物容易堵塞的部位
• 如果是冰堵, 它应当处在低洼处最低点 下游距最低点较近的地方; 如果是水合物堵 塞, 应处在比冰堵远一点的地方, 但不会太 远。大的方位可通过听声音和看地形方式, 找出地势较为低洼容易积水的地方,以确定 管道发生水合物堵塞或冰堵的具体位置。
水合物解堵措施
• 1. 注入防冻剂法:一般可从支管、压力表短节、放空管等处注入防冻 剂, 降低水合物形成的平衡曲线。若管线或井筒内发生水合物堵塞, 可 注入甲醇、乙二醇、二甘醇等水合物抑制剂来解除堵塞。具体方法是 将水合物抑制剂加入井筒内, 溶解油管内的水合物, 并随产出气体流动, 解除管线内水合物的堵塞。 • 2. 加热法将天然气的流动温度升至水合物形成的平衡温度以上, 使已 形成的水合物分解。对于地面敷设的集气管线, 可采取在管外用热水 或蒸汽加热管线的方法, 但一般情况下应避免使用明火加热。实验研 究证明, 水合物与金属接触面的温度升至30℃~40℃就足以使生成的 水合物迅速分解 • 3. 降压解堵法卸压解堵的方法在现场应用较广泛。在井场,集气站或 集气管线已形成水合物堵塞时, 可将部分气体经放空管线放空, 使压力 在短时间内下降。当水合物的温度刚一低于管壁温度, 生成的水合物 立即分解并自管壁脱落被气体带出。
天然气水合物的危害
• 水合物在输气干线或输气站某些管段( 弯头) 阀 门、节流装置等处形成后, 天然气的流通面积减少, 从而形成局部堵塞, 其上游的压力增大, 流量减少, 下游的压力降低, 因而影响管道输配气的正常运行。 同时, 水合物若在节流孔板处形成, 还会影响天然 气流量计量的准确性。若不能及时清除水合物, 管 道会发生严重拥堵, 由此导致上游天然气压力急剧 上升, 造成设备损坏和人员伤害事故。 给天然气 的开采、集输和加工带来危害,造成流量下降同时 增加了能量的损耗,严重会使气流断面切断,处 理时很困难又费时。
天然气水合物的形成条件及成因分析

图1天然气水合物晶体结构模型Figure 1Crystal structure model of natural gas hydrate天然气水合物是以CH 4为主,含少量CO 2、H 2S 的气态烃类物质充填或被束缚在笼状水分子结构中形成的冰晶化合物。
在一个烃类气体分子的周围包围着多个水分子,水分子通过氢键紧密缔合成三维网状,将烃类气体分子纳入网状,体中形成水合甲烷,其晶体结构模型如图1。
这些水合甲烷象淡灰色的冰球,可以象酒精块或蜡烛一样燃烧,故称为“可燃冰”,其密度为0.905~0.91g/cm 3,化学式为CH 4·n H 2O ,只要把结构中的“水”去掉,就是一种理想的燃料。
从能源的角度看,天然气水合物可视为高度压缩的天然气。
理论上讲,1m 3的天然气水合物在标准大气压下(0.101MPa )可以释放出164m 3的天然气和0.8m 3的水,其能量密度是煤和黑色页岩的10倍左右,且燃烧几乎不产生有害污染物,是一种新型的清洁环保能源,是公认的地球上尚未开发的、巨大的能源宝库。
世界天然气水合物储量约为2×1016m 3,相当于地球上所有开采石油、天然气和煤的总量的2倍,约为剩余天然气储量(156×1012m 3)的128倍。
海底作者简介:蒋向明(1964—),男,教授级高级工程师,1986年毕业于湘潭矿业学院,中国矿业大学工程硕士。
责任编辑:樊小舟天然气水合物的形成条件及成因分析蒋向明(中国煤炭地质总局水文地质局,河北邯郸056004)摘要:从天然气水合物的晶体结构模型出发,说明了其组成成分及结构特征。
通过对温度—压力平衡条件的差异性分析,揭示了天然气水合物形成的基本条件,对其赋存类型及成因进行了分类,对我国及全球天然气水合物分布情况进行了说明,并以青海木里煤田为例,对天然气水合物的形成条件和成因进行了详细的论述,认为:变质作用及煤化作用使煤田内丰富的煤炭资源不断产生煤层气,当煤层气沿断层破碎带及裂隙运移至含水岩层或含水裂隙时,在温度和压力的作用下遇水形成天然气水合物。
天然气水合物

天然气水合物矿产姓名:张航飞学号:20081004218指导老师:张成、庄新国目录第一章天然气水合物的基本性质第二章天然气水合物的成因类型及主控因素第三章天然气水合物成藏系统第四章天然气水合物的形成机理第五章天然气水合物的识别标志附录参考文献第一章天然气水合物的基本性质一、天然气水合物的基本性质天然气水合物是一种由水分子和气体分子组成的似冰状笼形化合物, 其外形如冰晶状, 通常呈白色,它广泛分布于大陆边缘海底沉积物和永久冻土层中.它的分子式可以用M·nH2O 来表示, 式中M表示“客体”分子, n 表示水合系数. 在这种冰状的结晶体中, 甲烷( CH4) 、乙烷( C2H6) 、丙烷( C3H8) 、异丁烷、常态丁烷、氮( N2) 、二氧化碳( CO2) 和硫化氢( H2S) 等“客体”分子充填于水分子结晶骨架结构的孔穴中, 它们在低温高压( 0℃<T<10℃, P >10 MPa) 条件下通过范德华力稳定地相互结合在一起. 由于天然气水合物中通常含有大量的甲烷或其他碳氢气体分子, 因此极易燃烧, 所以有人称之为“可燃冰”. 它在燃烧后几乎不产生任何残渣和废弃物, 是一种非常洁净的能源.自然界的天然气水合物并非都是白色的, 它还有许多其他的颜色. 如从墨西哥湾海底获取的天然气水合物, 它们呈现绚丽的橙色、黄色, 甚至红色等多种很鲜艳的颜色; 而从大西洋海底Blake Ridge 取得的天然气水合物则呈灰色或蓝色. 赋存于天然气水合物中的一些其他物质( 如油类、细菌和矿物等) 都可能对这些色彩的产生起关键作用 .天然气水合物按产出环境可以分为海底天然气水合物和极地天然气水合物; 按结构类型可分为4类( 表1, 图1) , 即I 型、Ⅱ型、H 型和一种新型的水合物( 它是由生物分子和水分子生成的) . I 型结构的水合物为立方晶体结构, 其笼状格架中只能容纳一些较小分子的碳氢化合物, 如甲烷( C1) 和乙烷( C2) , 以及一些非碳氢气体, 如N2、CO2 和H2S. I 型结构的水合物是由46 个水分子构成2 个小的十二面体“笼子”以容纳气体分子[ 11] , I 型水合物中的甲烷主要是生物成因气. Ⅱ型结构的水合物为菱形晶体结构, 其笼状格架较大, 不但可以容纳甲烷( C1) 和乙烷( C2) , 而且可以容纳较大的丙烷( C3) 和异丁烷( iC4) 分子. H 型结构的水合物, 为六方晶体结构, 具有最大的笼状格架, 可以容纳分子直径大于iC4 的有机气体分子. Ⅱ型水合物和H 型水合物中的烃类主要来源于热成因, 常与油气藏的渗漏有关. Ⅱ型和H 型结构的天然气水合物比I 型的要稳定得多, 它们可以在较高温度和较低压力下保持稳定, 但自然界天然气水合物以I 型为主.图1 天然气水合物晶体结构类型第二章天然气水合物的成因类型及主控因素一、天然气水合物的成因类型依据气体水合物的物理化学特征,充足的水和气体供应是形成自然界天然气水合物的两个基本因素。
天然气管道中水合物影响因素及防控研究

天然气管道中水合物影响因素及防控研究天然气一直是人类的重要能源之一,其在工业、民用、交通等方面都有广泛的应用。
而天然气的运输方式也有多种,其中管道运输成为最主要的一种方式。
然而,天然气管道中混入的水合物却给管道的安全运行带来了诸多挑战。
本文将就天然气管道中水合物的形成原因、影响因素以及目前的防控研究展开论述。
一、水合物的形成原因水合物是指天然气分子和水分子在一定条件下结合而成的晶体物质,形如冰块。
在天然气管道中,当管道内部压力下降或温度下降时,管道中的水气混合物就会产生水合物,水合物越积聚,压力就会逐渐增大,最终可能引发管道事故,给人们带来极大的安全隐患。
因此,了解水合物的形成原因就显得尤为重要。
水合物的形成原因主要有以下两个:1、压力下降在天然气管道中,若气体压力下降,水分子就会跟随着气体分子减少而产生凝聚,逐渐形成水合物。
例如在管道发生泄露时,管道内部气体压力会快速下降,导致水分子和天然气分子结合形成水合物。
2、温度下降在天然气管道中,若气体温度下降,管道内的水气混合物会逐渐形成水合物,尤其是在温度低于0℃时,水合物的生成速度更快。
因此,对天然气管道的温度控制尤为重要。
二、影响因素除了上述两个因素以外,还有其他因素也会影响水合物的形成。
下面将就一些重要的影响因素进行介绍。
1、水分子浓度在气体中水分子的浓度越高,则气体形成水合物的速度也越快。
2、压力当管道中气体压力越大,水和天然气分子的混合度也就越难以形成水合物,而压力降低则反之。
3、温度当管道温度越低,水合物的生成速度则越快。
因此,对天然气管道的温度进行严格控制,可以减缓水合物的生成速度。
4、天然气成分在不同类型的天然气中,其成分组成也不一致,这就会导致水合物的生成速度也可能会不同。
比如说,液态天然气中甲烷和乙烷等组成比例不同,则生成水合物的速度也会有所差异。
三、水合物的防控研究尽管天然气管道中的水合物形成具有一定的规律以及因素,但其形成规律是个极其复杂的过程,许多科学家正在进行水合物的防控研究。
影响水合物形成条件因素敏感性分析

影响水合物形成条件因素敏感性分析宋立群;李玉星;陈玉亮;王武昌【摘要】针对天然气水合物的形成条件影响因素,通过实验测试手段,研究了天然气水合物形成时天然气的组成、酸气含量、水的矿化度、醇类等各种因素对形成的压力温度条件的影响.通过大量的实验数据得出:天然气的组成以及各组分的摩尔份数直接影响水合物形成的热力学条件.在一定的压力下,水的含盆量越高,水合物的生成温度越低.当天然气中含有CO2和H2S等酸性气体时,将提高水合物的生成温度和降低水合物的生成压力,特别是硫化氢的影响尤为显著.醇类和电解质体系对水合物的形成具有较大的抑制作用,相同浓度甲醇的效果优于乙二醇,相同浓度NaCl的抑制效果比CaCl2好.%Many factors such as the composition, acids content, salinity and the alcohol content, influence the formation of the gas hydrate.In order to understand the relationship between the formation conditions and the factors, many data are obtained in the lab test device and obtained that.The gas composition and fraction of each component directly affects the molar thermodynamic hydrate formation conditions.At a certain pressure, the higher the salt content of water, hydrate formation temperature is lower.When the gas containing acid gases such as C02 and H2S, it will enhance the hydrate formation temperature and reduce the hydrate formation pressure, especially the impact of hydrogen sulfide is particularly significant.Alcohols and electrolytes on the formation of large hydrate inhibition,the same concentration of methanol is better than ethylene glycol, the same concentration the inhibitory effect of NaCl better than CaCl2.【期刊名称】《科学技术与工程》【年(卷),期】2011(011)021【总页数】5页(P5075-5079)【关键词】天然气水合物;形成条件;影响因素【作者】宋立群;李玉星;陈玉亮;王武昌【作者单位】中国石油大学(华东),青岛,266555;中国石油大学(华东),青岛,266555;中国石油大学(华东),青岛,266555;中国石油大学(华东),青岛,266555【正文语种】中文【中图分类】TQ542.4一般地,把气体、水与水合物三相共存时的温度和压力称为水合物平衡生成条件,它是由平衡时各相的偏摩尔自由能(化学位)变化所决定的[1]。
天然气水合物

储量介绍
天然气水合物在世界范围内广泛存在,这 一点已得到广大研究者的公认。在地球上大约 有27%的陆地是可以形成天然气水合物的潜在 地区,而在世界大洋水域中约有90%的面积也 属这样的潜在区域。已发现的天然气水合物主 要存在于北极地区的永久冻土区和世界范围内 的海底、陆坡、陆基及海沟中。由于采用的标 准不同,不同机构对全世界天然气水合物储量 的估计值差别很大。
开发及存在问题
沉淀物生成的甲烷水合物含量可能还包含了 2 至 10 倍的已知的 传统天然气量。这代表它是未来很有潜力的重要矿物燃料来源。 然而,在大多数的矿床地点很可能都过于分散而不利于经济开采。 另外面临经济开采的问题还有:侦测可采行的储藏区、以及从水 合物矿床开采甲烷气体的技术开发。 目前,只有四个国家有能力开采“可燃冰”这种矿物,分别为: 美国、日本、印度及中国。 同等条件下,可燃冰燃烧产生的能量比煤、石油、天然气要多出 数十倍,而且燃烧后不产生任何残渣,避免了最让人们头疼的污 染问题。科学家们如获至宝,把可燃冰称作“属于未来的能源”。
成因分析
可燃冰是天然气分子(烷类)被包进水分子中,在海底 低温与压力下结晶形成的。
形成可燃冰有三个基本条件: 温度、压力和原材料。
成因分析
在海底中形成的优势条件 1. 可燃冰可在0℃以上生成,但超过20℃便会分解。而海底温度一般保持 在2~4℃左右。 2. 可燃冰在0℃时,只需30个大气压即可生成,而以海洋的深度,30个大 气压很容易保证,并且气压越大,水合物就越不容易分解。 3. 海底的有机物沉淀,其中丰富的碳经过生物转化,可产生充足的气源。 海底的地层是多孔介质,在温度、压力、气源三者都具备的条件下,可 燃冰晶体就会在介质的空隙间中生成。
作为未来重要的新型能源矿藏——“可燃冰”将首次纳入到能源规 划之中。2011年3月15日,可燃冰将纳入“十二五”能源发展规 划,加快加强勘探和科学研究,以便为未来开发利用奠定基础。 无论是国土资源部,还是国家能源局,对可燃冰的态度都日 渐明确。作为一种新型能源,可燃冰纳入“十二五”能源发展规 划更多的是侧重于勘探和科学研究。 中国在南海、青藏高原冻土带先后发现可燃冰,其中中国作为第 三大冻土大国,具备良好的天然气水合物赋存条件和资源前景。 据科学家粗略估算,远景资源量至少有350亿吨油当量。 虽然开发利用前景广阔,但短期内可燃冰的开采瓶颈却难以 突破。
天然气水合物对环境的影响

天然气水合物对环境的影响天然气水合物(Gas hydrate)是一种天然气与水的非化学计量型笼形晶体化合物,外观为雪花或者松散的冰的固态化合物。
目前发现的天然气水合物以Ⅰ型结构的居多,天然气成分主要是甲烷。
1单位体积的甲烷水合物能够包含标准状况下164单位体积的甲烷。
甲烷是大气中的一种衡量气体,现今大气中的含量约419 ×105 t (相当于317 ×105 kg甲烷碳) ,并以每年约1%的速度递增。
由于甲烷气体呈辐射状活动,因而是一种极强温室气体,其温室效应是二氧化碳的21倍。
而且,甲烷氧化后生成的二氧化碳进入大气中,也会对全球环境产生影响。
根据预算,海底和两极永冻地带的天然气水合物所蕴藏的甲烷总量是大气中甲烷量的3 000倍,如果这些甲烷大规模释放出来,必将对大气成分和大气的热辐射性能造成重大改变,进而使全球气候发生灾难性变化。
因此,加强天然气水合物环境效应的研究对进一步探索全球变暖及海洋环境与生态演变具有重要意义。
天然气水合物不仅可以作为未来石油和天然气的替代资源,而且天然气水合物还有十分重要的环境意义。
由于天然气水合物中有两种温室气体甲烷和二氧化碳的大量存在,天然气水合物与全球气候变化及地质灾害有着十分密切的关系。
1.天然气化合物对海平面的影响全球气温升高,陆地上冰川融化,所形成液态水注入海洋,使得海底的静水压力增大;但同时全球的变暖,使得表层水体温度升高,海流改变方向,经过顶底海水的循环,升温的海水影响到某处蕴藏于海底松散沉积物中的天然气水合物。
静水压力的升高有利于水合物的合成,与水合物接触的海水温度的升高则使水合物趋于分解,但短期海平面升高对水合物影响不大,相反,短时间内温度的升高对水合物的影响要远远大于该时期静水压力增大对水合物的影响,水合物倾向于分解。
温度持续升高,海平面不断提升,静水压力逐渐增加,海底水合物的连续分解,导致沉积物孔隙度加大,海底沉积物的固结程度降低,当积累到一定程度时,即使微小的地质活动亦可能引发全球大陆斜坡带发生大范围滑坡,如此规模的海底滑坡导致水合物分解形成的甲烷大容量地迅速地排入大气中,由此导致全球海平面突然升高。
天然气水合物的形成条件与分布规律

一、天然气水合物的形成条件天然气水合物是一种在极低温和高压下形成的天然气和水的复合物。
它主要形成于海底或极寒地区的冰层下方,具体的形成条件主要包括以下几个方面:1.温度条件:天然气水合物的形成需要极低的温度,在摄氏零下10度至零下20度左右的温度范围内,水分子能够与天然气分子形成结晶结构,形成水合物。
2.压力条件:高压也是天然气水合物形成的重要条件。
海底深层的巨大压力能够促进水合物的形成,使得天然气分子和水分子更容易结合。
3.适宜的气体组成:天然气水合物的形成需要适宜的气体成分,一般为甲烷等轻烃类气体。
不同的气体组成会影响水合物的形成过程和稳定性。
二、天然气水合物的分布规律天然气水合物主要分布在全球的冷海域和极寒地区,其分布规律主要受以下几个因素影响:1.海底地质构造:海底地质构造是影响天然气水合物分布的重要因素之一。
裂陷盆地、深海扇、海底隆起等不同地质构造对水合物的分布和储量都有一定影响。
2.沉积环境:海底沉积环境的不同也会对水合物的分布产生影响。
例如富营养的海域、富有机质的沉积环境更有利于水合物的形成。
3.气候环境:气候环境对水合物的分布同样有一定影响,寒冷气候和丰富降水的地区更容易形成水合物。
4.地球动力学作用:地球内部的构造和地质运动也会对水合物的形成和分布产生一定影响。
三、结语天然气水合物的形成条件和分布规律是一个复杂而又有待深入研究的课题。
随着人们对海底资源的深入挖掘,天然气水合物的开发利用将成为未来的重要方向。
对于天然气水合物的形成条件和分布规律的深入研究,不仅能够为天然气水合物资源的有效勘探和开发提供理论依据和技术支持,同时也对于保护海洋环境、促进海洋科学研究和应对气候变化等方面具有重要意义。
希望在未来能够有更多科研人员投入到天然气水合物的研究中,为人类社会的可持续发展做出更大的贡献。
四、天然气水合物的形成机制天然气水合物的形成机制涉及到天然气和水在特殊条件下的化学反应过程。
在海底或极寒地区的极低温和高压环境下,天然气分子和水分子发生相互作用,从而形成天然气水合物。
水合物形成与防治

渤海石油系列培训教材多媒体课件
重庆科技学院石油工程学院制作
二、天然气中水汽的含量
水汽含量的表示方法 ➢绝对湿度:每一立方米天然气中所含的水汽量(克 数),用w表示 ➢ 饱和含水汽量:饱和状态时一立方米体积内的水汽含 量用ws表示。w< ws; w= ws ➢ 相对湿度:=w/ ws ➢ 露点:一定条件压力下,与ws对应的温度值
渤海石油系列培训教材多媒体课件
重庆科技学院石油工程学院制作
三、天然气水合物的生成条件
生成水合物的第一个条件是
P分解水合物<PM系统 ≤ PM饱和
只有当系统中气体压力大于它的水合物分解压力时,才可能 由被水蒸气饱和的气体M自发地生成水合物。 用逸度表示如下
f 水化物 分解
f
系统 M
f
饱和 M
渤海石油系列培训教材多媒体课件
等于露点 Tn " ,又被水蒸气所饱
和,因此在此点开始生成第二处
水合物Tn ",并使露点降到 Tr' 。 根据Tr'是否低于输气管道中的最 低温度,决定r点之 后管道内Tr'是 否可能再形成水合物。若 Tr'低于
输气管道中的最低温度,则不会 再形成水合物,否则可能还会再 形成水合物。
渤海石油系列培训教材多媒体课件
渤海石油系列培训教材多媒体课件
图6 预测管道中一处形成水合物 1-压降曲线; 2-温降曲线; 3-水合物形成温度曲线; 4-生成水合物堵塞后的压降曲线
重庆科技学院石油工程学院制作
三、天然气水合物的生成条件
水合物形成与防止

当T ≤273.1K时 lg p 1.0055 0.0171 B1 T 273 式中 p—压力; T—水合物平衡温度,K;
B.B1 —与天然气密度有关的系数,见表3。
CQUST
四、形成水合物的温度和压力确定
表3
密度
B
B 和B1 系数表
0.68 0.70 0.75 0.80 0.85 0.90 0.95 1.00
CQUST
饱合水汽查图法(相对密度为0.6,不含氮气)
CQUST
二、天然气中水汽的含量
水汽含量的影响因素(饱和状态下)
压力不变,温度愈高,水汽含量就愈多
温度不变,压力升高,水汽含量减少 分子量愈高,单位体积内的水汽含量就愈少
含有氮气,水汽含量会减少
含水量有二氧化碳和硫化氢,水汽含量增多
从井筒清出的水合物
CQUST
一、概 述
现场取样的水合物
CQUST
一、概 述
节流阀内堵塞着 大量的水合物
CQUST
一、概 述
节流阀内堵塞着 大量的水合物
CQUST
一、概 述
外形:如冰雪状,通常呈白色。结晶体以紧凑的格子构架排列,与
冰的结构非常相似。
表 1 甲烷天然气水合物和冰的性质(引自Sloan和Makagon,1997) 甲烷天然气水合物
CQUST
四、形成水合物的温度和压力确定
1-压降曲线; 2-温降曲线; 3-水合物形成温度曲线; 4-生成水合物堵塞后的压降曲线
图7 预测管道中两处形成水合物
CQUST
四、形成水合物的温度和压力确定
(2)节流曲线法
天然气在开采、输送过程中,通过节流阀时将产生急剧的压降和膨 胀,温度将骤然降低,如需判断在某一节流压力下是否形成水合物,可 利用密度为0.6、0.7、0.8、0.9和1.0的天然气节流压降与水合物关系图。
工艺设备培训-天然气水合物的成因与特性

7.0
0.05146 0.07376 0.10020 0.14740 0.20405
由表1可知,压力越高,温度越低,天然 气中的饱和含水量就越少;压力越低, 温度越高,天然气中的饱和含水量就越 多。管道输送的天然气是经过处理的干 气,在压力为4.5MPa、温度为-13 ℃时, 天然气标准饱和含水量在0.052g/m3以下, 仅在低于- 20 ℃时,才达到实际饱和 含水量,因而在管道运行中天然气不易 析出游离水。
• 经检查,管道不正常压差与通讯及设备 误动作无关。通过观察,发现压差继续
增大,其中红泉村、云彩岭、巨羊驼的 压力分别为2.6,3.5,3.5Mpa。表明在红 泉村至云彩岭段已发生局部水合物冰堵。
五、水合物的预防和处理
• 预防输气管道水合物 形成的措施主要由 以下几项。
• 1、减少施工试压中遗留下来 的水。 • 2、对新投运的管道,应定期加入抑制剂,
• 经分析发现,输气管道内游离水的含量 与管道所处的地形、地貌及清管次数密 切相关,如陕京输气管道1999年1月发生 的冰堵,就是由于在试压期间,大量的 游离水遗留在低洼处未被清出所致。
三、管道内水合物形成区域的预测
• 1、以查图法确定形成水合物的最低压力 • 可确定生成水合物的最低压力。具体方
• 对于运行一段时间的输气管道,可通过 实测气体水露点的方法判断水合物可能 形成的区域,对形成水合物进行预测。 以1998年10月实测的陕京天然气管道在 常压下水露点为例,分析如下:
由表2中水露点的变化可以看出,神池至应 县段水露点发生突变,从-33 ℃上升到 -5 ℃,表明管道自400公里以后,积水 较多,天然气由于吸收管道内的游离水, 含水量增加较快,满足了生成水合物的 含水条件,由此判断水合物可能形成的 区域是神池以后。
探析采气管线水合物堵塞原因及处理措施

探析采气管线水合物堵塞原因及处理措施摘要:天然气的水合物是水和天然气的冰状结晶化合物,在正常运行的输气管线内形成水合物会造成正常采气及运输管线和阀门的堵塞冻结,阻碍正常的采气和运输。
本文主要对采气过程中天然气中水合物的形成原因及危害进行了分析,并提出了相应的处理措施,有效地预防和解决采气管线水合物堵塞问题,从而确保气井的正常生产。
关键词:采气管线;水合物;堵塞原因;处理措施前言:油气管道生产或运营的一个基本要求是清管作业,从而在两个领域做出保障。
提高管道运输效率,确保管线工作正常。
油气集输中清管技术是保证管道运行、提高运输效率的关键,同时通过去除管道中的污染液体,尽量减少管道内壁腐蚀,清理过程的重要性和必要性由此可见。
为了确保油气管道的高效和顺利运行,尽量减少清理的操作风险,加强清理安全措施。
1.当前采气管线的现状当前采气管线还没有实行定期的清理工作,没有相应的规章制度,在前期开展清管作业时,整体的效率不高。
在天然气传输的过程中,由于含有较多的水分和其它成分,受到温度和压力的影响,有一部分液体堆积在管道内,随着时间的延长和距离的增加,堆积越来越多,从而在管道底部形成堵塞,不及时清理就会产生很多问题。
首先,积液堆积在管线的低洼处,降低了气体的有效排放,影响了整个气体的输送效率。
管线液流面积减少,阻力增加,导致能量的消耗。
其次,积液在一定的温度下形成水合物,造成堵塞事件。
由于积液的不断堆积,当流出液体体积超过下面的容量时,就会给正常生产带来困难,甚至导致生产停滞。
长时间的杂质堆积会对管线造成破坏,严重影响采气管线的正常运行,而且存在着很大安全隐患,在输送天然气的管道中,积液的产生还会导致管道天然气输送的减少,很容易造成管线穿孔,甚至发生爆炸。
对此,为了保证整体的输送安全,要在井场设置管线清管装置,对其进行实时监控,保证管线清管的质量。
二、堵塞原因分析1.气液分离不彻底。
所有单井产气全部在场站混输,场站只采用一台φ600卧式重力式分离器工作,气液混合流体经进口管进入分离器进行气液分离,重力式分离器一般可以分离直径为10-30μm及以上的固体或液体颗粒,对于小于10μm的液固体分离效果不佳。
天然气井水合物的形成及解决措施

3吕景昶,试采高级工程师,1964年出生;毕业于合肥工业大学地质系,现任华北石油局井下作业大队研究所所长;主要从事于油气井和煤层气井的测试和试采工程技术工作。
地址:(450042)河南省郑州市须水华北石油局井下作业大队。
电话:(3)。
天然气井水合物的形成及解决措施吕景昶3 马德志 杨朝霞(中国石化新星公司华北石油局) 吕景昶等.天然气井水合物的形成及解决措施.天然气工业,2001;21(增刊):111~112摘 要 未经处理的天然气中都含有一定的水蒸气,它在一定的条件下会生成冷凝水、冰塞和水合物。
水合物是一种笼形晶格包络物,即水分子籍氢键结合成笼形晶格,而气体分子则在范德华力作用下,被包围在晶格的笼形孔中,在一定的温度和压力条件下,由天然气中某些气体组分和液态水形成的白色结晶固体,极易产生堵塞。
因此,针对施工中遇到的问题,相应采取了对水合物形成压力的预测,使作业时的起下电子压力计尽可能选择在形成水化物前下入和求产结束后提出。
通过在井内管柱内注入甲醇和乙二醇进行预防和解堵,使用甲醇的成本和效果都优于乙二醇。
地面采用小型水套炉进行加热的方法。
鄂北6口天然气井9层现场施工表明效果良好。
主题词 鄂尔多斯盆地 北 气井 水合物 预防措施 水合物是一种晶状固体物质,极易形成在井内离地面一定距离的试采管柱里,造成在施工过程中掉压力计等事故;及在地面的阀门、分离器、流程的弯头等处产生堵塞,使试采工作中断,影响施工进度和资料的准确录取。
水合物的形成条件 水合物的形成是在一定的温度和压力条件下,由天然气中某些气体组分和液态水形成的白色结晶固体。
外观类似松散的冰或致密的雪,密度为0.88~0.90g/cm 3。
戊烷和己烷以上烃类一般不形成水合物。
(1)必要条件有二:①气体处于水汽的饱和或过饱和状态并存在游离水;②有足够高的压力和足够低的温度。
(2)辅助条件有三:①压力的波动以及气体的高速流动;②流向突变产生的搅动;③水合物晶体的存在及晶种停留的特定物理位置(如弯头、孔板、阀门、粗造的管壁)。