波纹钢腹板曲线箱梁畸变分析

波纹钢腹板曲线箱梁畸变分析
波纹钢腹板曲线箱梁畸变分析

波纹钢腹板曲线箱梁畸变分析

发表时间:2018-10-17T09:23:01.233Z 来源:《基层建设》2018年第27期作者:田宝升

[导读]

中铁上海设计院集团有限公司上海 200070

0引言

波纹钢腹板曲线箱梁具有自重轻、抗震性能好、腹板无裂缝、预应力利用效率高等优点,在城市立交、匝道逐步应用和推广[1-4]。然而,波纹钢腹板由于纵向弹性模量较小,相比混凝土腹板箱梁更容易发生纵向翘曲变形和畸变翘曲应力,而且畸变正应力相比弯曲正应力达到不可忽略的比例[5-7];其次曲线箱梁具有弯扭耦合特性,无论是在恒载还是偏载作用下,均产生畸变翘曲应力。因此准确计算波纹钢腹板曲线箱梁在各荷载工况下的畸变正应力具有十分重要的意义。

文献[8]针对混凝土直线箱梁进行了畸变分析理论的研究,明确了畸变中心的定义,确定了畸变位移模式,剪力了考虑剪切效应的畸变分析理论,结果表明剪切变形对畸变翘曲应力和横向弯曲应力的影响较小。文献[7]在考虑波纹钢腹板正交异性的特点的基础上,推导了波纹钢腹板直线组合箱梁畸变控制微分方程及求解方法。文献[9]采用节点具有9个自由度的曲线箱梁单元,包括两个畸变自由度,通过有限元准确计算箱梁畸变正应力和横向弯曲正应力。

本文在薄壁曲线箱梁的基础上[10],考虑波纹钢腹板正交应力以及曲线箱梁弯扭耦合特点,忽略剪切变形的影响,推导了波纹钢腹板曲线箱梁畸变控制微分方程,并采用弹性梁法进行求解。

1波纹钢腹板曲线箱梁畸变分析

1.1基本假定

波纹钢腹板曲线箱梁畸变分析时采用以下几个假定:

(1)组成箱梁的各板元沿自身平面内满足平截面假定,可用初等梁理论计算弯曲应力。

(2)箱壁很薄可不考虑应力沿壁厚方向的变化,即认为翘曲正应力和翘曲剪应力沿壁厚均匀分布。

(3)忽略各板元平面的法向应变及各板元平面内的剪切变形。

1.2波纹钢腹板特性

波形钢腹板示意图如图1所示,虽然曲线波形钢腹板平板段与斜板段之间的夹角α是变化的,但是由于波段长度l与曲线箱梁半径R相比很小,可以近简化为直线波形钢腹板进行研究。波形钢腹板纵向弹性模量Ex与波高h、板厚t及波形钢腹板形状系数ζ有关,其纵向弹性模量表达式为

(1)

式中Es是钢材的弹性模量,由于h一般是t的几十倍以上,因此波形钢腹板的轴向弹性一般很小,可不考虑波形钢腹板在结构中的抗弯性能或者抗翘曲性能。

图1 波纹钢腹板示意图

根据惯性矩的移轴、转轴公式,可以求得关于z轴单位长度横向抗弯惯性矩为:

(2)

1.3畸变荷载

波纹钢腹板直线组合箱梁主要承受恒载(自重+二期恒载)和活载作用(偏心荷载),活载一般指车辆引起的偏心荷载,可将偏心荷载分解为对称荷载和反对称荷载,反对称荷载又可分解为刚性扭转荷载和畸变荷载,如图2所示,直线箱梁一般仅考虑畸变荷载产生的畸变应力,但是对于波纹钢腹板曲线箱梁,由于弯扭耦合效应的影响,不仅要考虑在畸变荷载下的畸变应力,还要考虑恒载和对称荷载下,由弯曲变形耦合的畸变变形产生畸变应力的影响。

图2 反对称荷载分解图

1.4畸变翘曲函数

如图3所示,箱梁截面上的x、y、z方向的位移分别用u、v、w表示,中心在箱形截面的畸变中心D[8]。环向坐标s的位移用vs表示。根

应力塑料波纹管的标准

混凝土桥梁用预应力塑料波纹管的标准解读及质量辩识 后张有粘结预应力混凝土桥梁用预应力塑料波纹管作为预应力筋的成孔管道,具有下述优良性能:提高预应力筋的防腐保护;可防止氯离子入侵而产生的腐蚀;减少张拉过程中预应力的摩擦损失;不导电,可防止杂散电流腐蚀;密封性好,永不生锈;且施工安装方便快捷,从而成为工程设计及施工的最佳选择。 国内塑料波纹管在预应力工程中使用已有六年,积累了丰富的经验,然而作为一种新型的塑料管材,在这六年来的实际应用过程中发现了许多不足:如质量难以达标、无法满足高温条件下的施工要求;也出了一些问题:如不少生产厂家不讲质量信誉、降低质量标准、更有甚者采用劣质材料生产,给施工及桥梁建成后的安全使用带来严重的事故隐患。 因此如何严格控制管材质量和规范管材市场已到了刻不容缓的地步。本人作为国家建设部塑料管道协作网常务理事和国家预应力塑料波纹管标准制定的参与者,有着长期生产和使用的实践经验及专业知识,本着对社会负责的态度,通过对标准中的一些主要性能特征进行解读,就预应力塑料波纹管生产中的一些状况及如何辩识管材质量公诸于众: 1、外型特征 JT/T529-2004《预应力混凝土桥梁用塑料波纹管》规定波距30mm~60mm(见下图), 该参数的设定是充分考虑过密的波纹会造成混凝土的石头

子无法嵌入到波纹管波谷而使波纹管与波纹管外的混凝土分层,影响桥梁的整体强度。 一些厂家由于采用过于低劣的材料——材质强度过低,不得不把波纹设计得很密以增加刚性。过小的波距所造成的后果是:一方面使波纹管易于弯曲,施工单位在施工时不得不把定位筋从1米间距缩短到0.5米,以减少在浇筑混凝土时波纹管上浮引起的弯曲,增加了施工单位的施工难度;另一方面也带来了混凝土的骨料无法嵌入到波纹管波谷而使波纹管与波纹管外的混凝土分层,影响桥梁的整体强度。 2、力学性能 在FIP施工指南和行业标准JT/T529-2004中,都有一项局部横向载荷检测:即以800N的载荷R6的作用点向波纹管加压并持荷2min后,受压管材表面不破裂;卸荷5min后残余变形量不得超过管材外径的10% 。规定800N径向集中荷载是考虑一个一般体重的人携带一般重物,踩在波纹管上时,波纹管支撑钢筋或其它钢筋对波纹管形成的局部压力;或浇筑混凝土时波纹管上浮,钢筋对波纹管形成的局部约束力。残余变形量不大于内径(圆管)标称值的10%,以免影响穿束及局部突出增加磨坏管壁以及至使张拉受损的风险。因此,该检测参数的设定是至为关键的,关系到桥梁的

波形钢腹板桥的优点

波形钢腹板桥的优点 波形钢腹板桥可以说完全解决了腹板开裂的问题,因为腹板是钢材抗拉、抗剪强度较高,跨中下挠不敢说完全解决至少会减少,因为体外索可以补张,相当于现在的很多桥的加固,大多是增加体外索。 顾名思义波形钢腹板预应力混凝土箱形梁就是用波形钢板取代预应力混凝土箱梁的混凝土腹板作腹板的箱形梁。其显著特点是用10mm左右厚的钢板取代厚30~80cm厚的混凝土腹板。鉴于顶底板预应力束放置空间有限,导致体外索的应用则是波形钢腹板预应力混凝土箱梁的第二个特点。这两个构造特点使波形钢腹板预应力混凝土组合箱梁与预应力混凝土箱梁桥相比有如下优点:经济效益显著,节省建筑材料:采用波形钢腹板代替厚重的砼腹板,减轻了上部结构的自重20~30%, 从而使使上、下部结构的工程量获得减少,降低了工程总造价。

1、提高预应力效率,改善结构性能:波形钢腹板的纵向刚度较小, 几乎不抵抗轴向力, 因而在导入预应力时不受抵抗, 纵向预应力束可以集中加载于顶、底板, 从而有效地提高预应力效率。 2、提高了材料的使用效率:在波形钢腹板PC 箱梁桥中, 砼用来抗弯, 而波形钢腹板用来抗剪,弯矩与剪力分别由顶、底板和波形钢腹板承担,其腹板内的应力分布近似为均布图形, 而非传统意义上的三角形, 有利于材料发挥作用。 3、提高了断面结构效率:波形钢腹板PC 箱梁桥中的砼均集中在顶、底板处, 回转半径几乎增加到最大值, 大大地提高了截面的结构效率。 4、自重降低, 抗震性能好:波形钢腹板预应力混凝土箱形梁桥的腹板采用较轻的波形钢板, 其桥梁自重与一般的预应力砼箱梁桥相比大约减轻20%, 致使地震激励作用效果显著降低, 抗震性能获得一定的提高。 5、可减少现场作业, 加快施工进程:波形钢腹板PC 箱梁桥在施工过程中, 可减少大量的模板、支架和砼浇注工程, 免除在砼腹板内预埋管道的烦杂工艺, 而且波形钢腹板可以工厂化生产, 现场拼装施工, 从而加快了施工进程。施工时可利用波形钢腹板作临时设施,节省设施费用、加快施工速度:悬臂浇注时钢腹板可用作挂篮的组成部分、顶推施工时可以用腹板作导梁、现浇时可省略腹板模板。

波纹管成形过程的数值模拟

波纹管成形过程的数值模拟 摘要:波纹管的成形是管坯在压缩和弯曲的应力下的弹塑性变形,变形过程既有材料非线性还有几何非线性,变形过程较为复杂,同时也会引起管坯的回弹、破裂等问题。该文通过有限元软件ANSYS,仿真分析波纹管的成形过程,模拟出波纹管成形过程中应力分布情况以及波纹管的成形极限,为指导和优化成形工艺提供重要的分析依据。 关键词:波纹管;数值模拟;成形过程;ANSYS 波纹管成形方式有液压成形、机械成形和焊接成形等多种方式,本文研究波纹管液压成形的数值模拟。波纹管液压成形是把管坯放入模具内,将液体充入管坯空腔中,然后液压机压缩管坯里面的液体,使管坯的部分直径胀大,最后贴靠模具得到需要的波纹尺寸和形状[1]。 波纹管的成形过程是一个大挠度、大变形的塑性变形过程,管坯在拉伸和弯曲的复杂应力状态下的塑性流动、塑性强化问题[2]。波纹管的成形过程是一个复杂的多体接触的力学分析问题,要比较精确地解决成形过程中大位移大变形的弹塑性问题,就要考虑材料非线性、几何非线性和边界非线性的影响,来解决波纹管成形过程中的应力应变分析。 1. ANSYS模拟波纹管成形过程 1.1.模具的简化 由于波纹管的结构和受力都具有轴对称性,因此在对波纹管进行受力分析过程中对成形模具要进行适当的简化,不考虑模具在力和约束下的形变,不考虑模具和管坯之间受到的接触应力,把模具简化为波纹管状的不锈钢管套。 1.2.波纹管的参数和单元选择 用有限元方法分析管坯受到的力和约束,首先要选择计算模型和单元类型,计算模型采用平面轴对称模型、三维实体模型等,单元可以采用轴对称单元和梁单元,也可以采用空间壳单元来分析管坯的应力应变情况。 3.结果讨论 3.1.波纹管的成形属于弹塑性变形,分析其强度不宜采用屈服强度为界限,应该采用材料的极限强度,波纹管的有效应力应小于材料的极限强度。 3.2.在曲率半径较大的两侧等效应力较小,在曲率半径较小的两侧出现应力集中。当应力值超过管坯材料的极限强度时,波纹管将在该区域的表面开裂[5]。

波形钢腹板组合梁桥的特性及应用

龙源期刊网 https://www.360docs.net/doc/9c11571182.html, 波形钢腹板组合梁桥的特性及应用 作者:武林 来源:《中国科技纵横》2017年第22期 摘要:相对于传统混凝土类腹板,形钢腹板是一种新材料,能够很好地替代传统混凝土 腹板。波形钢腹板与混凝土顶及底板而构成的结构形式的桥梁称为波形钢腹板组合式桥梁。本文阐述了此桥梁的预应力力、结构设计及抗剪性、抗震性等功能特点,对其应用情况进行了分析,以期为其更好的应用提供参考。 关键词:波型刚腹板;组合桥梁;应用;特性 中图分类号:U448.216 文献标识码:A 文章编号:1671-2064(2017)22-0069-01 波型刚腹板组合桥梁以混凝土腹板的替代型腹板重新组合成的桥梁。该桥梁同传统的混凝土腹板桥梁的结构相比,取消了工字梁腹板的混凝土材料,代之的是钢腹板,钢腹板较混凝土材料更加轻巧,能够有效降低桥梁的重量[1]。同时,波形钢腹板的形状呈纵向刚度的较低波 纹形,克服了传统混凝土钢腹板中纵向桥变的限制所导致的截面预应力下降的问题。本文从波形钢腹板桥梁预应力、结构设计、抗震及抗剪性等方面来分析其特性,以探讨其在我国交通桥梁设计建设中的应用。 1 波形钢腹板组合桥梁的特征 1.1 材料性能的充分发挥 波形钢腹板的桥梁是利用其顶、钢腹板及底等混凝土翼缘板构成,且在箱梁的顶底板中施加其预应力[2]。波形钢腹板因其自身特征的抗剪性能高即轴向刚度低等特征,其比较适应于 截面剪力的成端,但其底及顶混凝土的抗剪性能不高及轴向强度强等特征,使其比较适用于截面轴向压力的承受。因此,其性能构建中的功能各异,其能够共同工作和各自发挥性能,并能在最大程度上提升钢材料及混凝土的效率。通过分析其结构发现,常规桥梁的内力分布较为均匀,分布特点同平截面假定的应力三角形分布不同,这表示钢腹板的梁材料具有较高的利用率。例如波形干板为1600型时可选择40-150米的跨径机芯组合,其板厚应为8-40毫米,波形钢腹板桥梁常用1000型、1200型、1600型等。此外,对于一个截面来说,其效率的衡量指标主要是其惯性半径的多少。因波形钢腹板-混凝土式桥梁的混凝土材料集中在截面上下缘,且能够自由增加截面惯性的半径,直至其极限值。因而,波形钢腹板能够明显提高截面和结构的效率。波形钢腹板桥梁的的尺寸应按照桥梁跨径的不同类型来选择。 1.2 箱梁自重的减轻 波形钢腹板的应用能够降低箱梁结构的恒载自重,进而对建设费用及材料使用量进行优化,可以有效降低项目造价。同时,主梁自重结构减轻后可以使地震响应显著降低,进而提高

箱梁波形钢腹板加工工艺讲解

箱梁波形钢腹板加工工艺 一、主要材料 1.钢材 Q345C 1: 波形钢腹板的第二节到第十四节4900mm,加工26件。 2:波形钢腹板的第一节和第十五节的长度为2750mm。高度分别为1733mm和1615mm各加工2件。共计4件。 3:波形钢腹板的第一节到第八节的高度分别为1733mm,1723mm,1705mm,1686mm,1668mm,1649mm,1631mm,1615mm,丛八节到十五节高度都是1615mm.1到8节拼接会出现错台.而图纸上测量都是1615mm。 焊接材料:通过焊接工艺评定试验采用与母材相匹配的焊丝、焊剂和手工焊条,且应符合相应的国标要求,CO2气体纯度不小于99.5%。 2.波形钢腹板施工 <1>钢结构的制作与安装应符合《钢结构工程施工及验收规范》(GB50205-2001)及《公路桥涵施工技术规范》(JTJ041-2000)中有关的规定。 <2>波形钢腹板采用冷加工制作前,应进行工艺试验,要求圆角外边缘不得有裂纹;冷弯加工,温度高于-5度,冷弯后冲击功不低于母材,严格控制氮含量。 我厂准备用1000T压力机.采用冷弯模压法。4道弯一次成型. 成型见(1000吨油压机示意图)

焊接: 我们主要以埋弧焊为主。焊剂HJ431 焊丝JW——1直径 4.0mm CO2气体保护焊为辅 现场焊接主要以CO2气体保护焊为主。手工焊电为辅.焊条用506高碳钢焊条。焊接电流。焊接电压要经过现场试验。 波形钢腹板之间采用贴角焊,根据接头形式做好焊接工艺评定试验,焊接尺寸高度16mm、焊接工艺和焊接参数,控制焊接变形和降低焊接残余应力。 <4>各构件焊接完毕后焊缝必须进行探伤. 各构件焊接完毕后焊缝必须进行探伤,探伤比例100%、探伤数量(全部探伤)和检验标准按照波形钢腹板制造工艺方案中有关要求执行,焊缝的一次探伤合格率须控制在95%以上。以减少焊缝的返修量和返修率,从而保证焊缝质量和结构的可靠性3.波形钢腹板防腐 波形钢腹板各部位的防护采用重防腐涂装,使用寿命为25年,设计文件提供涂装体系供业主选择,面漆的颜色按照全桥景观要求由业主进行选择。

波 形 钢 腹 板 简 介

波形钢腹板简介 波形钢腹板PC组合箱梁是一种经济、高效、施工简便的新型钢-混凝土组合结构形式,这种结构彻底地解决了传统预应力混凝土箱梁腹板的裂缝问题,对于实现桥梁轻型化,美化桥梁景观,实现桥梁建设节能降耗和可持续发展具有重要的现实意义(1)结构重量比PC 桥梁减轻约30% (2)采用体外预应力体系(3)钢腹板受力优于混凝土(4)收缩、徐变影响较大(5)钢板受压、加劲板较多波形钢腹板桥可以说完全解决了腹板开裂的问题,因为腹板是钢材抗拉、抗剪强度较高,跨中下挠不敢说完全解决至少会减少,因为体外索可以补张,相当于现在的很多桥的加固,大多是增加体外索。下面是波形钢腹板桥的优点:顾名思义波形钢腹板预应力混凝土箱形梁就是用波形钢板取代预应力混凝土箱梁的混凝土腹板作腹板的箱形梁。其显著特点是用10mm左右厚的钢板取代厚30~80cm厚的混凝土腹板。鉴于顶底板预应力束放置空间有限,导致体外索的应用则是波形钢腹板预应力混凝土箱梁的第二个特点。 这两个构造特点使波形钢腹板预应力混凝土组合箱梁与预应力混凝土箱梁桥相比有如下优点:经济效益显著,节省建筑材料:采用波形钢腹板代替厚重的砼腹板,减轻了上部结构的自重20~30%, 从而使使上、下部结构的工程量获得减少,降低了工程总造价。 1、提高预应力效率,改善结构性能:波形钢腹板的纵向刚度较小, 几乎不抵抗轴向力, 因而在导入预应力时不受抵抗, 纵向预应力束可以集中加载于顶、底板, 从而有效地提高预应力效率。 2、提高了材料的使用效率:在波形钢腹板PC 箱梁桥中, 砼用来抗弯, 而波形钢腹板用来抗剪,弯矩与剪力分别由顶、底板和波形钢腹板承担,其腹板内的应力分布近似为均布图形, 而非传统意义上的三角形, 有利于材料发挥作用。 3、提高了断面结构效率:波形钢腹板PC 箱梁桥中的砼均集中在顶、底板处, 回转半径几乎增加到最大值, 大大地提高了截面的结构效率。 4、自重降低, 抗震性能好:波形钢腹板预应力混凝土箱形梁桥的腹板采用较轻的波形钢板, 其桥梁自重与一般的预应力砼箱梁桥相比大约减轻20%, 致使地震激励作用效果显著降低, 抗震性能获得一定的提高。 5、可减少现场作业, 加快施工进程:波形钢腹板PC 箱梁桥在施工过程中, 可减少大量的模板、支架和砼浇注工程, 免除在砼腹板内预埋管道的烦杂工艺, 而且波形钢腹板可以工厂化生产, 现场拼装施工, 从而加快了施工进程。施工时可利用波形钢腹板作临时

大直径钢波纹管力学特性及参数分析

Hans Journal of Civil Engineering 土木工程, 2019, 8(5), 997-1003 Published Online July 2019 in Hans. https://www.360docs.net/doc/9c11571182.html,/journal/hjce https://https://www.360docs.net/doc/9c11571182.html,/10.12677/hjce.2019.85116 Analysis on Mechanical Properties and Parameters of Large-Sized Corrugated Steel Pipe Xiangyong Chen*, Ying Zhang Huatian Engineering and Technology Corporation, MCC, Nanjing Jiangsu Received: July 2nd, 2019; accepted: July 17th, 2019; published: July 24th, 2019 Abstract In order to study the mechanical properties of large-sized corrugated steel pipe, a 3D FE structural model was established by ANSYS software. Then, the main design parameters of corrugated pipe were analyzed to study its force and deformation characteristics under the influence of various factors. The results show that the maximum equivalent stress of the corrugated steel pipe appears at the troughs of the left and right sides of the pipe. And the maximum equivalent stress of the outer soil occurs in the middle of the upper left, upper right, lower left, lower right along 45? di-rections. Moreover, the thickness and the soil elastic modulus both have significant effects on the mechanical properties of steel pipe. Keywords Corrugated Steel Pipe, Finite Element Model, Mechanical Properties, Parameters Analysis 大直径钢波纹管力学特性及参数分析 陈祥勇*,张莹 中冶华天工程技术有限公司,江苏南京 收稿日期:2019年7月2日;录用日期:2019年7月17日;发布日期:2019年7月24日 摘要 为研究综合管廊中大直径钢波纹管的力学特性,利用ANSYS软件建立钢波纹管结构的三维有限元模型。 *第一作者。

波纹管膨胀节安装使用说明书

金属波纹管膨胀节 使 用 安 装 指 南

一、概述 波纹管膨胀节是以波纹管为核心元件,输送各种体介质的管路用产品,广泛应用于管道与管道、管道与设备、设备与设备之间的连接,其技术特征是它具有能满足轴向伸缩、横向位移或角向位移补偿的性能,以补偿管道系统中因温差或地质原因造成的相对位移,有效地吸收设备启动、停止或正常运行条件下的振动。 二、博文膨胀节名称、代号、符号

三、管系管架名称、符号 四、波纹管膨胀节在管系中的安装型式(1)直管段 (2)L管段

(3)Z管段 (4)空间管段 (5)门管段 (6)直埋式管段

五、安装要求 波纹管膨胀节不论是何种结构及安装形式,都是用来补偿两端固定支架间管线的相对位移,即两个固定支架之间只允许安装一只波纹膨胀节,否则膨胀节的补偿量会成为不确定值。其中住固定支架要求能够满足工况下轴向内压推力、弹力、摩擦力、管道和管道内介质重量及由风载引起的其它力的合力对固定支架的作用力。直埋式管线拐弯处走向长度小于30D或管径>325时应设固定支座。完全平衡型波纹膨胀节,两侧的主固定支架只需承受弹力、摩擦力等对固定支架的作用力,但不能与非完全平衡型波纹膨胀节混合使用,若一定要混合使用时,则两主固定支架应按承受内压推力来设计,即应考虑盲板力的问题,凡是安装了轴向位移的波纹膨胀节(除压力平衡型外),在弯头改变流向处、直管段变径处、装有补偿器的支管进入主管处、两个补偿器中间阀门连接处,管道的盲端均应设中间固定支架与主固定支架,当其管系两端力完全对称时或压力推力完全由膨胀节承担时,考虑到意外情况的发生,其承载能力均应考虑不小于0.75~0.8倍的弹性力和压力推力的总和。大拉杆横向型及角向型膨胀节的管道压力推力均由拉杆和铰链承受。 若管道进行总体水压试验前,应对装有波纹膨胀节的管路端部的次固定管架进行加固。使管路不反生移动或转动,必须检查波纹膨胀节补偿管段两端的固定支架是否按设计要求与管道和承载构件焊接牢固,并检查主固定支架是否按满足1.5倍的内压推力的承载能力设计。若支架与管段未固定或因支架承载能力不够,不得进行水压试验,否则会出现因内压推力作用拉坏波纹膨胀节,波纹膨胀节上的辅助构

波形钢腹板桥梁课程设计

钢—混凝土组合结构桥梁课程设计学院:土木工程学院 专业班级:桥梁1301 姓名:唐瑞龙 学号: 201301010128 指导老师:刘志文 2017年1月2日

摘要:钢—混凝土组合结构桥梁是目前桥梁工程中应用十分广泛的一种结构,与混凝土桥梁、钢桥并列齐名!在欧美、日本等国家,钢—混凝土组合桥梁的应用十分广泛,国内最近几年开始逐渐关注并建设。由于传统PC箱梁桥有跨中下挠、梁体开裂等缺点,经过大量的研究,波形钢腹板桥梁得到了极大的发展,本次课设就是运用Midas软件对波形钢腹板简支梁桥进行建模、分析,让我们熟悉波形钢腹板桥的变形及力学性能。 关键词:波形钢腹板;内力分析;迈达斯 目录 一:技术参数及设计内容 (2) 二:材料及截面..........................................3-5 三:简支梁建模过程.......................................5-8 四:运行结果.............................................9-11

一:技术参数 1. 荷载及公路等级:公路-II 级,两车道,二级公路; 2. 设计车速:80km/h 。 2. 结构形式:简支梁; 3. 计算跨径:L=40.0m ;桥宽:B=12.0m 4. 防撞护栏采用新泽西护栏(宽度50cm ,高100cm ,具体重量请根据自己拟定的图纸计算); 5. 桥面铺装采用:1cm 厚的沥青改性防水层,9cm 厚的沥青混凝土; 6. 材料: 混凝土:主梁顶、底板采用C50混凝土; 钢 材:波形钢腹板采用Q345C (屈服应力:345MPa ;设计荷载作用下 允许剪应力为120MPa ); 预应力钢束:2.15φ高强度低松弛钢绞线(抗拉强度标准值为MPa f pk 1860=,抗拉强度设计值MPa f tk 1260=,正常允许拉应力MPa f tk 1209=。) 7. 施工方法:满堂支架施工。 设计及计算内容 1. 根据所给技术参数拟定波形钢腹板PC 预应力混凝土简支梁桥相关参数(主梁、 波形钢腹板以及顶、底板预应力钢束、体外束等); 2. 计算结构在自重(一期恒载+二期恒载)作用下支座反力和截面内力(弯矩、 剪力); 3. 计算结构在公路-II 级荷载作用下的内力包络图(弯矩、剪力); 4. 对正常使用极限状态下跨中截面混凝土顶、底板外缘应力进行验算; 提示:根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》第7.1.5条,使用阶段预应力混凝土受弯构件正截面混凝土最大压应力应符合下式规定: ck pt kc f 5.0≤+σσ 其中: kc σ为荷载标准组合下截面边缘混凝土的压应力;pt σ为由预加力产生的 混凝土拉应力。 5. 对正常使用极限状态下支点截面波形钢腹板的剪应力进行验算。

波形垫圈的C变形分析调查

波形垫圈的C 变形分析调查 1、前述 根据ISO 的内容,1968年4月日本对螺栓、螺母的JIS 标准进行了修改,倾向是螺栓头部及螺母外围面积缩小,二螺栓颈部R 角变大,其结果是增加了弹簧垫圈C 变形的几率。敝社也对C 形变形采取了相应的对策。 同时,我们还向客户推荐了不容易发生C 变形并具有较强反作用力的波形垫圈(商品名SPAK )。但是根据使用条件的不同,SPAK 也是有可能会发生C 形变形的,故将其原因进行了调查并作成报告,以利于采取防止C 形变形的对策。 2、弹簧垫圈与SPAK 的区别 (1)全压缩后的荷重 弹簧垫圈与SPAK 的全压缩荷重(理论值)比较如下所示: 计算公式: 弹簧垫圈 Gbt 4 1.812D 3 β P= (1) P :全压缩荷重 kgf G :横弹性系数 kgf/mm 2 D :盘簧中心径 mm b :宽 mm t :厚度 mm SPAK Ebt 4 D 3 δ P=3.1 (2) P :全压缩荷重 kgf E :纵弹性系数 kgf/mm 2 D :盘簧中心径 mm b :宽度 mm t :厚度 mm δ:松弛度 mm 计算结果如表-1所示 表1 kgf 11.8-2.52(t/b)+0.21(t/b)5 4-2.52(t/b)+0.21(t/b) 2 β=

(2)拧紧状态的比较 ·SPAK 原线的展开状态如图-1a 所示,所受的力由4个部位平均分配。组装时不会卡入对象部件,拧松是却容易卡入。如此,其起着一个防止松动的作用,并不容易发生C 变形(图-1b )。 ·展开弹簧垫圈原线,如图(图-2a )所示其为一条螺旋角α的直角。在其两端世家荷重为W 的力,发现无法成为直线。同时,弹簧垫圈容易卡入对象部件,使用过高的扭力时,更容易发生C 变形。 3、C 形变形的机理 发生C 形变形的弹簧垫圈的共同点如图-3所示,其切口的一处卡入对象件座面,并且从螺母、螺栓的座面脱出,而另一面则深深嵌入其中,垫圈的切口卡入对象件座面时,针对这部分螺栓、螺母底座的压力就下降而反对面的压力增大。并且随着螺栓、螺母的旋转,卡入的部分就会从切削对象件座面边脱离出来,如上所述,垫圈的C 形变形是垫圈与螺栓或螺母一起旋转时产生的。假设螺栓、螺母与弹簧垫圈的摩擦系数为μ,弹簧垫圈与对象部件的摩擦系数的μ2,则力矩M=P (μ1-μ2)r ,因此,摩擦系数之间越大,则越容易发生C 形变。 4、 发生C 形变时所需的力 通过公式(1)~(3)计算垫圈切口扩大所需的力矩,应力以及此时切口的变化量,从而推测拧紧时允许的最大切口里。同时,如图-4所示,作用与A 点的最大扭曲应力为σ=140kgf/mm 2.计算结果如表-2所示。 D 2M=P· (1) 2.36D·σ EbK F= (2)

波纹管膨胀节的设计与应用

波纹管膨胀节的设计与应用 膨胀节也称补偿器,是一种弹性补偿装置,主要用来补偿管道或设备因温度影响而引起的热胀冷缩位移(有时也称热位移)。膨胀节的补偿元件是波纹管。在操作过程中,波纹管除产生位移(变形)外,往往还要承受一定的工作压力,因此,膨胀节也是一种承 压的弹性补偿装置,所以,保证其安全可靠地工作是十分重要的。 膨胀节除作为热位移补偿装置使用外,也常被用于隔振和降噪。 膨胀节波纹管的波形较多,常用的有U形、◎形、S形等,在这里,主要介绍U 形波纹管膨胀节的设计与应用中的有关问题。 1、膨胀节结构类型及其应用 1.l U形波纹管膨胀节的结构类型 U形波纹管膨胀节的结构类型较多,不同类型的膨胀节,适用的场合也各不相同。主要的类型有单式轴向型、单式和复式铰链型、复式自由型、复式拉杆型、直管和弯管压力平衡型等。各种类型的结构示意图见图I?图10。 为提高膨胀节的承载能力,可设计带加强环或稳定环的膨胀节,其纳构示意如图11所示。 (1)单式轴向型膨胀节 由一个波纹管及结构件组成、主要用于吸收轴向位移而不能承受波纹管压力推力的膨胀节(见图1)。 1—端管2—波纹管 图1 单式轴向型膨月长宙 (2)单式铰链型膨胀节 由一个波纹管及销轴、铰链板和立板等结构件组成、受波纹管压力推力的膨胀节

(见图2)。

2—朋枚琏板4-波纹管5—主牧旌¥1 囲2单式敦试躺膨胀节 (3)单式万向铰链型膨胀节 由一个波纹管及销轴、铰链板、万向环和立板等结构组成、能在任一平而内角位移并能承受波纹管压力推力的膨胀节(见图3)。 F—滞管2—立板 3 钱慨板4-悄轴5—万向环6—浹纹签 图3 甲式万向较琏型彫张节 (4)复式自由型膨胀节 由中间管所连接的两个波纹管(及控制杆或四连杆)等结构件组成、主要用于吸收轴向与横向组合位移而不能承受波纹管压力推力的膨胀节(见图4)。 1——波纹借2——中冋詹3—端餘 医1 4 复式归由犁妙月长节 (5)复式技杆型膨胀节 由中间管所连接的两个波纹管及拉杆和端板等结构件组成、能吸收任一方向横向位移并能承受波纹管压力推力的膨胀节,(见图5)。

薄壁斜箱梁桥的扭转与畸变效应研究综述

薄壁斜箱梁桥的扭转与畸变效应研究综述 箱梁桥因为其良好的抗扭工作性能以及成熟的施工技术,目前在我国桥梁建设中得到了广泛的应用。箱梁桥在偏心荷载作用下产生的扭转与畸变效应对桥梁的影响这一问题目前也受到了工程人员的重视。文章在介绍现有的箱梁扭转与畸变的研究现状、研究方法的基础上,列举了对斜箱梁桥的扭转和畸变造成影响的因素,并提出了目前对于斜箱梁桥有关其扭转与畸变的研究所存在的一些问题。 标签:箱梁;扭转;畸变;斜度 引言 当前,在我国城市桥梁和公路桥梁建设不断发展的情况下,由于空间或地形等的影响,许多桥型不得不选择斜桥。尤其是在城市中,桥位要服从道路网规划设计,当受到空间的限制时,桥位难免要与规划路线成一定角度。在斜桥桥型普遍采用的背景下,因其本身有别于正桥的构造特点,尤其是对于斜箱梁桥来说,其受力复杂,无论是其理论解析还是数值解析,目前都处在研究阶段,特别是其产生的剪力滞效应,扭转和畸变效应等问题正越来越受到人们的重视。 箱梁在偏心荷载作用下可等效为局部荷载,对称荷载和反对称荷载的共同作用。扭转和畸变效应是在反对称荷载作用下产生的。扭转是反对称荷载作用下的刚性转动,分为自由扭转和约束扭转。其中自由扭转产生自由扭转剪应力?子K;约束扭转产生翘曲正应力?滓w和约束扭转剪应力?子w。畸变产生翘曲正应力?滓dw,畸变剪应力?子dw,横向弯曲应力?滓dt。其中扭转的变形特征为扭转角θ,畸变的变形特征为畸变角γ。 1 研究方法和现状 随着交通运输业的发展,桥梁建设已进入一个崭新的阶段。尽管现在有很多通用的结构分析软件,但是对于解决一些复杂的桥梁结构问题还不够,必须针对其特点和细部构造展开研究。与正交箱梁桥相比,斜箱梁桥的扭转与畸变效应较为明显。在箱梁分析时,把畸变和扭转放在一起时,计算困难,而且现有的一些方法如等薄壳理论等,都存在着一些局限性,因此在箱梁的计算分析中,应将扭转和畸变效应分别进行考慮,将影响箱形梁变形的各种因素的影响程度进行全面的分析归纳,这样有利于斜箱梁桥构造的设计和改进。目前国内外学者对箱梁的扭转和畸变问题做了大量研究,按照研究方法的不同基本上可以分成三类:解析法,数值法和模型试验研究。 1.1 解析法 箱梁的扭转分析始于圣维南的自由扭转理论,该理论解决了薄壁杆件自由扭转的截面翘曲问题。前苏联学者乌曼斯基在基于横截面周边不变形的前提下提出了闭口截面刚性扭转理论,即乌氏第一理论。但是该理论提出的β(z)函数与

波纹钢腹板混凝土叠合梁桥空间网格分析

波纹钢腹板混凝土叠合梁桥空间网格分析一、波折腹板桥简介 由法国工程界最早提出的波形钢腹板结构,是用弯成波折形状的钢板代替混凝土腹板,与混凝土顶底板形成组合箱梁体系新型结构,由混凝土顶底板、波折钢腹板、横隔板、体内外预应力钢束等构成。通过采用折叠形状的钢腹板组成钢与混凝土的组合箱梁截面体系,能够更加有效地施加预应力,如图1.1 所示。 图1.1 波形钢腹板箱梁结构示意 波折钢腹板组合箱梁主要利用波折钢腹板较高的抗剪承载性能承担截面剪力,混凝土顶、底板单独承担截面弯矩;通过波折钢板的自由压缩性减小预应力施加量。波折钢腹板箱梁恰当地将钢、混凝土两种不同材料结合起来,提高了结构的稳定性、强度及材料的使用效率。波折钢腹板组合箱梁的优越性具体表现在: 1)波折钢板充当腹板,使得箱梁自重大为降低,大约可以减轻20%~30%;而可以增大跨径、减少基础用量; 2)波折钢腹板纵向刚度较低,因此对上、下混凝土板的徐变、干燥收缩变形不起约束作用,避免预加力向钢腹板的转移,大幅度提高施加预应力的效率; 3)波折钢板具有较高的抗剪屈曲能力,因而可以做得很薄,且无需纵横向加劲; 4)波折钢腹板制作可以实行工厂化,并且伴随着自重减轻,架设施工容易; 5)波折钢腹板使桥梁具有较强的美感,易与周围的环境相协调,是山区、风景区较好的桥型选择; 6)采用体外预应力筋方式,可免除在混凝土腹板内预埋管道的烦杂工序,缩短了工期,使施工更加方便,利用传统的施工设备和方法就能完成桥梁的架设,对于因工期受到制约的地区,施工非常有效。国内外施工完成或在建的波纹腹板桥示例见图1.2~图1.5。

图1.2 法国Cognac桥(mm) 图1.3 长征桥图1.4 三道河桥图1.5 鄄城黄河公路大桥二、波纹腹板桥受力特点及分析现状 波纹腹板组合梁桥的受力特点主要体现在以下几个方面: 1)在活载下单箱多室波纹钢腹板组合箱梁断面各腹板的空间受力分配是计算各道波纹钢腹板受力及其结构设计的关键; 2)对于波纹钢腹板叠合梁斜拉桥而言,宽箱截面在斜拉索力传递给整体断面的过程及其结构受荷在断面上表现为受力的不均匀,实质上就是剪力滞效应,且随施工过程结构体系的改变而变化,不能采用一个系数解决; 3)横向受力非常关键,横梁与波纹腹板断面的空间受力关系需要解释清楚; 4)波纹钢腹板箱梁断面的扭转和畸变是该类型桥梁的分析难点,无法采用传统计算方法解决; 5)对于波纹钢腹板组合箱梁断面,特别需要关注混凝土顶板和底板的剪力流产生的水平剪应力,该水平剪应力与正应力将合成为顶板和底板面内的主拉应力和主压应力,主拉应力会引起顶板和底板的斜向开裂,故对顶板和底板主应力的计算、控制和相关的配筋设计非常重要;

波纹管膨胀节详解

膨胀节地类型和构造 一、波纹膨胀节地类型 波纹管配备相应地构件,形成具有各种不同补偿功能地波纹膨胀节。按补偿形式分为轴向型、横向型、角向型及压力平衡型。 轴向型: 普通轴向型、抗弯型、外压型、直埋型、直管力平衡型、一次性直埋型。横向型: 单向横向型、万向铰链横向型、大拉杆横向型、小拉杆横向型。 角向型: 单向角向型、万向角向型。 以上是基本分类,每类都具备共同地功能。在一些特定情况还可以有特殊功能,如耐腐蚀型、耐高温型。按特定场合地不同,分为催化裂化装置用、高炉烟道用。按用于不同介质分为:热风用、烟气用、蒸汽用等。 二、波纹膨胀节地结构 1、轴向型波纹膨胀节 (1)普通抽向型:是最基本地轴向膨胀节结构。其中支撑螺母和预拉杆地作用是支撑膨胀节达到最大额定拉伸长度和到现场安装时调整安装长度(冷紧)。如果补偿量较大,可用两节,甚至三节波纹管。使用多节时,要增加抗失稳地导向限位杆。 (2)抗弯型:增加了外抗弯套筒,使整体具有抗弯能力。这样可以不受支座地设置必须受4D、14D地约束,支架地设置可以将这段按刚性管道考虑。(3)外压型:这种结构使波纹管外部受压,内部通大气。外壳必须是密闭地容器,它地特点是: 1)波纹管受外压不发生柱失稳,可以用多波,实现大补偿量。 2)波纹内不含杂污物及水,停气时冷凝水不存波纹内可从排污阀排掉不怕冷冻。 3)结构稍改进也具有抗弯能力。 (4)直埋型:它地外壳起到井地作用,把膨胀节保护起来.密封结构防止土及水进入。实际产品分防土型和防土防水型。对膨胀节地特殊要求是必须与管道同寿命。 (5)一次性直理型:它地使用是装在管线上后整个管线加热升温到管线地设计温度范围地中间温度,管线伸长,波纹管被压缩,两个套筒滑动靠近,然后把它们焊死,再由检压孔打压检验焊缝不漏即可。它地特点是: 1)焊死后波纹管再不起作用,它地寿命一次就够。 2)波纹管地设计压力按施工加热地压力设计。材质用普通碳钢。 2、横向型波纹膨胀节 (1)单向横向型:它只能在垂直于铰链轴地平面内弯曲变形。

膨胀节的分类及管道变形计算

膨胀节地分类: 一、按材质分为:金属膨胀接、非金属膨胀节. ■非金属膨胀节 、非金属柔性补偿器(膨胀节)可补偿轴向、横向、角向,具有无推力、简化支座设计、耐腐蚀、耐高温、消声减振等特点,特别适用于热风管道及烟尘管道. 、非金属柔性补偿器(膨胀节)地特点: 、补偿热膨胀:可以补偿多方向,大大优于只能单式补偿地金属补偿器. 、补偿安装误差:由于管道连接过程中,系统误差再所难免,纤维补偿器较好地补偿了安装误差. 、消声减振:纤维织物、保温棉体本身具有吸声、隔震动传递地功能,能有效地减少锅炉、风机等系统地噪声和震动. 、无反推力:由于主体材料为纤维织物,无力地传递.用纤维补偿器可简化设计,避免使用大地支座,节省大量地材料和劳动力. 、耐腐蚀性:选用地氟塑料、有机硅材料具有较好地耐温和耐腐蚀性能.不耐高温,比金属差. 、体轻、结构简单、安装维修方便. 、价格低于金属补偿器. ■金属波纹补偿器(膨胀节)地特点及应用: 、金属波纹补偿器是用于吸收管线、导管或容器、设备由热胀冷缩等原因而产生地尺寸变化地装置,它地金属波纹管是主要地补偿元件,广泛用于石油化工、电力供热、锅炉烟风道、钢铁冶金、水泥、船舶、机械等管线及设备地软连接,波纹管(补偿元件)材质:不锈钢、碳钢、不锈钢内衬聚四氟乙烯等. 、耐高温、耐压 一、按材质分为:金属膨胀接、非金属膨胀节. ■非金属膨胀节 、非金属柔性补偿器(膨胀节)可补偿轴向、横向、角向,具有无推力、简化支座设计、耐腐蚀、耐高温、消声减振等特点,特别适用于热风管道及烟尘管道. 、非金属柔性补偿器(膨胀节)地特点: 、补偿热膨胀:可以补偿多方向,大大优于只能单式补偿地金属补偿器. 、补偿安装误差:由于管道连接过程中,系统误差再所难免,纤维补偿器较好地补偿了安装误差. 、消声减振:纤维织物、保温棉体本身具有吸声、隔震动传递地功能,能有效地减少锅炉、风机等系统地噪声和震动. 、无反推力:由于主体材料为纤维织物,无力地传递.用纤维补偿器可简化设计,避免使用大地支座,节省大量地材料和劳动力. 、耐腐蚀性:选用地氟塑料、有机硅材料具有较好地耐温和耐腐蚀性能.不耐高温,比金属差. 、体轻、结构简单、安装维修方便. 、价格低于金属补偿器. ■金属波纹补偿器(膨胀节)地特点及应用: 、金属波纹补偿器是用于吸收管线、导管或容器、设备由热胀冷缩等原因而产生地尺寸变化地装置,它地金属波纹管是主要地补偿元件,广泛用于石油化工、电力供热、锅炉烟风道、钢铁冶金、水泥、船舶、机械等管线及设备地软连接,波纹管(补偿元件)材质:不锈钢、碳钢、不锈钢内衬聚四氟乙烯等.

波形钢腹板的设计与施工

添加到百度搜藏 摘要:体外预应力技术的日趋成熟和新型建筑材料的发展,许多的工程师都在对大跨径桥梁的主梁轻型化问题。 结构桥梁在日本和欧美了应用,其特点在于它了混凝土和钢的材料特组合箱梁是新型的钢它钢与混凝土的优点,了结构的稳定性、强度及材料的使用,并且结构外形美观,抗震 梁桥的设计和施工了宝贵的经验。 在上世纪八十年代,法国设计并建造了以波形钢腹板代替箱梁的混凝土腹板的新 形钢腹板的组合结构桥梁,该箱梁的典型结构如图 本也对该类的桥梁了,在参考法国同类桥梁的基础上,修建了新开桥、本谷桥、松木七号桥等一系列桥梁,有连续梁桥,也有连续刚构桥,了其使用范

波形钢板即折叠的钢板,较高的剪切屈曲强度,用它混凝土箱梁的腹板, 不但了腹板的力学性能要求,而且大幅度减轻了主梁自重,缩减了包括基础在内的下部结构所承受的上部恒载,还省去了施工时在腹板中钢筋、设置模板等繁杂的工作。此外,波形钢板纵向伸缩自由的特点使得其几乎不抵抗轴向力,能更地对混凝土桥面板施加预应力,了预应力。组合结构能工程量、缩短工期、降低 成本,在施工性能和经济性能都的吸引力。 1 设计方法 当桥梁上部采用波形钢腹板预应力混凝土组合箱梁的结构时,和普通的钢筋混凝 土箱梁桥一样,其设计需要施工和使用阶段的不同要求。施工阶段的计算要 的施工,比如,连续梁桥可以采用悬臂施工、顶推法施工或的方法,主要的计算荷载有自重、预应力、混凝土不同龄期的收缩徐变、施工荷载等。使用阶段则要考虑汽车荷载、风荷载、温度荷载等。箱梁内通常设置体内和体外预应力,由混凝土顶板和底板内的体内预应力抵抗施工荷载和恒载,箱内的体外预应力用来抵抗活载。考虑的原因 ,是更换体外预应力钢束时结构的受力要求。 1.1 纵向抗弯计算 波形钢腹板在轴向力的作用下,轴向变形,的等效弹性模量很小。波形钢板在纵向的等效弹性模量和板厚、波纹形状,可由下式计算 Ex=αE(t/h)2 式中,Ex为等效轴向弹性模量; E为钢材的弹性模量; t为钢板厚度; α为波纹的形状系数。 此式,日本新开桥Ex=E/617。已的模型实验和有限元计算的结果,

波形钢腹板桥在中国公路的应用

B RIDGE&TUNNEL 桥梁隧道 国内外现状分析 国外发展状况(1986~2009)二十世纪80年代末期法国建造了世界上第一座波形钢腹板PC组合箱梁桥——Cognac桥。随着这种结构的成功运用,各国都相继建造了不同数量的此类型桥梁。如法国的Asterix桥,德国的Altwipfergrund桥,挪威的Tronko桥和委内瑞拉的Caracas桥等。 日本在引进这种结构后,于1993年建造了日本国内第一座波形钢腹板组合简支箱梁桥—新开桥。目前日本是世界上此类结构应用最广的国家,箱形截面形式由最初的单箱单室,发展到多箱多室;桥型也从简支梁、连续梁、连续刚构,到目前的部分斜拉桥。波形钢腹板组合箱梁桥被广泛的运用到各个场合,跨径也逐步加大。日本通过总结新开桥、松木7号桥和本谷桥的设计与施工经验,编写了波形钢腹板PC组合箱梁桥的设计指南,而后相继建成了3跨部分斜拉桥—日见梦大桥、4跨预应力斜拉桥——矢作川斜拉桥、23跨预应力连续梁桥——宫家岛高架桥、7跨连续刚构桥——朝比奈川桥等。 桥梁的截面形式也变得多样化,如韩国的14 跨连续梁桥——Iisun桥和日本的栗东桥均采用了一箱三室的截面形式,矢作川桥采用了一箱五室的截面形式。目前,日本建成和在建的波形钢腹板PC组合箱梁桥已近200座。 国内发展近况(2001~2009)我国也开展了波形钢腹板PC组合箱梁力学特性研究和桥梁的设计与建造工作。东南大学、同济大学、哈尔滨工业大学等高校及和西安市市政设计研究院、河南省交通规划勘察设计院、重庆 交通科研设计院等设计单位以及河南海 威公司、中铁大桥局集团、邢台路桥建 设总公司等施工单位都参与过类似项 目。 国内发展近况——已建成的桥梁 江苏淮安长征人行桥(国内 第一座波形钢腹板组合箱梁人行 桥,2005.1);河南光山泼河大桥(国 内第一座装配式波形钢腹板组合箱梁 公路桥, 2005.7);重庆永川大堰河桥 (国内首座波形钢腹板箱梁简支公路梁 桥,2006);山东东营银座桥B桥、C 桥(国内第一座变截面波形钢腹板组 合箱梁桥,2007);青海三道河桥(国 内第一座一箱二室波形钢腹板组合箱 梁桥,2008);河北邢台百泉大道的 郭守敬桥和钢铁路桥等4座桥(国内 第一座一箱七室波形钢腹板组合箱梁 桥,2009);山东鄄城黄河大桥(国内 跨径最大,世界总长度最长的波形钢腹 板组合多跨连续箱梁桥,2011.6)。 国内在建的波形钢腹板PC箱梁桥 河南大广高速卫河特大桥(国内 第一座应用于高等级公路的波形钢腹板 组合结构);邢台市七里河紫金大桥 (世界在建单跨最大的波形钢腹板组合 桥);邢台至衡水高速跨南水北调大 桥;南京长江四桥引桥等。 国内的发展前景 从已建和在建的桥梁中看出,波 形钢腹板箱梁桥在跨越天然河流、峡 谷、人工干渠及城市立交中有着广泛的 应用(见图1)。 波形钢腹板组合箱梁桥的特点 可提高预应力效率和材料的使用 效率,改善结构性能。纵向体外预应力 束集中荷载与顶、底板,从而有效地提 高预应力效率;并且可以充分发挥波形 钢腹板抗剪能力强和混凝土抗压强度高 的优点。 自重降低,跨径增大,减少下部 工程量。波形钢腹板预应力混凝土箱梁 波形钢腹板桥在中国公路的应用 文/崔院生 TRANSPOWORLD 2012No.23(Dec) 226

膨胀节的类型和构造

膨胀节的类型和构造 一、波纹膨胀节的类型 波纹管配备相应的构件,形成具有各种不同补偿功能的波纹膨胀节。按补偿形式分为轴向型、横向型、角向型及压力平衡型。 轴向型: 普通轴向型、抗弯型、外压型、直埋型、直管力平衡型、一次性直埋型。 横向型: 单向横向型、万向铰链横向型、大拉杆横向型、小拉杆横向型。 角向型: 单向角向型、万向角向型。 以上是基本分类,每类都具备共同的功能。在一些特定情况还可以有特殊功能,如耐腐蚀型、耐高温型。按特定场合的不同,分为催化裂化装置用、高炉烟道用。按用于不同介质分为:热风用、烟气用、蒸汽用等。 二、波纹膨胀节的结构 1、轴向型波纹膨胀节 (1)普通抽向型:是最基本的轴向膨胀节结构。其中支撑螺母和预拉杆的作用是支撑膨胀节达到最大额定拉伸长度和到现场安装时调整安装长度(冷紧)。如果补偿量较大,可用两节,甚至三节波纹管。使用多节时,要增加抗失稳的导向限位杆。 (2)抗弯型:增加了外抗弯套筒,使整体具有抗弯能力。这样可以不受支座的设置必须受4D、14D的约束,支架的设置可以将这段按刚性管道考虑。 (3)外压型:这种结构使波纹管外部受压,内部通大气。外壳必须是密闭的容器,它的特点是: 1)波纹管受外压不发生柱失稳,可以用多波,实现大补偿量。 2)波纹内不含杂污物及水,停气时冷凝水不存波纹内可从排污阀排掉不怕冷冻。 3)结构稍改进也具有抗弯能力。 (4)直埋型:它的外壳起到井的作用,把膨胀节保护起来.密封结构防止土及水进入。实际产品分防土型和防土防水型。对膨胀节的特殊要求是必须与管道同寿命。 (5)一次性直理型:它的使用是装在管线上后整个管线加热升温到管线的设计温度范围的中间温度,管线伸长,波纹管被压缩,两个套筒滑动靠近,然后把它们焊死,再由检压孔打压检验焊缝不漏即可。它的特点是: 1)焊死后波纹管再不起作用,它的寿命一次就够。 2)波纹管的设计压力按施工加热的压力设计。材质用普通碳钢。 2、横向型波纹膨胀节 (1)单向横向型:它只能在垂直于铰链轴的平面内弯曲变形。 (2)万向横向型:它可以对不在一个平面内的空间管道进行各方向的补偿变形。 (3)大拉杆横向型:它属于万向横向型,除了可以承受较大的横向变形,还能吸收中间长接管的热变形。如果不需要用拉杆平衡内压的推力,它还可以补偿来自管线的轴向变形,即所谓“万能膨胀节”。由干弯曲和轴向变形同时发生且轴向变形由两个波纹管均担,则要求

相关文档
最新文档