第二章 运动目标监测和跟踪
运动的目标识别与跟踪简述
运动的目标识别与跟踪简述运动的目标识别与跟踪是计算机视觉领域的一个热门研究方向,涵盖了视频分析、智能交通、人机交互、安防监控等领域。
该技术可以自动识别视频中的目标,跟踪目标的运动轨迹,并提取目标运动的特征,如速度、方向、加速度等,为后续处理和决策提供数据支持。
运动目标识别是指从视频序列中自动识别目标物体,并对其进行分类、定位和识别。
目标识别的主要任务是利用计算机视觉技术,从视频帧中提取目标物体的特征,并与已知目标模型进行匹配和识别。
目前常用的目标识别方法包括基于像素的阈值分割算法、基于特征提取的模板匹配算法、基于机器学习的分类识别算法、基于卷积神经网络的深度学习算法等。
运动目标跟踪是指在视频序列中对目标物体进行连续追踪,得出其在时间上的运动轨迹,并根据目标的运动轨迹提取出其运动特性。
运动目标跟踪的主要挑战在于如何处理目标物体的尺寸、形变、遮挡和干扰等问题,避免跟踪误差和漏检的情况。
目前常用的跟踪算法包括基于颜色、纹理和形状等特征的特征点跟踪算法、基于运动模型的卡尔曼滤波和粒子滤波算法、基于深度学习的神经网络跟踪算法等。
运动目标识别与跟踪的应用十分广泛,其中包括智能视频监控、自动驾驶、智慧城市、虚拟现实等领域。
在智能交通领域,运动目标识别和跟踪可以用于路口监控、行人识别、车辆计数、交通拥堵分析等,以提高公共安全和运输效率。
在虚拟现实领域,运动目标识别和跟踪可以用于追踪用户的行为,自适应更新虚拟环境,并改善用户体验。
在安防监控领域,运动目标识别和跟踪可以用于实时监视和检测,及时发现异常和预防犯罪。
综上所述,运动目标识别与跟踪是计算机视觉领域的一个重要研究方向,具有广泛的应用前景。
随着计算机视觉和深度学习技术的不断发展,我们有望在未来看到更多更高效、更准确的运动目标识别和跟踪算法被广泛应用于各个领域。
运动目标跟踪
运动目标跟踪运动目标跟踪是一种利用计算机视觉技术来自动识别和追踪视频中的运动目标的方法。
它在实际应用中具有广泛的用途,例如视频监控、交通监控、自动驾驶等。
运动目标跟踪的目标是识别和跟踪视频中的感兴趣目标,并在目标移动、形状变化、遮挡等复杂场景下保持准确的跟踪。
跟踪的过程一般包括目标检测、目标定位和目标跟踪三个步骤。
首先,目标检测是从视频中检测出所有可能的目标区域。
常用的目标检测算法包括基于深度学习的目标检测算法,如Faster R-CNN、YOLO等。
这些算法可以快速准确地检测出目标区域,并生成候选框。
然后,目标定位是确定目标在当前帧中的准确位置。
目标定位一般采用基于特征的方法,通过计算目标候选框与目标模板之间的相似度来确定目标的位置。
常用的目标定位算法包括颜色直方图、HOG特征等。
这些算法可以通过算法模型进行目标定位,并快速准确地输出目标的位置。
最后,目标跟踪是在视频序列中持续追踪目标,并在目标发生变化或遮挡时进行目标重新定位和跟踪。
常用的目标跟踪算法包括基于粒子滤波器的跟踪算法、卡尔曼滤波器跟踪算法等。
这些算法可以利用目标模型和观测模型进行目标跟踪,并实时更新目标的位置和状态。
运动目标跟踪的关键技术包括目标检测和定位、目标跟踪和状态估计、特征提取和匹配等。
当前,随着深度学习技术的发展,基于深度学习的运动目标跟踪方法已经取得了很大的突破。
这些方法可以通过大规模的数据训练模型,实现更加准确和鲁棒的目标跟踪效果。
总之,运动目标跟踪是一种利用计算机视觉技术来自动识别和追踪视频中的运动目标的方法。
它在实际应用中具有广泛的用途,并且随着深度学习技术的发展,其性能和效果正在不断提高。
将来,运动目标跟踪技术有望在各个领域得到更广泛的应用。
运动目标检测与跟踪的
条件随机场是一种基于概率图模型的目标跟踪方法,它利用观测序列与标记序 列之间的条件概率关系建立模型。通过对模型参数的学习和优化,可以实现运 动目标的准确跟踪。
基于深度学习的方法
卷积神经网络
卷积神经网络是一种深度学习方法,具有强大的特征提取能力。在运动目标跟踪 中,可以利用卷积神经网络提取目标的特征表示,进而实现目标的跟踪。
研究背景与意义
• 随着社会的快速发展,视频数据在社会生活和工业生产中的应用越来越广泛。如何自动地从海量视频数据中提取出有用的 信息,成为了一个亟待解决的问题。运动目标检测与跟踪技术可以从视频中提取出运动目标,并对目标的运动轨迹进行跟 踪,为后续的视频分析和理解提供基础数据。因此,研究运动目标检测与跟踪技术对于推动计算机视觉领域的发展,提高 视频数据的利用效率具有重要意义。
传感器数据融合:利用激光雷 达、摄像头等多传感器数据,
实现运动目标的准确检测。
决策与规划:根据运动目标的 轨迹预测结果,进行自动驾驶 车辆的决策和路径规划。
目标轨迹预测:基于运动目标 的历史轨迹,预测其未来一段
时间的运动轨迹。
自动驾驶中的运动目标检测与 跟踪技术提高了车辆的感知能 力,增强了行驶安全性,为自 动驾驶技术的实用化奠定了基 础。
的鲁棒性。
缺点
需要大量标注数据进行 训练,模型复杂度较高 ,计算量大,实时性较
差。
03
运动目标跟踪方法
基于滤波的方法
卡尔曼滤波
卡尔曼滤波是一种高效的递归滤波器,它采用线性动态系统 状态空间模型,通过对系统输入输出观测数据对系统状态进 行最优估计。在运动目标跟踪中,卡尔曼滤波可用于预测目 标的运动轨迹。
运动目标检测与跟踪 的
汇报人: 日期:
《智能监控系统中运动目标的检测与跟踪》范文
《智能监控系统中运动目标的检测与跟踪》篇一一、引言随着科技的不断进步,智能监控系统在安全、交通、医疗等领域得到了广泛应用。
其中,运动目标的检测与跟踪是智能监控系统中的关键技术之一。
本文旨在深入探讨智能监控系统中运动目标的检测与跟踪方法及其应用。
二、运动目标检测技术1. 背景与意义运动目标检测是智能监控系统的基础,其目的是从视频序列中提取出感兴趣的运动目标。
该技术对于后续的目标跟踪、行为分析、目标识别等具有重要意义。
2. 常用方法(1)基于帧间差分法:通过比较视频序列中相邻两帧的差异,检测出运动目标。
该方法简单有效,但易受光照变化、噪声等因素影响。
(2)基于背景减除法:利用背景模型与当前帧进行差分,从而提取出运动目标。
该方法对动态背景具有较好的适应性,但需要预先建立准确的背景模型。
(3)基于深度学习方法:利用深度学习技术对视频进行目标检测,如基于卷积神经网络的目标检测算法。
该方法具有较高的检测精度和鲁棒性。
三、运动目标跟踪技术1. 背景与意义运动目标跟踪是在检测出运动目标的基础上,对其在连续帧中的位置进行估计和预测。
该技术对于提高监控系统的实时性和准确性具有重要意义。
2. 常用方法(1)基于滤波的方法:如卡尔曼滤波、粒子滤波等,通过建立目标运动模型,对目标位置进行预测和更新。
(2)基于特征匹配的方法:利用目标的形状、颜色等特征,在连续帧中进行匹配,从而实现目标跟踪。
(3)基于深度学习的方法:利用深度学习技术对目标进行识别和跟踪,如基于孪生神经网络的目标跟踪算法。
该方法具有较高的跟踪精度和鲁棒性。
四、智能监控系统中运动目标检测与跟踪的应用1. 安全监控领域:通过智能监控系统对公共场所、住宅小区等进行实时监控,及时发现异常情况,提高安全性能。
2. 交通管理领域:通过智能监控系统对交通流量、车辆行为等进行实时监测和分析,为交通管理和规划提供支持。
3. 医疗领域:在医疗领域中,智能监控系统可以用于病人监护、手术辅助等方面,提高医疗质量和效率。
视频监控中的运动目标检测与跟踪
视频监控中的运动目标检测与跟踪随着科技的不断发展,视频监控系统在我们生活中起到了越来越重要的作用。
其中,运动目标检测与跟踪是视频监控系统中的关键技术之一。
本文将详细介绍视频监控中的运动目标检测与跟踪的原理和应用。
在视频监控系统中,运动目标指的是图像序列中不断变化的区域,例如人、车辆等。
而运动目标检测与跟踪则是指在视频中自动识别和跟踪这些运动目标的过程。
首先,运动目标检测是指在视频序列中找出运动目标所在的位置。
常见的运动目标检测算法包括帧间差、光流法和背景建模等。
帧间差方法通过比较连续帧之间的像素差异来检测目标的运动。
光流法则利用像素间的灰度变化来估计运动目标的移动。
背景建模则通过建立静止背景图像来检测运动目标。
其次,运动目标跟踪是指在检测到的运动目标中,跟踪其运动轨迹并实时更新位置信息。
常见的运动目标跟踪算法包括卡尔曼滤波器、粒子滤波器和相关滤波器等。
卡尔曼滤波器通过预测和观测更新的方式来估计目标的位置。
粒子滤波器则通过在候选区域中采样来估计目标的位置。
相关滤波器利用目标模板和候选区域之间的相关性来跟踪目标。
在实际应用中,运动目标检测与跟踪技术被广泛应用于视频监控系统中。
首先,它可以用于实时监测人员和车辆的行为,以便及时发现异常情况。
例如,当有人携带危险物品进入监控区域时,系统可以立即发出警报并采取相应措施。
其次,它可以用于交通管理系统中,监测交通流量和违规行为。
例如,当有车辆逆向行驶或超速行驶时,系统可以自动拍摄照片或录像作为证据。
此外,运动目标检测与跟踪技术还可用于视频分析和智能监控系统中,为用户提供更加智能的安防服务。
然而,运动目标检测与跟踪技术也存在一些挑战和局限性。
首先,复杂的背景和光照变化会对运动目标检测产生干扰。
例如,当目标混杂在复杂的背景中时,算法往往会出现误检测现象。
其次,目标遮挡和形状变化也会对运动目标跟踪产生困难。
例如,当目标部分被其他物体遮挡时,算法往往会失去目标的轨迹。
运动的目标识别与跟踪简述
运动的目标识别与跟踪简述运动的目标识别与跟踪是指利用计算机视觉和图像处理技术对视频中的运动目标进行识别和跟踪。
在现代社会中,运动目标识别与跟踪技术已经得到了广泛的应用,包括智能监控系统、自动驾驶汽车、机器人导航等领域。
本文将对运动的目标识别与跟踪技术进行简要介绍,包括其基本原理、关键技术和应用领域。
一、目标识别与跟踪的基本原理运动的目标识别与跟踪是通过对视频序列中的图像进行处理和分析,从而实现对运动目标的识别和跟踪。
其基本原理可以简要概括如下:1. 图像采集:首先需要使用摄像机等设备对视频序列中的图像进行采集,并将其转换为数字信号。
2. 运动目标检测:利用计算机视觉和图像处理技术对视频序列中的图像进行分析和处理,从而实现对运动目标的检测和定位。
常用的检测算法包括背景建模、运动检测和物体识别等。
3. 目标跟踪:一旦运动目标被检测出来,就需要对其进行跟踪,即在连续的图像帧中跟踪目标的运动轨迹。
常用的跟踪算法包括卡尔曼滤波、粒子滤波和相关滤波等。
4. 数据关联:对于多个运动目标,需要进行数据关联,即将它们在连续的图像帧中进行匹配和跟踪。
通过以上步骤,可以实现对视频序列中的运动目标进行准确的识别和跟踪,为后续的应用提供可靠的基础数据。
二、目标识别与跟踪的关键技术运动的目标识别与跟踪涉及多个关键技术,包括图像处理、模式识别、机器学习等。
下面对其中的一些关键技术进行简要介绍:1. 图像处理:图像处理是目标识别与跟踪的基础,包括图像的预处理、特征提取和图像分割等。
通过对图像进行处理和分析,可以提取出目标的特征信息,为后续的目标识别和跟踪提供数据支持。
2. 特征提取:特征提取是目标识别与跟踪的关键步骤,包括颜色特征、纹理特征、形状特征等。
通过对目标的特征进行提取和描述,可以实现对目标的精确识别和跟踪。
3. 目标识别算法:目标识别算法是实现目标识别与跟踪的核心技术,包括支持向量机、决策树、神经网络等。
通过对目标进行特征匹配和分类,可以实现对目标的准确识别和跟踪。
第二章 运动目标监测和跟踪
第二章运动目标监测和跟踪2.1运动目标检测运动目标检测(Motion Detection)是指在输入视频图像中判断与背景图像相比是否存在相对运动的前景目标和物体,并根据灰度、边缘、纹理等二维图像特征将运动前景进一步分割为若干独立目标。
在实际应用中,一个好的运动目标检测算法,通常应该具有以下几个特征【12】:◆不受环境的变化(如天气和光照变化等)而影响结果;◆不受背景中个别物体的运动(如水波、风吹树动等)而影响结果;◆不受目标及背景中的阴影而影响结果;◆对复杂背景和复杂目标仍然有效;◆检测的结果应满足后续处理(跟踪分析)的精度要求;图2-1描述了检测算法的一般流程图。
常见的运动目标检测算法有:帧间差分法、背景差分法及光流法等,以下将分别进行介绍。
Fig.2—1Flow chart of detection algorithm2.1.1帧间差分法帧间差分法[23-241就是将视频序列中相邻的两帧或几帧做象素域上的减法运算,以得到帧间的不同图像的信息。
在摄像头固定的情况下,对连续的图像序列中的相邻两帧图像采用基于像素的帧差法来提取图像中的运动区域,设k 帧和第k+l 帧(或者看做21t t 和时刻)采集到同一背景下的两幅运动图像的灰度值为1),(+k k f y x f 和,则差分图像的定义为:),(),(),(11y x f y x f y x D k k k -=++ (2.1)对上式的差分结果进行阈值处理,就可以提取出运动物体。
对差分图像),(y x f d 二值化,当某一像素的灰度值大于给定阈值T 时,认为该像素为目标像素,即该像素属于运动目标;反之,则属于背景。
这一步的目的就是为了区分背景像素和目标像素,得到:T y x D T y x D k k k y x R >≤+++=),(),(10111{),( (2.2)其中,l 表示前景像素值,0表示背景像素值。
然后再对),(1y x R k +进行连通性分析,就可以得到连通区域的面积。
运动目标检测与跟踪知识讲解
移动平台下的目标跟踪
先前帧
特征熵
抽取的特征区域
Approach
? Covariance Matching
R (x, y)
G ( x, y)
B (x, y)
I xy ( x, y )
Covariance matrices
d ( x, y)
D
t
(x,
y)
=
??1,
? ?
0,
I(t x, y)- It-1 otherwise
(x,
y) > T
Default:T=60
优点:鲁棒性好,运算量小,易于软件实现 缺点:对噪声有一定的敏感性,运动实体内部也容易产生空洞现 象,阈值 T缺乏自适应性,当光照变化时,检测算法难以适应环境 变化
背景相减法
检测实例:
(a)第 1帧图像
(b)第 2帧图像
( c)变化区域图像
(d)提取出的背景图像 (e)变化区域与背景差分图像 (f)运动目标检测结果
国内外对此类问题的解决办法:
基于目标建模定位:
目标建模
相似度度量
目标定位
基于滤波、数据关联: Kalman Filter , Particle Filter, PDAF
帧间差分法
这种方法就是将前后两帧图像对应像素点的灰度值相减 ,在环境亮度变化不大的情况下,如果对应像素灰度相差很 小,可以认为此处景物是静止的,如果图像区域某处的灰度 变化很大,可以认为这是由于图像中运动物体引起的,将这 些区域标记下来,利用这些标记的像素区域,就可以求出运 动目标在图像中的位置。
2020/6/11
形状上下文(shape context):
《2024年智能监控系统中运动目标的检测与跟踪》范文
《智能监控系统中运动目标的检测与跟踪》篇一一、引言随着科技的不断进步,智能监控系统在各个领域得到了广泛的应用。
其中,运动目标的检测与跟踪是智能监控系统中的关键技术之一。
本文将详细介绍智能监控系统中运动目标的检测与跟踪技术,包括其基本原理、实现方法、应用场景以及面临的挑战和解决方案。
二、运动目标检测技术1. 背景介绍运动目标检测是智能监控系统中的第一步,它的主要任务是在视频序列中准确地检测出运动目标。
运动目标检测的准确性与实时性直接影响到后续的跟踪、识别、分析等任务。
2. 基本原理运动目标检测的基本原理是通过分析视频序列中的像素变化来检测运动目标。
常见的运动目标检测方法包括帧间差分法、背景减除法、光流法等。
其中,背景减除法是目前应用最广泛的方法之一。
3. 实现方法背景减除法通过建立背景模型,将当前帧与背景模型进行差分,得到前景掩膜,从而检测出运动目标。
实现过程中,需要选择合适的背景建模方法、更新策略以及阈值设定等。
三、运动目标跟踪技术1. 背景介绍运动目标跟踪是在检测出运动目标的基础上,对其在连续帧中的位置进行估计和预测。
运动目标跟踪对于实现智能监控系统的自动化、智能化具有重要意义。
2. 基本原理运动目标跟踪的基本原理是利用目标在连续帧中的相关性,通过一定的算法对目标进行定位和跟踪。
常见的运动目标跟踪方法包括基于滤波的方法、基于特征的方法、基于深度学习的方法等。
3. 实现方法基于深度学习的运动目标跟踪方法是目前的研究热点。
该方法通过训练深度神经网络来学习目标的外观特征和运动规律,从而实现准确的跟踪。
实现过程中,需要选择合适的神经网络结构、训练方法和损失函数等。
四、应用场景智能监控系统中的运动目标检测与跟踪技术广泛应用于各个领域,如安防监控、交通监控、智能机器人等。
在安防监控中,该技术可以实现对可疑目标的实时监测和报警;在交通监控中,该技术可以实现对交通流量的统计和分析,提高交通管理水平;在智能机器人中,该技术可以实现机器人的自主导航和避障等功能。
运动场景中目标检测与跟踪技术研究课程(PPT 61页)
特征提取和目标跟踪:对检测出的目标提取可识 别的特征,依据这些特征在后续的视频图像序列中 对目标进行跟踪。
针对视频图像目标检测与跟踪技术,根据三维场景中目标距离 成像传感器的探测距离,可划分为三种情况:
①微弱点状目标的检测,即当目标距离成像传感器很远时,目 标在图像平面上只占几个像素,呈现为微弱点状目标,信噪比较 低;
Khaled Kaâniche, Benjamin Champion, Claude Pégard, Pascal Vasseur “A Vision Algorithm for Dynamic Detection of Moving Vehicles with a UAV” IEEE International Conference on Robotics and Automation 2005 (ICRA’05), April 2005, Barcelone (University of Picardie Amiens France)
VSAM
针对机载航空摄像机所拍摄的视频图像,萨尔诺夫戴维研究中心研发 了检测和跟踪独立地面车辆目标的视频图像理解技术。该技术的关键在于 对航空摄像机的自运动补偿,对经过补偿的图像,利用三帧差减的方法检 测目标。
美国康奈尔大学计算机系设计的航拍视频图像目标检测与持续跟踪系统 的特色在于,能够对多运动目标实现较长时间的准确跟踪,即使在短时间内 目标被遮挡或移出视场以及目标时静时动。
VSAM
VSAM系统是在1997年至1999年间,美国国防高级研究计划局资助卡内 基梅隆大学和萨尔诺夫戴维研究中心等著名大学和公司合作联合研制的视频监 视与监控系统。目标是开发自动视频理解技术,并用于实现未来战争、人力 费用昂贵、非常危险或者人力无法实现等场合的监控。
运动目标的监测与跟踪论文
运动目标的监测与跟踪摘要: 对所要求的场景提出了一种检测运动物体,跟踪运动物体的方法。
用背景差分得到运动人体的区域, 通过卡尔曼滤波对人体进行跟踪,并给出实例关键词: 运动检测;运动跟踪;卡尔曼滤波1.概论视频图像分析主要是对运动图像序列进行分析处理,它通常涉及到运动检测、目标分类、目标跟踪及行为理解与描述几个过程。
其中,运动目标检测与跟踪处于整个视觉监视系统的最底层,是视频图像分析中最基本的方法,是各种后续高级处理如目标分类、行为理解等的基础。
视频图像指动态图像(moving-image),可以认为是随时间变化的静态图像序列(Still-frame-image/picture-Sequence)。
在静态图像中,信息密度随空间分布,且相对于时间为常量;而动态图像的空间信息密度特征随时间分布。
所以,在视频图像的目标识别中,既有静态图像处理的特点,可以借用静态图像处理的一些方法;同时还有动态图像自身的特点,即动态图像连续帧之间的相关性。
根据视频图像中摄像机和场景之间是否运动将物体的运动划分为四种模式:1摄像机静止一目标静止,这实际上就是静态场景,对其处理方法就是静态图像中的处理方法。
2.摄像机静止一目标运动,这是一类非常重要的动态场景,对其处理一般包括运动目标检测、目标特性估计等,主要用于预警、监视、目标跟踪等场合。
3.摄像机运动一目标静止,这主要用于机器人视觉导航、电子地图的自动生成以及三维场景理解等。
4.摄像机运动一目标运动,这是运动物体的检测和跟踪最复杂的一种情况,但也是最普通的情况,目前关于这方面的研究还较少,理论还不够成熟。
本试验中采用的物体运动模式为摄像机静止一目标运动模式[1] 一个运动物体跟踪系统的基本过程如下:1.在图像序列中检测出运动物体及运动区域2.对检测到的运动物体提取特征建立目标匹配模板3.计算目标的形心4.预测目标在下一时刻可能运动到的位置,确定目标在下一时刻的搜索范围5.在预测的搜索范围内,用前一时刻的模板进行匹配搜索,寻找最佳匹配位置,当在预测范围内未找到目标时需进行例外处理。
基于OpenCV的运动目标检测与跟踪算法仿真与分析毕业设计论文
摘要在当今社会,安全问题越来越受到人们的关注,而视频监控是保障人民群众生命财产安全的重要技术手段,同时也是目前计算机视觉与模式识别领域的研究热点之一。
视频监控历经了普通监控、网络监控到现在的智能监控三个发展阶段。
近几年来,智能监控在交通、银行、博物馆等安全性要求比较高的场所发挥了举足轻重的作用。
但由于其应用范围的广泛性、应用场景的多样性,就其技术而言仍未达到人们所期望的要求。
其算法实时性、稳定性情况还不甚理想,受雨雪等恶劣天气的影响也比较大,还需要进一步研究出更好的算法,因此它是一个十分有意义的课题。
本文设计了基于opencv的运动目标检测与跟踪系统。
进行了大量的实验,并在实验中通过多次改进系统的结构和相关的算法,达到了提高系统实时性的目的。
该系统能够打开视频文件,并对视频文件中的运动物体进行实时有效检测与跟踪。
本文的主要工作包括:在运动目标检测阶段,本文介绍了目前常用的背景差法、帧间差分法、光流法,并通过实验对其进行了多次改进,最终采用了自适应背景更新算法、以及最经典的混合高斯背景建模算法进行运动检测。
在运动目标跟踪阶段,本文利用了颜色范围和面积大小这两个简单的特性来识别目标,在满足了识别要求的前提下,大大提高了识别的速度,再一次提升了系统的实时性;在目标跟踪阶段采用Meanshift的改进算法Camshift,并根据实验结果对算法中的优缺点进行分析。
关键词:运动目标检测,运动目标跟踪,OpenCV,高斯背景建模算法,Camshift算法。
AbstractToday,security problems are becoming increasingly subject to people’s attention.Video surveillance is the most important technical means to protect people’s lives and property.It is also the most popular problems in the computer vision and pattern recognition research fields. Video Surveillance has developed three stages as the common surveillance,the network surveillance and the intelligent surveillance.In recent years,the intelligent video surveillance has played great importance in the field of Traffic,Bank,Museum and so on which have a high safety requirements.But because of the extensive and diversity of its application,as for the technology,it has not reached the expected requirements of the people.On the other hand,the stability and real-time performance of the algorithms are not so satisfied;the result is still affected by the bad weather as rain and snow.So,better algorithm is needed.Therefore,it is one of the most valuable topics.This article is designed based on the opencv moving target detection and tracking system. Done a lot of experiments and experiments through several improvements in the structure and related algorithms,to improve the system of real-time purposes.The system is able to open video files,and video files in real-time moving object detection and tracking effectively.The main work includes:the moving target detection phase,the paper describes the current common background subtraction,inter-frame difference method,optical flow,and through experiments carried out many improvements,finally adopted adaptive background updating algorithm,and the most classic Gaussian mixture background modeling algorithm for motion detection.In moving target tracking phase,the scope of this paper,the color and size of the size of these two simple features to identify the target,to meet the identification requirements under the premise,greatly improve the recognition rate,once again enhance the system in real time;in Meanshift tracking stage using the improved algorithm Camshift,and the experimental results of the algorithm to analyze the advantages and disadvantages.Key words:Moving target detection,target tracking,OpenCV,Gaussian background modelingalgorithm,Camshift algorithm.目录1绪论......................................................................11.1课题研究的背景和意义...................................................11.2国内外研究现状.........................................................11.3技术发展难点与趋势.....................................................21.4论文结构安排...........................................................32编程工具介绍..............................................................42.1opencv2.4.3简介.......................................................42.2opencv视频处理........................................................42.2.1OpenCV中处理图像Mat类............................................52.2.2OpenCV中读取视频VideoCapture类...................................62.3opencv编程环境配置....................................................62.3.1配置Windows环境变量..............................................62.3.2在VisualStudio2010中建立MFC对话框..............................72.3.3配置OpenCV函数库..................................................73运动目标检测..............................................................93.1概述...................................................................93.1.1帧间差分法.........................................................93.1.2背景差法..........................................................93.1.3光流法...........................................................103.2自适应背景更新算法....................................................113.2.1原理..............................................................113.2.2流程.............................................................113.2.3核心代码.........................................................123.2.4实验结果及分析...................................................133.3混合高斯背景建模算法.................................................153.3.1原理..............................................................153.3.2流程..............................................................163.3.3核心代码.........................................................173.3.4实验结果及分析...................................................174运动目标跟踪.............................................................214.1概述..................................................................214.2均值漂移MeanShift算法...............................................224.2.1原理..............................................................224.2.2流程图............................................................234.3Camshift算法.........................................................234.3.1原理..............................................................234.3.2流程图............................................................254.3.3核心代码.........................................................254.4实验结果及分析........................................................275软件的设计与仿真.........................................................296全文总结与展望...........................................................32参考文献...................................................................33翻译部分...................................................................35英文文献.................................................................35中文译文.................................................................45致谢.....................................................错误!未定义书签。
多运动目标的检测与跟踪研究
多运动目标的检测与跟踪研究在现代社会,随着科技的不断发展和人们生活水平的提高,人们越来越注重健康和身体素质的提升。
运动成为了人们生活中不可或缺的一部分,而实现运动目标的检测与跟踪也成为了一个备受关注的研究领域。
多运动目标的检测与跟踪研究旨在通过使用计算机视觉和图像处理等技术,对多个运动目标进行自动检测和跟踪,从而实现对个体运动行为的分析和评估。
这项研究对于个人健康管理、运动训练和运动竞技等领域具有重要的意义。
在多运动目标的检测方面,研究人员通常使用图像处理算法来识别和提取出图像中的运动目标。
这些算法主要包括背景建模、运动轨迹分析和特征提取等方法。
通过对图像中的像素进行分析和比较,可以准确地检测出多个运动目标的位置和运动轨迹。
在多运动目标的跟踪方面,研究人员通常使用目标追踪算法来实现对多个运动目标的跟踪和定位。
这些算法主要包括卡尔曼滤波、粒子滤波和相关滤波等方法。
通过不断地更新目标的位置和速度等参数,可以实时地跟踪多个运动目标的运动状态。
多运动目标的检测与跟踪研究在实际应用中具有广泛的应用前景。
首先,它可以应用于体育训练领域,帮助运动员分析和改善自己的运动技能。
其次,它可以应用于运动竞技领域,帮助裁判员判断比赛中的争议性动作。
此外,它还可以应用于健康管理领域,帮助个人和医生监测和评估个体的运动状态和健康状况。
然而,多运动目标的检测与跟踪研究仍面临着一些挑战和难题。
首先,在复杂的环境中,如人群拥挤的场景中,目标的检测和跟踪会受到很大的干扰。
其次,在光照条件不好的情况下,目标的检测和跟踪的准确性也会受到影响。
因此,研究人员需要进一步改进和优化算法,提高多运动目标的检测和跟踪的准确性和稳定性。
综上所述,多运动目标的检测与跟踪研究在现代社会具有重要的意义和应用前景。
通过使用计算机视觉和图像处理等技术,可以实现对多个运动目标的自动检测和跟踪,从而实现对个体运动行为的分析和评估。
然而,该领域仍面临一些挑战和难题,需要进一步的研究和改进。
运动的目标识别与跟踪简述
运动的目标识别与跟踪简述运动的目标识别与跟踪是计算机视觉和人工智能领域中的一个重要课题。
随着深度学习技术的不断发展,运动目标识别与跟踪的精度和效率得到了极大的提升,这项技术在许多领域都有着广泛的应用,比如智能安防、自动驾驶、体育竞技等。
本文将对运动的目标识别与跟踪进行简要介绍,包括其技术原理、应用场景及发展趋势。
在计算机视觉领域,目标识别与跟踪是指利用图像或视频数据,通过算法识别出感兴趣的运动目标,并对其进行跟踪。
这个过程包括目标检测、目标分类和目标跟踪三个主要环节。
目标检测是指在图像或视频中准确地找出目标的位置,目标分类是指对目标进行分类,比如车辆、行人等,目标跟踪是指在连续的图像帧中追踪目标的运动轨迹。
这些工作都需要强大的计算能力和复杂的算法支持,而现在随着深度学习技术的发展,很多基于卷积神经网络的目标识别与跟踪算法已经取得了令人瞩目的成果。
运动的目标识别与跟踪技术在很多领域都有着广泛的应用。
在智能安防领域,利用目标识别与跟踪技术可以实现对安防监控视频的自动分析,及时发现异常事件并进行预警。
在自动驾驶领域,目标识别与跟踪可以帮助汽车识别道路上的其他车辆、行人和障碍物,从而实现智能的自动驾驶功能。
在体育竞技领域,目标识别与跟踪可以用于体育比赛的实时数据统计和比赛回放,提供更加丰富的体育赛事观赏体验。
随着深度学习技术的不断发展,运动的目标识别与跟踪也在不断取得新的进展。
目前最先进的目标识别与跟踪算法已经能够在复杂的场景下实现高精度的目标识别和跟踪,并且能够处理各种复杂的运动情况,比如目标遮挡、快速运动等。
随着计算机硬件性能的提升和深度学习算法的优化,目标识别与跟踪的速度和实时性也得到了很大的提升,可以满足很多实际应用的需求。
运动的目标识别与跟踪简述
运动的目标识别与跟踪简述随着智能视频监控技术的发展,运动目标识别与跟踪技术成为了视频监控领域中的一个重要研究方向。
本文将对运动目标识别与跟踪技术进行简述。
一、运动目标识别运动目标识别技术是指在视频监控中,通过分析视频流中的图像信息,自动地识别出视频中的人、车等运动目标。
这项技术是视频监控系统最重要的功能之一,能够有效地提高视频监控的智能化水平。
运动目标识别技术通常包括以下步骤:1. 图像预处理:对视频流中的图像进行预处理,包括去除噪声、增强对比度等。
这个步骤是为了减少后续处理对不必要的图像信息的处理。
2. 运动目标检测:通过运动检测算法,将视频流中的运动目标从背景中分离出来。
目前常用的运动检测算法有帧差法、光流法、背景建模法等。
3. 特征提取与分类:通过特征提取算法,将运动目标的特征提取出来进行识别。
目前常用的特征提取算法有颜色直方图、方向梯度直方图等。
而对于分类器的选择,则需要根据具体应用场景来进行选择。
运动目标跟踪技术是指在已经识别出运动目标的基础上,实时地对运动目标进行跟踪和定位。
这项技术通常被应用在视频监控、交通管理、智能安防等领域中。
1. 运动目标初始化:在视频图像中选择目标,并提取出目标的特征。
通常会选择容易被区分的目标,如人脸、车辆等。
2. 目标跟踪:通过各种跟踪算法,实时地对运动目标进行跟踪和定位。
目前常用的跟踪算法有卡尔曼滤波、粒子滤波、深度学习跟踪等。
3. 跟踪结果输出:将跟踪结果输出给上层应用。
运动目标识别和跟踪技术被广泛应用在多个领域,包括视频监控、交通管理、智能安防等。
在视频监控中,运动目标识别和跟踪可以帮助安保人员及时地发现和跟踪可疑人员和物品;在交通管理中,可以实现车辆的自动统计和追踪;在智能安防领域中,可以实现人脸识别、声纹识别等技术。
总之,运动目标识别与跟踪技术是视频监控中最重要的技术之一,对于提高智能化水平,提高监控效率与准确率具有重要意义。
运动目标检测与跟踪算法研究
运动目标检测与跟踪算法研究视觉是人类感知自身周围复杂环境最直接有效的手段之一,而在现实生活中大量有意义的视觉信息都包含在运动中,人眼对运动的物体和目标也更敏感,能够快速的发现运动目标,并对目标的运动轨迹进行预测和描绘。
随着计算机技术、通信技术、图像处理技术的不断发展,计算机视觉己成为目前的热点研究问题之一。
而运动目标检测与跟踪是计算机视觉研究的核心课题之一,融合了图像处理、模式识别、人工智能、自动控制、计算机等众多领域的先进技术,在军事制导、视觉导航、视频监控、智能交通、医疗诊断、工业产品检测等方面有着重要的实用价值和广阔的发展前景。
1、国内外研究现状1.1 运动目标检测运动目标检测是指从序列图像中将运动的前景目标从背景图像中提取出来。
根据运动目标与摄像机之间的关系,运动目标检测分为静态背景下的运动目标检测和动态背景下的运动目标检测。
静态背景下的运动目标检测是指摄像机在整个监视过程中不发生移动;动态背景下的运动目标检测是指摄像机在监视过程中发生了移动,如平动、旋转或多自由度运动等。
静态背景静态背景下的运动目标检测方法主要有以下几种:(1)背景差分法背景差分法是目前最常用的一种目标检测方法,其基本思想就是首先获得一个背景模型,然后将当前帧与背景模型相减,如果像素差值大于某一阈值,则判断此像素属于运动目标,否则属于背景图像。
利用当前图像与背景图像的差分来检测运动区域,一般能够提供比较完整的特征数据,但对于动态场景的变化,如光照和外来无关事件的干扰等特别敏感。
很多研究人员目前都致力于开发不同的背景模型,以减少动态场景变化对运动目标检测的影响。
背景模型的建立与更新、阴影的去除等对跟踪结果的好坏至关重要。
背景差分法的实现简单,在固定背景下能够完整地精确、快速地分割出运动对象。
不足之处是易受环境光线变化的影响,需要加入背景图像更新机制,且只对背景已知的运动对象检测比较有效,不适用于摄像头运动或者背景灰度变化很大的情况。
运动目标检测与跟踪技术研究
摘要运动目标检测与跟踪是计算机视觉领域的热点问题,广泛应用于视频监控、人机交互、虚拟现实和图像压缩等。
而要在各种复杂的环境中和不同的条件下(如遮挡、光照变化等)都对目标进行准确的跟踪是目前广大研究工作者共同关注的焦点,也是目前实际应用中一个亟待解决的难题。
本文主要研究静态背景下运动目标的检测、运动目标跟踪以及相关结果仿真分析三方面的内容。
运动目标检测方面,在分析了目前比较常用的三种目标检测方法,即光流法、帧间差分法、背景相减法的基础上,着重研究了基于帧间差分法运动目标检测的算法原理及流程,讨论了三种检测算法的优缺点。
运动目标跟踪方面,在分析了目前比较常用的三种目标跟踪算法,即均值漂移算法、卡尔曼滤波算法、基于特征的目标跟踪算法的基础上,重点研究了基于特征——最小外接矩形框运动目标跟踪算法。
分析了其算法原理以及跟踪步骤。
最后用matlab软件采用帧间差分运动目标检测法以及基于最小外接矩形框跟踪法对含有运动目标的视频进行仿真。
在采用了帧间差分检测法以及最小外接矩形框跟踪法基础上,用matlab软件对视频进行仿真,检测到了人体的轮廓,同时矩形框跟踪出了运动人体的轨迹,达到了运动目标检测与跟踪的效果。
关键词:运动目标检测;运动目标跟踪;帧间差分法;最小外接矩形框AbstractMoving target detection and tracking is a hot issue in the field of computer vision, is widely used in video surveillance, human-computer interaction, virtual reality and image compression etc.. But in various complex environments and different conditions (such as occlusion, illumination changes) of target accurate tracking is currently the focus of researchers of common concern in the current application, is an urgent problem to be solved.This paper mainly involves moving target detection under a static background, moving target tracking and simulation results analysis of three aspects. In the moving object detection, in the analysis of the current commonly used three kinds of target detection method based on optical flow method, namely, the inter-frame difference method, background subtraction method, focusing on the frame difference algorithm principle and process method based on moving object detection.And discusses the advantages and disadvantages of three kinds of detection algorithm.In terms of moving object tracking, in the analysis of the current three kinds of target more commonly used tracking algorithm, the mean shift algorithm, Calman algorithm, based on the characteristics of the target tracking algorithm based on the characteristics, focuses on the minimum exterior rectangle based on moving target tracking algorithm.Finally using MATLAB software using frame difference detection method for moving targets as well as based on the minimum bounding box tracking method to simulate the video with moving objects.Based on the frame difference detection method and the minimum bounding box tracking method based on the simulation, the video with the MATLAB software, to detect the contours of the body, at the same time rectangle tracking a human motion trajectory, reached the moving target detection and tracking results.Keywords: moving object detection; object tracking; inter-frame difference method; minimum circumscribed rectangle目录1 绪论 (1)1.1 研究背景和意义 (1)1.2 国内外研究现状 (2)1.3 章节安排 (4)2 运动目标检测与跟踪技术 (5)2.1 数字图像处理相关概念 (5)2.1.1 数字图像处理过程 (5)2.1.2 图像增强 (5)2.1.3 图像分割 (6)2.1.4 数学形态学 (6)2.2 运动目标检测流程及常用算法 (7)2.2.1 背景差分法 (8)2.2.2 帧间差分法 (8)2.2.3 光流法 (9)2.3 运动目标跟踪常用算法 (10)2.3.1 基于均值漂移目标跟踪算法 (10)2.3.2 基于卡尔曼滤波目标跟踪算法 (10)2.3.3 基于特征的目标跟踪算法 (11)3 基于帧间差分法运动目标检测的研究 (12)3.1 帧间差分法运动目标检测流程 (12)3.2 帧间差分法运动目标检测过程及原理 (12)3.2.1RGB图像转换为灰度图像 (12)3.2.2 图像差分处理 (13)3.2.3 差分图像二值化 (13)3.2.4 形态学滤波 (16)3.2.5 连通性检测 (17)4 基于最小外接矩形框目标跟踪 (19)4.1 目标跟踪流程 (19)4.1.1 运动目标跟踪过程图 (19)4.1.2 运动目标跟踪过程分析 (19)4.2 基于最小外接矩形框跟踪原理 (20)4.2.1 特征提取 (20)4.2.2 最小外接矩形提取 (21)4.3 最小矩形框跟踪实现 (21)5 仿真结果与分析 (23)5.1 仿真环境 (23)5.2 运动目标检测仿真 (23)5.3 运动目标跟踪仿真 (28)结论 (33)致谢 (34)参考文献 (35)附录A (38)附录B (54)附录C (67)1 绪论1.1 研究背景和意义视觉是人类感知自身周围复杂环境最直接有效的手段之一,而在现实生活中大量有意义的视觉信息都包含在运动中,人眼对运动的物体和目标也更敏感,能够快速的发现运动目标,并对目标的运动轨迹进行预测和描绘[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 运动目标监测和跟踪2.1运动目标检测运动目标检测(Mot ion Detection )是指在输入视频图像中判断与背景图像相比是否存在相对运动的前景目标和物体,并根据灰度、边缘、纹理等二维图像特征将运动前景进一步分割为若干独立目标。
在实际应用中,一个好的运动目标检测算法,通常应该具有以下几个特征【12】:◆不受环境的变化(如天气和光照变化等)而影响结果;◆不受背景中个别物体的运动(如水波、风吹树动等)而影响结果; ◆不受目标及背景中的阴影而影响结果;◆对复杂背景和复杂目标仍然有效;◆检测的结果应满足后续处理(跟踪分析)的精度要求;图2-1描述了检测算法的一般流程图。
常见的运动目标检测算法有:帧间差分法、背景差分法及光流法等,以下将分别进行介绍。
Fig.2—1Flo w char t of detection algorithm2.1.1帧间差分法帧间差分法[23-241就是将视频序列中相邻的两帧或几帧做象素域上的减法运算,以得到帧间的不同图像的信息。
在摄像头固定的情况下,对连续的图像序列中的相邻两帧图像采用基于像素的帧差法来提取图像中的运动区域,设k 帧和第k+l帧(或者看做21t t 和时刻)采集到同一背景下的两幅运动图像的灰度值为1),(+k k f y x f 和,则差分图像的定义为:),(),(),(11y x f y x f y x D k k k -=++ (2.1)对上式的差分结果进行阈值处理,就可以提取出运动物体。
对差分图像),(y x f d 二值化,当某一像素的灰度值大于给定阈值T时,认为该像素为目标像素,即该像素属于运动目标;反之,则属于背景。
这一步的目的就是为了区分背景像素和目标像素,得到:T y x D T y x D k k k y x R >≤+++=),(),(10111{),( (2.2)其中,l表示前景像素值,0表示背景像素值。
然后再对),(1y x R k +进行连通性分析,就可以得到连通区域的面积。
当某一连通区域面积大于预定值时,则认为该区域属于同一个运动目标。
帧间差分法实验如图2-3,在实验时由于第100帧图像与101帧图像相差不大,因此改采用第102帧图像与100帧图像进行差分。
显而易见,在帧间差分法中阈值的选择非常关键,这是因为阈值过低则不能有效地抑制图像中的噪声,阈值过高将误判图像中有用的变化。
阈值选择分为全局阈值和局部阂值,通常图像不同光照区域引起的噪声也不相同,因此采用局部阈值能更好的抑制噪声。
帧间差分法进行目标检测的主要优点是:算法实现简单;实现程序设计复杂度低;易于实现实时监视;基于相邻帧差方法,由于相邻帧的时间间隔一般比较短,因此该方法对场景光线的变化一般不太敏感。
最基本的帧间差分法可以检测到场景中的变化,并且能够提取出目标,但是在实际应用中,帧问差分法的结果精度不高,难以获得目标所在区域的精确描述。
当运动目标的运动速度较快时,实际检测时可能会将一个运动目标误为两个运动目标:当运动目标速度较慢时,会在检测结果中造成空洞,这是由于运动目标的颜色或灰度在一定区域内较均匀。
在实际应用中我们总希望下一步进行目标跟踪中,提取的目标尽量接近目标的真实形状,也就是说,我们提取的目标应是完整的,同时也应该是尽量少地包括背景像素点。
但是~般情况下广泛应用该算法时对两帧间目标的重叠部分也是不容易被检测出来的,即只检测出目标的一部分或者出现了较大比例的空洞,这是由于我们直接用相邻的两帧相减后,保留下来的部分是两帧中相对变化的部分,所以两帧间重叠的部分就很难被检测出来。
为了获得两帧重叠的部分图像,解决相邻帧差法存在的问题,人们在其基础上又提出了一种三帧差分法。
该方法需要提取连续三帧图像来计算两个差分图像,再令这两个差分图像的对应像素相与,从而可以提取出运动目标。
设连续三帧视频图像分别为),(),(),,(11y x f y x f y x f k k k +-和则三帧差分法检测流程如图2—4所示。
2.1.2背景差分法背景差分法【25】【26】是目前视频监控中最常用的一种方法,它的基本思想是将输入图像与背景模型进行比较,通过判定灰度特征的变化,或用直方图等统计信息的变化来判断异常情况的发生和分割运动目标。
传统的背景差分算法包括三大步骤:首先,为背景中每个象素进行统计建模;然后将当前图象和背景模型进行比较,找出一定阈值限制下当前图像中出现的偏离背景模型值较大的那些象素,据此,再对图象进行二值化处理,从而得到前景象素集合(运动目标);此外,模型还要进行周期性的背景更新以适应动态场景变化。
背景差分法算法具体如下:计算视频序列中当前帧五与背景瓯的差值,得到差分后的图像k D : ),(),(y x b y x f D k k k -= (2.3) 对差分图像k D 进行二值化,当某一像素的灰度值大于给定阈值T时,认为该像素为目标像素,即该像素属于运动目标;反之,则属于背景。
这一步的目的就是为了区分背景像素和目标像素,得到T y x D T y x D k k k y x R >≤=),(),(10{),( (2.4)其中,1表示前景像素值,0表示背景像素值。
对),(y x R k 进行连通性分析,就可以得到连通区域的面积。
当某一连通区域面积大于预定值时,则认为该区域属于同一个运动目标。
采用背景差分法的实验效果如图2-6所示。
背景差分法的优点是其原理和算法设计简单、检测速度快、能够得到比较精确完整的运动目标信息,如位置、大小、形状,但是运算量大,且通常会遇到如下一些问题:背景获取:背景图像的获取最简单的办法就是在场景没有任何运动目标的情况下进行拍摄,但是在实际应用中较难满足这种要求,如对公路和城市效能的监控等,所以需要一种方法就能够在场景存在运动目标的情况下获得真实“纯净”的背景图像。
背景的扰动:跟帧间差分法相同,当背景中含有轻微的扰动对象(如树枝、树叶摇动,水波等),扰动部分很容易就被误判为前景运动目标。
外界光照条件的变化:一天中不同时间段光线、天气等的变化对检测结果的影响。
背景中固定对象的移动:背景里固定对象可能移动,如:场景中的一辆车被开走等,对象移走后的区域在一段较短的时间内可能被误认为是运动目标,但不应该永远被看做是运动目标。
前景运动目标长久停留在背景中:前景运动目标可能长久停留在背景中,如:城市交通中的红灯时间,智能小区的车库监控中车辆入库等,当原来的运动转为静止之后的一段短时间内可能被误认为还是运动目标,但不应该永远被看着是运动目标。
背景更新:背景中固定对象的移动、前景运动目标成为背景中的长久停留物或者外界光照条件的变化等因素都会使背景图像发生变化,需要引入恰当的背景更新机制才能达到合理检测的目的。
由此可见,背景差分法的难点在于如何建立背景模型和维持背景,以适应实际环境中的变化。
常用的背景估计方法有如下几种。
1.基于自适应的方法即通过使用自适应方程,对图像序列加权平均,生成一个近似背景。
这种方法通常在目标移动比较迅速的场景中十分有效。
但是当场景中存在移动缓慢的物体时,检测效果较差。
同时它不能检测双峰背景。
当背景中有物体移入、移出时,背景恢复十分缓慢。
常有的该类方法包括:(1)均值背景法将最近捕获的N帧视频图像的平均值作为当前背景。
这种方法在监控场景不是很复杂、且场景中存在的变化较少时检测效果较好。
(2)中值背景法即记录最近N个象素值,用这N个值的中值作为背景;(3)自适应变化检测生成背景的方法首先使用帧差法检测场景中的变化区域,在确定变换区域后通过自适应算法更新背景;在VSAM系统中通过对图象序列中的当前背景和当前帧加权平均,自适应地生成背景。
(4)基于Kalman 滤波器理论的背景生成方法文献【36】提出了一种基于Kalman滤波理论的渐消记忆递归最小二乘的背景重建算法,它适用于背景变化较慢的视频场景。
它将运动目标视为对背景的随机扰动,应用Kalman滤波器在零均值的退化公式,即渐消记忆递归最小二乘法来更新和重建背景。
2.基于分布模型的方法(1)参数模型即根据数据找到一个与之匹配的已知概率模型。
具体过程就是根据已知的一系列数据和参数为θ的分布)(θη,找到参数θ的最优估计∧θ,这样就能得到估计概率密度函数∧f。
这种方法的优点是,可以只用几个参数就能描述出整个概率分布,将大量数据压缩成几个简单的参数,用参数代替概率密度函数。
但是参数概率估计信赖于模型形式,必须事先知道这一级数据服从何种概率模型,即必须知道这组数据的潜在概率模型的先验知识。
如果概率模型假设不正确的话,概率估计将产生偏差。
由于视频监控场景在大多数情况下服从高斯分布,所以常用高斯模型的方法。
这种方法基于这样的假设:场景中任一点在某一段时间内的观测值都服从正态分布,故可使用该点的均值μ和协方差矩阵∑来描述这个点的统计特性。
如果x 点在t时刻的分布模型是T x t t t <∑),,(μη(T 为阈值概率),则该点可被判定为前景点;否则判定为背景点,同时可称),,(t t t t x x ∑μη和匹配。
模型的更新是在每一帧新图像捕获后,通过一定方法自适应的更新模型参数实现的。
通常的更新公式是:222)()1()1(t t tt t x x -+-=+-=μασαδαμαμ )6.2()5.2( 其中α是更新速率。
α是0到1之间的常熟,其取值的大小体现了模型对背景适应的快慢。
(2)非参数模型 这种方法不需要假设先验的概率密度函数,也不需要设置参数,而是从数据点中直接得到概率密度的估计函数0∧f 。
所以这种方法就是依据数据本身的结构来得到概率密度函数。
非参数的方法不像参数的方法那样依赖于模型的选择和参数估计,它更加适用于概率分布未知的一般情况下的问题。
常用的方法有直方图法,核估计法,具体就是基于核估计的统计模型法。
2.1.3光流法光流【13】(Optica l Fl ow )是空间运动物体在被观测表面上的象素点运动的瞬时速度场。
光流场是通过二维图像来表示物体点的三维运动的速度场。
由Horn 和Schunk 在80年代早期建立的“光流分析法"是数字视频处理领域中二维运动估算的重要方法。
其研究对象是二维运动(或者称为投影运动),即为真实世界中的三维运动以透视或正交的投影方式在图象平面上形成的“视觉运动",这一运动对应着图象中不同目标的相对位置改变,也就对应着图象前后帧相应位置灰度的改变,Horn 与Sc hu nk 将图像平面特定坐标点上的灰度瞬时变化率定义为“光流矢量"。
这样就导致了光流法的一些根本性缺陷:在某些情形下,图像中视频目标的运动不能反映为灰度的变化,如单色圆球绕其直径自转;另外,图像中光源的运动而不是视频目标的运动也会导致灰度的变化,而这些都不是光流分析所能隔离或屏蔽的。