通用版2018年高考数学二轮复习课时跟踪检测二十六文20180206395
2018年高考数学二轮复习专题(通用版)课时跟踪检测五理科数学(含答案)

课时跟踪检测(五)一、选择题1.设函数f (x )=A sin(ωx +φ)(A >0,ω>0).若函数f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则函数f (x )的最小正周期为( ) A.π2 B .π C.3π2D .2π 解析:选B 由已知可画出草图,如图所示,则T 4=π2+2π32-π2+π62,解得T =π. 2.已知外接圆半径为R 的△ABC 的周长为(2+3)R ,则sin A +sin B +sin C =( )A .1+32B .1+34C.12+32D.12+ 3 解析:选A 由正弦定理知a +b +c =2R (sin A +sin B +sin C )=(2+3)R ,所以sin A +sin B +sin C =1+32,故选A. 3.若函数f (x )=2m sin ⎝ ⎛⎭⎪⎫2x +π3-2在x ∈⎣⎢⎡⎦⎥⎤0,5π12内存在零点,则实数m 的取值范围是( )A .(-∞,-1]∪[1,+∞)B.⎣⎢⎡⎦⎥⎤-233,2 C .(-∞,-2]∪[1,+∞)D .[-2,1]解析:选C 设x 0为f (x )在⎣⎢⎡⎦⎥⎤0,5π12内的一个零点,则2m sin ⎝⎛⎭⎪⎫2x 0+π3-2=0,所以m =1sin ⎝ ⎛⎭⎪⎫2x 0+π3.因为0≤x 0≤5π12,所以π3≤2x 0+π3≤7π6,所以-12≤sin ⎝ ⎛⎭⎪⎫2x 0+π3≤1,所以m ≤-2或m ≥1,故选C.4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =5,a =3,cos(B -A )=79,则△ABC 的面积为( )A.152B.523C .5 2D .2 2 解析:选C 在边AC 上取点D 使A =∠ABD ,则cos ∠DBC =cos(∠ABC -A )=79,设AD =DB =x ,在△BCD 中,由余弦定理得,(5-x )2=9+x 2-2³3x ³79,解得x =3.故BD =DC ,在等腰三角形BCD 中,DC 边上的高为22,所以S △ABC =12³5³22=52,故选C. 5.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A 由射影定理可知a cos C +c cos A =b ,则(a cos C +c cos A )sin B =b sin B ,又a sin B cos C +c sin B cos A =12b ,则有b sin B =12b ,sin B =12.又a >b ,所以A >B ,则B ∈⎝⎛⎭⎪⎫0,π2,故B =π6. 6.已知△ABC 为等边三角形,AB =2,设点P ,Q 满足AP ―→=λAB ―→,AQ ―→=(1-λ)AC ―→,λ∈R ,若BQ ―→²CP ―→=-32,则λ=( ) A.12B.1±22C.1±102D.-3±222解析:选A 以点A 为坐标原点,AB 所在的直线为x 轴,过点A 且垂直于AB 的直线为y 轴,建立平面直角坐标系,则A (0,0),B (2,0),C (1,3),∴AB ―→=(2,0),AC ―→=(1,3),又AP ―→=λAB ―→,AQ ―→=(1-λ)AC ―→,∴P (2λ,0),Q (1-λ,3(1-λ)),∴BQ ―→²CP ―→=(-1-λ,3(1-λ))²(2λ-1,-3)=-32,化简得4λ2-4λ+1=0,∴λ=12. 二、填空题7.对任意两个非零的平面向量α和β,定义α∘β=α²ββ²β.若平面向量a ,b 满足|a |≥|b |>0,a 与b 的夹角θ∈⎝ ⎛⎭⎪⎫0,π4,且a ∘b 和b ∘a 都在集合⎩⎨⎧⎭⎬⎫n 2|n ∈Z 中,则a ∘b =________.解析:a ∘b =a²b b²b =|a ||b |cos θ|b |2=|a |cos θ|b |,① b ∘a =b²a a²a =|b ||a |cos θ|a |2=|b |cos θ|a |.② ∵θ∈⎝ ⎛⎭⎪⎫0,π4,∴22<cos θ<1. 又|a |≥|b |>0,∴0<|b ||a |≤1.∴0<|b ||a |cos θ<1,即0<b ∘a <1. ∵b ∘a ∈⎩⎨⎧⎭⎬⎫n 2|n ∈Z ,∴b ∘a =12. ①³②,得(a ∘b )(b ∘a )=cos 2θ∈⎝ ⎛⎭⎪⎫12,1, ∴12<12(a ∘b )<1,即1<a ∘b <2,∴a ∘b =32. 答案:328.在边长为2的菱形ABCD 中,∠BAD =60°,P ,Q 分别是BC ,BD的中点,则向量AP ―→与AQ ―→的夹角的余弦值为________.解析:以A 为原点,AB 所在直线为x 轴建立如图所示的直角坐标系,则A (0,0),B (2,0),C (3,3),D (1,3),所以P ⎝ ⎛⎭⎪⎫52,32,Q ⎝ ⎛⎭⎪⎫32,32,则AP ―→=⎝ ⎛⎭⎪⎫52,32,AQ ―→=⎝ ⎛⎭⎪⎫32,32, 所以cos ∠PAQ =AP ―→²AQ ―→|AP ―→||AQ ―→|=154+347³3=32114. 答案:321149.(2017²石家庄质检)非零向量m ,n 的夹角为π3,且满足|n |=λ|m |(λ>0),向量组。
通用版2018年高考数学二轮复习课时跟踪检测一文

课时跟踪检测(一)A 组——12+4提速练一、选择题1.(2017·沈阳质检)已知平面向量a =(3,4),b =⎝ ⎛⎭⎪⎫x ,12,若a ∥b ,则实数x 为( ) A .-23B .23C .38D .-38解析:选C ∵a ∥b ,∴3×12=4x ,解得x =38,故选C.2.已知向量a =(1,2),b =(2,-3).若向量c 满足c ⊥(a +b ),且b ∥(a -c ),则c =( )A.⎝ ⎛⎭⎪⎫79,73B.⎝ ⎛⎭⎪⎫-79,73C.⎝ ⎛⎭⎪⎫79,-73D.⎝ ⎛⎭⎪⎫-79,-73解析:选A 设c =(x ,y ),由题可得a +b =(3,-1),a -c =(1-x,2-y ).因为c ⊥(a +b ),b ∥(a -c ),所以⎩⎪⎨⎪⎧3x -y =0,-y +-x =0,解得⎩⎪⎨⎪⎧x =79,y =73,故c =⎝ ⎛⎭⎪⎫79,73.3.已知平面直角坐标系内的两个向量a =(1,2),b =(m,3m -2),且平面内的任一向量c 都可以唯一的表示成c =λa +μb (λ,μ为实数),则实数m 的取值范围是( )A .(-∞,2)B .(2,+∞)C .(-∞,+∞)D .(-∞,2)∪(2,+∞)解析:选D 由题意知向量a ,b 不共线,故2m ≠3m -2,即m ≠2.4.(2017·西安模拟)已知向量a 与b 的夹角为120°,|a |=3,|a +b |=13,则|b |=( ) A .5 B .4 C .3D .1解析:选B 因为|a +b |=13,所以|a +b |2=a 2+2a ·b +b 2=13,即9+2×3×|b |cos 120°+|b |2=13,得|b |=4.5.(2018届高三·西安八校联考)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→在AB ―→方向上的投影是( )A.322B .-322C .3 5D .-3 5解析:选C 依题意得,AB ―→=(2,1),CD ―→=(5,5),AB ―→·CD ―→=(2,1)·(5,5)=15,|AB ―→|=5,因此向量CD ―→在AB ―→方向上的投影是AB ―→·CD ―→|AB ―→|=155=3 5.6.已知A ,B ,C 三点不共线,且点O 满足OA ―→+OB ―→+OC ―→=0,则下列结论正确的是( ) A .OA ―→=13AB ―→+23BC ―→B .OA ―→=23AB ―→+13BC ―→C .OA ―→=13AB ―→-23BC ―→D .OA ―→=-23AB ―→-13BC ―→解析:选D ∵OA ―→+OB ―→+OC ―→=0,∴O 为△ABC 的重心,∴OA ―→=-23×12(AB ―→+AC ―→)=-13(AB ―→+AC ―→)=-13(AB ―→+AB ―→+BC ―→)=-23AB ―→-13BC ―→,故选D. 7.已知向量a =(3,1),b 是不平行于x 轴的单位向量,且a ·b =3,则b =( ) A.⎝⎛⎭⎪⎫32,12B.⎝ ⎛⎭⎪⎫12,32 C.⎝ ⎛⎭⎪⎫14,334 D .(1,0)解析:选B 设b =(cos α,sin α)(α∈(0,π)∪(π,2π)),则a ·b =(3,1)·(cos α,sin α)=3cos α+sin α=2sin ⎝⎛⎭⎪⎫π3+α=3,得α=π3,故b =⎝ ⎛⎭⎪⎫12,32.8.(2018届高三·广东五校联考)已知向量a =(λ,1),b =(λ+2,1),若|a +b |=|a -b |,则实数λ的值为( )A .-1B .2C .1D .-2解析:选A 由|a +b |=|a -b |可得a 2+b 2+2a ·b =a 2+b 2-2a ·b ,所以a ·b =0,即a ·b =(λ,1)·(λ+2,1)=λ2+2λ+1=0,解得λ=-1.9.(2017·惠州调研)若O 为△ABC 所在平面内任一点,且满足(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形解析:选A (OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,即CB ―→·(AB ―→+AC ―→)=0,∵AB ―→-AC ―→=CB ―→,∴(AB ―→-AC ―→)·(AB ―→+AC ―→)=0,即|AB ―→|=|AC ―→|,∴△ABC 是等腰三角形,故选A.。
2018届高考数学(理)二轮专题复习限时规范训练:第一部分专题一集合常用逻辑用语平面向量复数1-1-3含答案

限时规范训练三算法、框图与推理限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分)1.请仔细观察1,1,2,3,5,( ),13,运用合情推理,可知写在括号里的数最可能是( ) A.8 B.9C.10 D.11解析:选A.观察题中所给各数可知,2=1+1,3=1+2,5=2+3,8=3+5,13=5+8,∴括号中的数为8.故选A.2.执行如图所示的程序框图,若输入的x的值为2,则输出的y的值为( )A.2 B.5C.11 D.23解析:选D.x=2,y=5,|2-5|=3<8;x=5,y=11,|5-11|=6<8;x=11,y=23,|11-23|=12>8.满足条件,输出的y的值为23,故选D.3.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于( ) A.f(x) B.-f(x)C.g(x) D.-g(x)解析:选D.由所给等式知,偶函数的导数是奇函数.∵f(-x)=f(x),∴f(x)是偶函数,从而g(x)是奇函数.∴g(-x)=-g(x).4.执行如图所示的程序框图,输出的S值为-4时,则输入的S0的值为( )A.7 B.8C.9 D.10解析:选D.根据程序框图知,当i=4时,输出S.第1次循环得到S=S0-2,i=2;第2次循环得到S=S0-2-4,i=3;第3次循环得到S=S0-2-4-8,i=4.由题意知S0-2-4-8=-4,所以S0=10,故选D.5.(2017·高考山东卷)执行如图所示的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为( )A.x>3 B.x>4C.x≤4D.x≤5解析:选B.输入x=4,若满足条件,则y=4+2=6,不符合题意;若不满足条件,则y=log24=2,符合题意,结合选项可知应填x>4.故选B.6.如图所示的程序框图的运行结果为( )A .-1B .12C .1D .2解析:选A.a =2,i =1,i ≥2 019不成立;a =1-12=12,i =1+1=2,i ≥2 019不成立; a =1-112=-1,i =2+1=3,i ≥2 019不成立;a =1-(-1)=2,i =3+1=4,i ≥2 019不成立;…,由此可知a 是以3为周期出现的,结束时,i =2 019=3×673,此时a =-1,故选A. 7.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c.类比这个结论可知:四面体S ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S ABC 的体积为V ,则R 等于( )A.VS 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3VS 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 4解析:选C.把四面体的内切球的球心与四个顶点连起来分成四个小三棱锥,其高都是R ,四个小三棱锥的体积和等于四面体的体积,因此V =13S 1R +13S 2R +13S 3R +13S 4R ,解得R =3VS 1+S 2+S 3+S 4.8.按照如图所示的程序框图执行,若输出的结果为15,则M 处的条件为( )A .k ≥16B .k <8C .k <16D .k ≥8解析:选A.根据框图的循环结构依次可得S =0+1=1,k =2×1=2;S =1+2=3,k =2×2=4;S =3+4=7,k =2×4=8;S =7+8=15,k =2×8=16,根据题意此时跳出循环,输出S =15.所以M 处的条件应为k ≥16.故A 正确.9.如图所示的程序框图中,输出S =( )A .45B .-55C .-66D .66解析:选B.由程序框图知,第一次运行T =(-1)2·12=1,S =0+1=1,n =1+1=2;第二次运行T =(-1)3·22=-4,S =1-4=-3,n =2+1=3;第三次运行T =(-1)4·32=9,S =-3+9=6,n =3+1=4…直到n =9+1=10时,满足条件n >9,运行终止,此时T =(-1)10·92,S =1-4+9-16+…+92-102=1+(2+3)+(4+5)+(6+7)+(8+9)-100=1+92×9-100=-55.故选B.10.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k |n ∈Z },k =0,1,2,3,4.给出如下四个结论:①2 018∈[3]; ②-2∈[2];③Z =[0]∪[1]∪[2]∪[3]∪[4];④整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”. 其中正确结论的个数为( ) A .1 B .2 C .3D .4解析:选C.因为2 018=403×5+3,所以2 018∈[3],①正确;-2=-1×5+3,-2∈[3],所以②不正确;因为整数集中被5除的数可以且只可以分成五类,所以③正确;整数a ,b 属于同一“类”,因为整数a ,b 被5除的余数相同,从而a -b 被5除的余数为0,反之也成立,故整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”,故④正确.所以正确的结论有3个,故选C.11.执行如图所示的程序框图,如果输入x ,t 的值均为2,最后输出S 的值为n ,在区间[0,10]上随机选取一个数D ,则D ≤n 的概率为( )A.25B.12C.35D.710解析:选D.这是一个循环结构,循环的结果依次为M =2,S =2+3=5,k =1+1=2;M =2,S =2+5=7,k =2+1=3.最后输出7,所以在区间[0,10]上随机选取一个数D ,则D ≤n 的概率P=710,故选D. 12.定义方程f (x )=f ′(x )的实数根x 0叫做函数f (x )的“新驻点”,若函数g (x )=x ,h (x )=ln(x +1),φ(x )=x 3-1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为( )A .α>β>γB .β>α>γC .γ>α>βD .β>γ>α解析:选C.g (x )=g ′(x ),即x =1,所以α=1;h (x )=h ′(x ),即ln(x +1)=1x +1,0<x<1,所以β∈(0,1);φ(x)=φ′(x),即x3-1=3x2,即x3-3x2=1,x2(x-3)=1,x>3,所以γ>3.所以γ>α>β.二、填空题(本题共4小题,每小题5分,共20分)13.执行如图所示的程序框图,若输出的结果是8,则输入的数是________.解析:令a≥b得,x2≥x3,解得x≤1.所以当x≤1时,输出a=x2,当x>1时,输出b=x3.当x≤1时,由题意得a=x2=8,解得x=-8=-2 2.当x>1时,由题意得b=x3=8,得x=2,所以输入的数为2或-2 2.14.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:甲说:“我们四人都没考好.”乙说:“我们四人中有人考得好.”丙说:“乙和丁至少有一人没考好.”丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的________两人说对了.解析:甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确.故答案为乙,丙.答案:乙,丙15.已知实数x∈[2,30],执行如图所示的程序框图,则输出的x不小于103的概率是________.解析:实数x ∈[2,30],经过第一次循环得到x =2x +1,n =2;经过第二次循环得到x =2(2x +1)+1,n =3;经过第三次循环得到x =2[2(2x +1)+1]+1,n =4,此时输出x ,输出的值为8x +7.令8x +7≥103,解得x ≥12.由几何概型的概率公式,得到输出的x 不小于103的概率为30-1230-2=914. 16.集合{1,2,3,…,n }(n ≥3)中,每两个相异数作乘积,将所有这些乘积的和记为T n ,如:T 3=1×2+1×3+2×3=12×[62-(12+22+32)]=11;T 4=1×2+1×3+1×4+2×3+2×4+3×4=12×[102-(12+22+32+42)]=35; T 5=1×2+1×3+1×4+1×5+…+3×5+4×5=12×[152-(12+22+32+42+52)]=85.则T 7=________.(写出计算结果)解析:由T 3,T 4,T 5归纳得出T n =12[(1+2+…+n )2-(12+22+…+n 2)],则T 7=12×[282-(12+22+…+72)].又∵12+22+…+72=16×7×8×15=140,∴T 7=12×(784-140)=322.答案:322。
2018年高考数学(文科)总复习(福建专用)配套训练(人教版) 课时规范练2Word版含答案

课时规范练2不等关系及简单不等式的解法基础巩固组1.(2017安徽合肥模拟)已知a,b∈R,下列命题正确的是()A.若a>b,则|a|>|b|B.若a>b,则1a <1bC.若|a|>b,则a2>b2D.若a>|b|,则a2>b22.已知集合A={x|(1-x)(1+x)≥0},集合B={y|y=2x,x<0},则A∩B=()A.(-1,1]B.[-1,1]C.(0,1)D.[-1,+∞)3.若集合A={x|ax2-ax+1<0}=⌀,则实数a的取值范围是()A.{a|0<a<4}B.{a|0≤a<4}C.{a|0<a≤4}D.{a|0≤a≤4}4.(2017贵州贵阳测试)下列命题正确的是()A.若a>b,c>d,则ac>bdB.若ac>bc,则a>bC.若ac2<bc2,则a<bD.若a>b,c>d,则a-c>b-d5.(2017重庆一中调研,文5)若a>1>b>-1,则下列不等式恒成立的是()A.a>b2B.1a >1bC.1a<1bD.a2>2b6.不等式x-2x2-1<0的解集为()A.{x|1<x<2}B.{x|x<2,且x≠1}C.{x|-1<x<2,且x≠1}D.{x|x<-1或1<x<2}7.若不等式mx2+2mx-4<2x2+4x对任意x都成立,则实数m的取值范围是()A.(-2,2]B.(-2,2)C.(-∞,-2)∪[2,+∞)D.(-∞,2] 〚导学号24190850〛8.(2017陕西西安模拟)已知存在实数a满足ab2>a>ab,则实数b的取值范围是.9.已知关于x的不等式ax2+bx+a<0(ab>0)的解集是空集,则a2+b2-2b的取值范围是.10.已知a∈R,关于x的不等式ax2+(1-2a)x-2>0的解集有下列四种说法:①原不等式的解集不可能为⌀;②若a=0,则原不等式的解集为(2,+∞);③若a<-12,则原不等式的解集为-1,2;④若a>0,则原不等式的解集为-∞,-1∪(2,+∞).其中正确的个数为.11.对任意x∈[-1,1],函数f(x)=x2+(k-4)x+4-2k的值恒大于零,则k的取值范围是.综合提升组12.(2017吉林长春模拟)若1a <1b<0,则在下列不等式:①1a+b<1ab;②|a|+b>0;③a-1a>b-1b;④ln a2>ln b2中,正确的不等式是()A.①④B.②③C.①③D.②④13.若关于x的不等式f(x)=ax2-x-c>0的解集为{x|-2<x<1},则函数y=f(-x)的图象为()14.(2017河南郑州月考)已知实数x,y满足0<xy<4,且0<2x+2y<4+xy,则x,y的取值范围是()A.x>2,且y>2B.x<2,且y<2C.0<x<2,且0<y<2D.x>2,且0<y<2 〚导学号24190851〛15.(2017江西九江模拟)若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是.创新应用组16.(2017辽宁大连模拟)已知函数f(x)=(ax-1)(x+b),如果不等式f(x)>0的解集是(-1,3),那么不等式f(-2x)<0的解集是()A.-∞,-3∪1,+∞B.-3,1C.-∞,-1∪3,+∞D.-1,3〚导学号24190852〛17.(2017湖北襄阳高三1月调研,文15)已知f(x)=x2,x≥0,-x2,x<0,若对任意x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则t的取值范围是.〚导学号24190853〛答案:1.D当a=1,b=-2时,A不正确,B不正确,C不正确;对于D,a>|b|≥0,则a2>b2,故选D.2.C由题意得A={x|-1≤x≤1}=[-1,1],B={y|0<y<1}=(0,1),所以A∩B=(0,1),故选C.3.D由题意知当a=0时,满足条件.当a≠0时,由集合A={x|ax2-ax+1<0}=⌀,可知a>0,Δ=a2-4a≤0,得0<a≤4.综上,可知0≤a≤4.4.C取a=2,b=1,c=-1,d=-2,可知A错误;当c<0时,ac>bc⇒a<b,∴B错误;∵ac <bc,∴c≠0,又c2>0,∴a<b,C正确;取a=c=2,b=d=1,可知D错误.5.A对于A,∵-1<b<1,∴0≤b2<1.∵a>1,∴a>b2,故A正确;对于B,若a=2,b=12,此时满足a>1>b>-1,但1a <1b,故B错误;对于C,若a=2,b=-12,此时满足a>1>b>-1,但1a>1b,故C错误;对于D,若a=98,b=34,此时满足a>1>b>-1,但a2<2b,故D错误.6.D因为不等式x-2x2-1<0等价于(x+1)·(x-1)(x-2)<0, 所以该不等式的解集是{x|x<-1或1<x<2}.故选D.7.A原不等式等价于(m-2)x2+2(m-2)x-4<0,当m=2时,对任意x不等式都成立;当m-2<0时,Δ=4(m-2)2+16(m-2)<0,∴-2<m<2.综上,得m∈(-2,2].8.(-∞,-1)∵ab2>a>ab,∴a≠0.当a>0时,有b2>1>b,即b2>1,b<1,解得b<-1;当a<0时,有b2<1<b,即b2<1,b>1,无解.综上可得b<-1.9.-45,+∞∵不等式ax2+bx+a<0(ab>0)的解集是空集, ∴a>0,b>0,且Δ=b2-4a2≤0.∴b2≤4a2.∴a2+b2-2b≥b24+b2-2b=5 4 b-452−45≥-45.∴a2+b2-2b的取值范围是-45,+∞.10.3原不等式等价于(ax+1)(x-2)>0.当a=0时,不等式化为x-2>0,得x>2.当a≠0时,方程(ax+1)(x-2)=0的两根分别是2和-1a ,若a<-12,解不等式得-1a<x<2;若a=-12,不等式的解集为⌀;若-12<a<0,解不等式得2<x<-1a ;若a>0,解不等式得x<-1a或x>2.故①不正确,②③④正确.11.(-∞,1)函数f(x)=x2+(k-4)x+4-2k的图象的对称轴方程为x=-k-42=4-k2.当4-k2<-1,即k>6时,f(x)的值恒大于零等价于f(-1)=1+(k-4)×(-1)+4-2k>0,解得k<3,故k不存在;当-1≤4-k2≤1,即2≤k≤6时,f(x)的值恒大于零等价于f4-k2=4-k22+ k-4×4-k2+4-2k>0,即k2<0,故k不存在;当4-k2>1,即k<2时,f(x)的值恒大于零等价于f(1)=1+(k-4)+4-2k>0,即k<1.综上可知,当k<1时,对任意x∈[-1,1],函数f(x)=x2+(k-4)x+4-2k的值恒大于零.12.C因为1a <1b<0,故可取a=-1,b=-2.因为|a|+b=1-2=-1<0,所以②错误;因为ln a2=ln(-1)2=0,ln b2=ln(-2)2=ln 4>0,所以④错误.综上所述,②④错误,故选C.13.B(方法一)由根与系数的关系知1a =-2+1,-ca=-2,解得a=-1,c=-2.所以f(x)=-x2-x+2.所以f(-x)=-x2+x+2=-(x+1)(x-2),图象开口向下,与x轴的交点为(-1,0),(2,0),故选B. (方法二)由题意可画出函数f(x)的大致图象,如图.又因为y=f(x)的图象与y=f(-x)的图象关于y轴对称,所以y=f(-x)的图象如图.。
2018学高考理科数学通用版练酷专题二轮复习课时跟踪检测:(二十三)圆锥曲线有解析

课时跟踪检测(二十三) 圆锥曲线1.(2018届高三·石家庄摸底)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B ,且长轴长为8,T为椭圆上任意一点,直线TA ,TB 的斜率之积为-34.(1)求椭圆C 的方程;(2)设O 为坐标原点,过点M (0,2)的动直线与椭圆C 交于P ,Q 两点,求OP ―→·OQ ―→+MP ―→·MQ ―→的取值范围. 解:(1)设T (x ,y ),由题意知A (-4,0),B (4,0), 设直线TA 的斜率为k 1,直线TB 的斜率为k 2, 则k 1=y x +4,k 2=yx -4. 由k 1k 2=-34,得y x +4·y x -4=-34,整理得x 216+y 212=1.故椭圆C 的方程为x 216+y 212=1.(2)当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +2,点P ,Q 的坐标分别为(x 1,y 1),(x 2,y 2),联立方程⎩⎪⎨⎪⎧x 216+y 212=1,y =kx +2消去y ,得(4k 2+3)x 2+16kx -32=0.所以x 1+x 2=-16k 4k 2+3,x 1x 2=-324k 2+3.从而,OP ―→·OQ ―→+MP ―→·MQ ―→=x 1x 2+y 1y 2+x 1x 2+(y 1-2)(y 2-2)=2(1+k 2)x 1x 2+2k (x 1+x 2)+4=-80k 2-524k 2+3=-20+84k 2+3. 所以-20<OP ―→·OQ ―→+MP ―→·MQ ―→≤-523.当直线PQ 的斜率不存在时,OP ―→·OQ ―→+MP ―→·MQ ―→的值为-20. 综上,OP ―→·OQ ―→+MP ―→·MQ ―→的取值范围为⎣⎡⎦⎤-20,-523. 2.(2017·全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP ―→= 2 NM ―→.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP ―→·PQ ―→=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F . 解:(1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP ―→=(x -x 0,y ),NM ―→=(0,y 0). 由NP ―→= 2 NM ―→,得x 0=x ,y 0=22y .因为M (x 0,y 0)在椭圆C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)证明:由题意知F (-1,0).设Q (-3,t ),P (m ,n ), 则OQ ―→=(-3,t ),PF ―→=(-1-m ,-n ), OQ ―→·PF ―→=3+3m -tn ,OP ―→=(m ,n ),PQ ―→=(-3-m ,t -n ). 由OP ―→·PQ ―→=1,得-3m -m 2+tn -n 2=1, 又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以OQ ―→·PF ―→=0,即OQ ―→⊥PF ―→. 又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .3.(2018届高三·西安八校联考)设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆上的点T (2,2)到点F 1,F 2的距离之和等于4 2.(1)求椭圆C 的方程;(2)若直线y =kx (k ≠0)与椭圆C 交于E ,F 两点,A 为椭圆C 的左顶点,直线AE ,AF 分别与y 轴交于点M ,N .问:以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.解:(1)由椭圆上的点T (2,2)到点F 1,F 2的距离之和是42,可得2a =42,a =2 2. 又T (2,2)在椭圆上,因此4a 2+2b 2=1,所以b =2,所以椭圆C 的方程为x 28+y 24=1.(2)因为椭圆C 的左顶点为A , 所以点A 的坐标为(-22,0).因为直线y =kx (k ≠0)与椭圆x 28+y 24=1交于E ,F 两点,设点E (x 0,y 0)(不妨设x 0>0),则点F (-x 0,-y 0).由⎩⎪⎨⎪⎧y =kx ,x 28+y 24=1消去y ,得x 2=81+2k 2, 所以x 0=221+2k 2,则y 0=22k 1+2k 2, 所以直线AE 的方程为y =k1+1+2k 2(x +22).因为直线AE ,AF 分别与y 轴交于点M ,N , 令x =0,得y =22k1+1+2k 2,即点M 0,22k1+1+2k 2.同理可得点N ⎝ ⎛⎭⎪⎫0,22k 1-1+2k 2.所以|MN |=⎪⎪⎪⎪⎪⎪22k 1+1+2k 2-22k 1-1+2k 2=22(1+2k 2)|k |.设MN 的中点为P ,则点P 的坐标为P ⎝⎛⎭⎫0,-2k . 则以MN 为直径的圆的方程为x 2+⎝⎛⎭⎫y +2k 2=⎝ ⎛⎭⎪⎫2(1+2k 2)|k |2,即x 2+y 2+22k y =4. 令y =0,得x 2=4,即x =2或x =-2.故以MN 为直径的圆经过两定点P 1(2,0),P 2(-2,0).4.(2017·安徽二校联考)已知焦点为F 的抛物线C 1:x 2=2py (p >0),圆C 2:x 2+y 2=1,直线l 与抛物线相切于点P ,与圆相切于点Q .(1)当直线l 的方程为x -y -2=0时,求抛物线C 1的方程; (2)记S 1,S 2分别为△FPQ ,△FOQ 的面积,求S 1S 2的最小值.解:(1)设点P ⎝⎛⎭⎫x 0,x 22p ,由x 2=2py (p >0)得, y =x 22p ,求得y ′=xp ,因为直线PQ 的斜率为1, 所以x 0p =1且x 0-x 202p -2=0,解得p =2 2.所以抛物线C 1的方程为x 2=42y .(2)点P 处的切线方程为y -x 202p=x 0p (x -x 0),即2x 0x -2py -x 20=0,OQ 的方程为y =-px 0x . 根据切线与圆相切,得|-x 20|4x 20+4p2=1,化简得x 40=4x 20+4p 2,由方程组⎩⎪⎨⎪⎧2x 0x -2py -x 20=0,y =-px 0x , 解得Q ⎝⎛⎭⎫2x 0,4-x 202p .所以|PQ |=1+k 2|x P -x Q |=1+x 20p 2⎪⎪⎪⎪x 0-2x 0= p 2+x 20p ·⎪⎪⎪⎪x 20-2x 0,又点F ⎝⎛⎭⎫0,p2到切线PQ 的距离 d 1=|-p 2-x 20|4x 20+4p2=12x 2+p 2, 所以S 1=12|PQ |d 1=12·p 2+x 20p ·⎪⎪⎪⎪x 20-2x 0·12x 20+p 2=x 20+p 24p ⎪⎪⎪⎪x 20-2x 0, S 2=12|OF ||x Q |=p 2|x 0|,而由x 40=4x 20+4p 2知,4p 2=x 40-4x 20>0,得|x 0|>2, 所以S 1S 2=x 20+p 24p ⎪⎪⎪⎪x 20-2x 0·2|x 0|p=(x 20+p 2)(x 20-2)2p 2=(4x 20+x 40-4x 20)(x 20-2)2(x 40-4x 20) =x 20(x 20-2)2(x 20-4) =x 20-42+4x 20-4+3≥22+3,当且仅当x 20-42=4x 20-4时取等号,即x 20=4+22时取等号,此时p =2+2 2. 所以S 1S 2的最小值为22+3.。
2018届高考理科数学二轮复习课时跟踪检测试卷及答案(26份)

课时跟踪检测(一)集合、常用逻辑用语1.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( ) A.{1,-3} B.{1,0}C.{1,3} D.{1,5}解析:选C 因为A∩B={1},所以1∈B,所以1是方程x2-4x+m=0的根,所以1-4+m=0,m =3,方程为x2-4x+3=0,解得x=1或x=3,所以B={1,3}.2.(2017·山东高考)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:选D 由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.(2017·合肥模拟)已知命题q:∀x∈R,x2>0,则( )A.命题綈q:∀x∈R,x2≤0为假命题B.命题綈q:∀x∈R,x2≤0为真命题C.命题綈q:∃x0∈R,x20≤0为假命题D.命题綈q:∃x0∈R,x20≤0为真命题解析:选D 全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x=0时,x2≤0成立,所以綈q为真命题.4.(2018届高三·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c解析:选A 命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a≤b,则a+c≤b+c”,故选A.5.(2017·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A 由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.6.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:选D 因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.7.(2017·唐山模拟)已知集合A={x|x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是( )A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1}解析:选C 由x 2-5x -6<0,解得-1<x <6,所以A ={x |-1<x <6}.由2x<1,解得x <0,所以B ={x |x <0}.又图中阴影部分表示的集合为(∁U B )∩A ,因为∁U B ={x |x ≥0},所以(∁U B )∩A ={x |0≤x <6}.8.(2018届高三·河北五校联考)已知命题p :∃x 0∈(-∞,0),2x 0<3x0;命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,tan x >sin x ,则下列命题为真命题的是( )A .p ∧qB .p ∨(綈q )C .(綈p )∧qD .p ∧(綈q )解析:选C 根据指数函数的图象与性质知命题p 是假命题,綈p 是真命题;∵x ∈⎝⎛⎭⎪⎫0,π2,且tan x =sin xcos x, ∴0<cos x <1,tan x >sin x , ∴q 为真命题,选C.9.(2017·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 根据祖暅原理,“A ,B 在等高处的截面积恒相等”是“A ,B 的体积相等”的充分不必要条件,即綈q 是綈p 的充分不必要条件,即命题“若綈q ,则綈p ”为真,逆命题为假,故逆否命题“若p ,则q ”为真,否命题“若q ,则p ”为假,即p 是q 的充分不必要条件,选A.10.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },若P ={x |log 2x <1},Q ={x ||x -2|<1},则P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:选B 由log 2x <1,得0<x <2, 所以P ={x |0<x <2}. 由|x -2|<1,得1<x <3, 所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}.11.(2018届高三·广西五校联考)命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”,命题q :“关于x 的方程2x-m =0有正实数解”,若“p 或q ”为真,“p 且q ”为假,则实数m 的取值范围是( )A .[1,10]B .(-∞,-2)∪(1,10]C .[-2,10]D .(-∞,-2]∪(0,10]解析:选B 若命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”为真命题,则Δ=m 2-8m -20>0,∴m <-2或m >10;若命题q 为真命题,则关于x 的方程m =2x有正实数解,因为当x >0时,2x>1,所以m >1.因为“p 或q ”为真,“p 且q ”为假,故p 真q 假或p 假q真,所以⎩⎪⎨⎪⎧m <-2或m >10,m ≤1或⎩⎪⎨⎪⎧-2≤m ≤10,m >1,所以m <-2或1<m ≤10.12.(2017·石家庄模拟)下列选项中,说法正确的是( ) A .若a >b >0,则ln a <ln bB .向量a =(1,m )与b =(m,2m -1)(m ∈R)垂直的充要条件是m =1C .命题“∀n ∈N *,3n>(n +2)·2n -1”的否定是“∀n ∈N *,3n ≥(n +2)·2n -1”D .已知函数f (x )在区间[a ,b ]上的图象是连续不断的,则命题“若f (a )·f (b )<0,则f (x )在区间(a ,b )内至少有一个零点”的逆命题为假命题解析:选D A 中,因为函数y =ln x (x >0)是增函数,所以若a >b >0,则ln a >ln b ,故A 错; B 中,若a ⊥b ,则m +m (2m -1)=0, 解得m =0,故B 错;C 中,命题“∀n ∈N *,3n>(n +2)·2n -1”的否定是“∃n 0∈N *,3n 0≤(n 0+2)·2n 0-1”,故C 错;D 中,原命题的逆命题是“若f (x )在区间(a ,b )内至少有一个零点,则f (a )·f (b )<0”,是假命题,如函数f (x )=x 2-2x -3在区间[-2,4]上的图象是连续不断的,且在区间(-2,4)内有两个零点,但f (-2)·f (4)>0,故D 正确.13.(2018届高三·辽宁师大附中调研)若集合A ={x |(a -1)x 2+3x -2=0}有且仅有两个子集,则实数a 的值为________.解析:由题意知,集合A 有且仅有两个子集,则集合A 中只有一个元素.当a -1=0,即a =1时,A =⎩⎨⎧⎭⎬⎫23,满足题意;当a -1≠0,即a ≠1时,要使集合A 中只有一个元素,需Δ=9+8(a -1)=0,解得a =-18.综上可知,实数a 的值为1或-18.答案:1或-1814.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R,B ={x |-1<x <m +1,x ∈R},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2. 答案:(2,+∞)15.(2017·广东中山一中模拟)已知非空集合A ,B 满足下列四个条件: ①A ∪B ={1,2,3,4,5,6,7}; ②A ∩B =∅;③A 中的元素个数不是A 中的元素; ④B 中的元素个数不是B 中的元素.(1)如果集合A 中只有1个元素,那么A =________; (2)有序集合对(A ,B )的个数是________.解析:(1)若集合A 中只有1个元素,则集合B 中有6个元素,6∉B ,故A ={6}.(2)当集合A 中有1个元素时,A ={6},B ={1,2,3,4,5,7},此时有序集合对(A ,B )有1个; 当集合A 中有2个元素时,5∉B,2∉A ,此时有序集合对(A ,B )有5个; 当集合A 中有3个元素时,4∉B,3∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有4个元素时,3∉B,4∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有5个元素时,2∉B,5∉A ,此时有序集合对(A ,B )有5个;当集合A 中有6个元素时,A ={1,2,3,4,5,7},B ={6},此时有序集合对(A ,B )有1个. 综上可知,有序集合对(A ,B )的个数是1+5+10+10+5+1=32. 答案:(1){6} (2)3216.(2017·张掖模拟)下列说法中不正确的是________.(填序号) ①若a ∈R ,则“1a<1”是“a >1”的必要不充分条件;②“p ∧q 为真命题”是“p ∨q 为真命题”的必要不充分条件; ③若命题p :“∀x ∈R ,sin x +cos x ≤2”,则p 是真命题;④命题“∃x 0∈R ,x 20+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3>0”.解析:由1a <1,得a <0或a >1,反之,由a >1,得1a <1,∴“1a<1”是“a >1”的必要不充分条件,故①正确;由p ∧q 为真命题,知p ,q 均为真命题,所以p ∨q 为真命题,反之,由p ∨q 为真命题,得p ,q 至少有一个为真命题,所以p ∧q 不一定为真命题,所以“p ∧q 为真命题”是“p ∨q 为真命题”的充分不必要条件,故②不正确;∵sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2, ∴命题p 为真命题,③正确;命题“∃x 0∈R ,x 20+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3≥0”,故④不正确. 答案:②④课时跟踪检测(二) 平面向量与复数1.(2017·全国卷Ⅲ)复平面内表示复数z =i(-2+i)的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:选C z =i(-2+i)=-2i +i 2=-1-2i ,故复平面内表示复数z =i(-2+i)的点位于第三象限.2.(2017·全国卷Ⅲ)设复数z 满足(1+i)z =2i ,则|z |=( ) A.12 B.22 C. 2 D .2解析:选C 因为z =2i1+i =-+-=i(1-i)=1+i ,所以|z |= 2.3.(2017·沈阳模拟)已知平面向量a =(3,4),b =⎝ ⎛⎭⎪⎫x ,12,若a ∥b ,则实数x 的值为( ) A .-23 B.23 C.38 D .-38解析:选C ∵a ∥b ,∴3×12=4x ,解得x =38.4.(2018届高三·西安摸底)已知非零单位向量a ,b 满足|a +b |=|a -b |,则a 与b -a 的夹角是( )A.π6 B.π3 C.π4 D.3π4解析:选D 由|a +b |=|a -b |可得(a +b )2=(a -b )2,即a ·b =0,而a ·(b -a )=a ·b -a 2=-|a |2<0,即a 与b -a 的夹角为钝角,结合选项知选D.5.(2017·湘中模拟)已知向量a =(x ,3),b =(x ,-3),若(2a +b )⊥b ,则|a |=( ) A .1 B. 2 C. 3 D .2解析:选D 因为(2a +b )⊥b ,所以(2a +b )·b =0,即(3x ,3)·(x ,-3)=3x 2-3=0,解得x =±1,所以a =(±1,3),|a |=2+32=2.6.(2017·广西五校联考)设D 是△ABC 所在平面内一点,AB ―→=2DC ―→,则( ) A .BD ―→=AC ―→-32AB ―→B .BD ―→=32AC ―→-AB ―→C .BD ―→=12AC ―→-AB ―→D .BD ―→=AC ―→-12AB ―→解析:选A BD ―→=BC ―→+CD ―→=BC ―→-DC ―→=AC ―→-AB ―→-12AB ―→=AC ―→-32AB ―→.7.(2018届高三·云南调研)在▱ABCD 中,|AB ―→|=8,|AD ―→|=6,N 为DC 的中点,BM ―→=2MC ―→,则AM ―→·NM ―→=( )A .48B .36C .24D .12解析:选C AM ―→·NM ―→=(AB ―→+BM ―→)·(NC ―→+CM ―→)=⎝ ⎛⎭⎪⎫AB ―→+23 AD ―→ ·⎝ ⎛⎭⎪⎫12 AB ―→-13 AD ―→ =12AB―→2-29AD ―→2=12×82-29×62=24. 8.(2018届高三·广西五校联考)已知a 为实数,若复数z =(a 2-1)+(a +1)i 为纯虚数,则a +i 2 0171-i=( )A .1B .0C .iD .1-i解析:选C 因为z =(a 2-1)+(a +1)i 为纯虚数,所以⎩⎪⎨⎪⎧a 2-1=0,a +1≠0,得a =1,则有1+i 2 0171-i =1+i 1-i=+2+-=i.9.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→ 在BA ―→方向上的投影是( ) A .-3 5 B .-322 C .3 5 D.322解析:选 A 依题意得,BA ―→=(-2,-1),CD ―→=(5,5),BA ―→ ·CD ―→=(-2,-1)·(5,5)=-15,|BA ―→|=5,因此向量CD ―→在BA ―→方向上的投影是BA ―→·CD ―→|BA ―→|=-155=-3 5.10.(2018届高三·湖南五校联考)△ABC 是边长为2的等边三角形,向量a ,b 满足AB ―→=2a ,AC ―→=2a +b ,则向量a ,b 的夹角为( )A .30°B .60°C .120°D .150°解析:选C 法一:设向量a ,b 的夹角为θ,BC ―→=AC ―→-AB ―→=2a +b -2a =b ,∴|BC ―→|=|b |=2,|AB ―→|=2|a |=2,∴|a |=1,AC ―→2=(2a +b )2=4a 2+4a ·b +b 2=8+8cos θ=4,∴cos θ=-12,θ=120°.法二:BC ―→=AC ―→-AB ―→=2a +b -2a =b ,则向量a ,b 的夹角为向量AB ―→与BC ―→的夹角,故向量a ,b 的夹角为120°.11.(2017·长春模拟)在△ABC 中,D 为△ABC 所在平面内一点,且AD ―→=13AB ―→+12AC ―→,则S △BCD S △ABD=( )A.16B.13C.12D.23解析:选B 如图,由已知得,点D 在△ABC 中与AB 平行的中位线上,且在靠⎝ ⎛⎭⎪⎫1-12-13S近BC 边的三等分点处,从而有S △ABD =12S △ABC ,S △ACD =13S △ABC ,S △BCD =△ABC=16S △ABC ,所以S △BCD S △ABD =13. 12.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( )A .3B .2 2 C. 5 D .2 解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为222+12=25,所以圆C :(x -1)2+(y -2)2=45. 因为P 在圆C 上,所以P ⎝ ⎛⎭⎪⎫1+255cos θ,2+255sin θ. 又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ), 所以⎩⎪⎨⎪⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.13.(2017·成都模拟)若复数z =a i1+i (其中a ∈R ,i 为虚数单位)的虚部为-1,则a =________.解析:因为z =a i1+i=a-+-=a 2+a 2i 的虚部为-1,所以a2=-1,解得a =-2. 答案:-214.(2017·兰州诊断)已知向量OA ―→=(3,1),OB ―→=(-1,3),OC ―→=m OA ―→-n OB ―→(m >0,n >0),若m +n =1,则|OC ―→|的最小值为________.解析:由OA ―→=(3,1),OB ―→=(-1,3),得OC ―→=m OA ―→-n OB ―→=(3m +n ,m -3n ),因为m +n =1(m >0,n >0),所以n =1-m 且0<m <1,所以OC ―→=(1+2m,4m -3),则|OC ―→|=+2m2+m -2=20m 2-20m +10=20⎝ ⎛⎭⎪⎫m -122+5(0<m <1),所以当m =12时,|OC ―→|min = 5.答案: 515.(2018届高三·石家庄调研)非零向量m ,n 的夹角为π3,且满足|n |=λ|m |(λ>0),向量组x 1,x 2,x 3由一个m 和两个n 排列而成,向量组y 1,y 2,y 3由两个m 和一个n 排列而成,若x 1·y 1+x 2·y 2+x 3·y 3所有可能值中的最小值为4m 2,则λ=________.解析:由题意:x 1·y 1+x 2·y 2+x 3·y 3的运算结果有以下两种可能:①m 2+m ·n +n 2=m 2+λ|m ||m |cos π3+λ2m 2=⎝ ⎛⎭⎪⎫λ2+λ2+1m 2;②m ·n +m ·n +m ·n =3λ|m ||m |cos π3=3λ2m 2.又λ2+λ2+1-3λ2=λ2-λ+1=⎝ ⎛⎭⎪⎫λ-122+34>0,所以3λ2m 2=4m 2,即3λ2=4,解得λ=83.答案:8316.如图所示,已知正方形ABCD 的边长为1,点E 从点D 出发,按字母顺序D →A →B →C 沿线段DA ,AB ,BC 运动到点C ,在此过程中DE ―→·CD ―→的取值范围为________.解析:以BC ,BA 所在的直线为x 轴,y 轴,建立平面直角坐标系如图所示,可得A (0,1),B (0,0),C (1,0),D (1,1).当E 在DA 上时,设E (x,1),其中0≤x ≤1,∵DE ―→=(x -1,0),CD ―→=(0,1), ∴DE ―→·CD ―→=0;当E 在AB 上时,设E (0,y ), 其中0≤y ≤1,∵DE ―→=(-1,y -1),CD ―→=(0,1),∴DE ―→·CD ―→=y -1(0≤y ≤1),此时DE ―→·CD ―→的取值范围为[-1,0]; 当E 在BC 上时,设E (x,0),其中0≤x ≤1, ∵DE ―→=(x -1,-1),CD ―→=(0,1),∴DE ―→·CD ―→=-1.综上所述,DE ―→·CD ―→的取值范围为[-1,0]. 答案:[-1,0]课时跟踪检测(三) 不等式1.(2018届高三·湖南四校联考)已知不等式mx 2+nx -1m <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12或x >2,则m-n =( )A.12 B .-52C.52D .-1解析:选B 由题意得,x =-12和x =2是方程mx 2+nx -1m =0的两根,所以-12+2=-n m 且-12×2=-1m (m <0),解得m =-1,n =32,所以m -n =-52.2.已知直线ax +by =1经过点(1,2),则2a +4b的最小值为( ) A. 2 B .2 2 C .4D .4 2解析:选B ∵直线ax +by =1经过点(1,2),∴a +2b =1,则2a+4b≥22a·22b=22a +2b=22,当且仅当2a =22b,即a =12,b =14时取等号.3.(2017·兰州模拟)设变量x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值是( )A .5B .7C .8D .23解析:选B 作出不等式组所表示的平面区域如图中阴影部分所示,作出直线2x +3y =0,对该直线进行平移,可以发现经过⎩⎪⎨⎪⎧x +y =3,2x -y =3的交点A (2,1)时,目标函数z =2x +3y 取得最小值7.4.(2017·贵阳一模)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:选B 由题意得x +2y =8-x ·2y ≥8-⎝⎛⎭⎪⎫x +2y 22,当且仅当x =2y 时,等号成立,整理得(x+2y )2+4(x +2y )-32≥0,即(x +2y -4)(x +2y +8)≥0,又x +2y >0,所以x +2y ≥4,即x +2y 的最小值为4.5.(2017·云南模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≥1,21-x-2,x <1,则不等式f (x -1)≤0的解集为( )A .{x |0≤x ≤2}B .{x |0≤x ≤3}C .{x |1≤x ≤2}D .{x |1≤x ≤3}解析:选D 由题意,得f (x -1)=⎩⎪⎨⎪⎧2x -2-2,x ≥2,22-x-2,x <2.当x ≥2时,由2x -2-2≤0,解得2≤x ≤3; 当x <2时,由22-x-2≤0,解得1≤x <2.综上所述,不等式f (x -1)≤0的解集为{x |1≤x ≤3}.6.(2017·武汉调研)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-3解析:选B 根据约束条件画出可行域如图①中阴影部分所示.可知可行域为开口向上的V 字型.在顶点A 处z有最小值,联立方程⎩⎪⎨⎪⎧x +y =a ,x -y =-1,得⎩⎪⎨⎪⎧x =a -12,y =a +12,即A ⎝⎛⎭⎪⎫a -12,a +12,则a -12+a ×a +12=7,解得a =3或a =-5. 当a =-5时,如图②,虚线向上移动时z 减小,故z →-∞,没有最小值,故只有a =3满足题意.7.(2017·合肥二模)若关于x 的不等式x 2+ax -2<0在区间[1,4]上有解,则实数a 的取值范围为( )A .(-∞,1)B .(-∞,1]C .(1,+∞)D .[1,+∞)解析:选A 法一:因为x ∈[1,4],则不等式x 2+ax -2<0可化为a <2-x 2x =2x -x ,设f (x )=2x-x ,x ∈[1,4],由题意得只需a <f (x )max ,因为函数f (x )为区间[1,4]上的减函数,所以f (x )max =f (1)=1,故a <1.法二:设g (x )=x 2+ax -2,函数g (x )的图象是开口向上的抛物线,过定点(0,-2),因为g (x )<0在区间[1,4]上有解,所以g (1)<0,解得a <1.8.(2017·太原一模)已知实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,则z =x 2+y 2的取值范围为( )A .[1,13]B .[1,4]C.⎣⎢⎡⎦⎥⎤45,13D.⎣⎢⎡⎦⎥⎤45,4解析:选C 画出不等式组表示的平面区域如图中阴影部分所示,由此得z =x 2+y 2的最小值为点O 到直线BC :2x -y +2=0的距离的平方,所以z min =⎝ ⎛⎭⎪⎫252=45,最大值为点O 与点A (-2,3)的距离的平方,所以z max=|OA |2=13,故选C.9.(2017·衡水二模)若关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+a x 1x 2的最小值是( )A.63 B.233 C.433D.263解析:选C ∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a2>0,又x 1+x 2=4a ,x 1x 2=3a 2, ∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a ≥24a ·13a =433,当且仅当a =36时取等号. ∴x 1+x 2+a x 1x 2的最小值是433. 10.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,50解析:选B 设黄瓜、韭菜的种植面积分别为x 亩,y 亩,则总利润z =4×0.55x +6×0.3y -1.2x-0.9y =x +0.9y .此时x ,y 满足条件⎩⎪⎨⎪⎧x +y ≤50,1.2x +0.9y ≤54,x ≥0,y ≥0.画出可行域如图,得最优解为A (30,20).故黄瓜和韭菜的种植面积分别为30亩、20亩时,种植总利润最大.11.已知点M 是△ABC 内的一点,且AB ―→·AC ―→=23,∠BAC =π6,若△MBC ,△MCA ,△MAB 的面积分别为23,x ,y ,则4x +yxy的最小值为( )A .16B .18C .20D .27解析:选D 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . ∵AB ―→·AC ―→=23,∠BAC =π6,∴|AB ―→|·|AC ―→|cos π6=23,∴bc =4,∴S △ABC =12bc sin π6=14bc =1.∵△MBC ,△MCA ,△MAB 的面积分别为23,x ,y ,∴23+x +y =1,即x +y =13, ∴4x +yxy=1x +4y =3(x +y )⎝ ⎛⎭⎪⎫1x +4y=3⎝ ⎛⎭⎪⎫1+4+y x+4x y ≥3⎝⎛⎭⎪⎫5+2y x ·4x y =27, 当且仅当y =2x =29时取等号,故4x +yxy的最小值为27.12.(2017·安徽二校联考)当x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y ≤2,y -4≤x ,x -7y ≤2时,-2≤kx -y ≤2恒成立,则实数k 的取值范围是( )A .[-1,1]B .[-2,0]C.⎣⎢⎡⎦⎥⎤-15,35D.⎣⎢⎡⎦⎥⎤-15,0解析:选 D 作出不等式组表示的可行域如图中阴影部分所示,设z =kx -y ,由⎩⎪⎨⎪⎧x +2y =2,y -4=x得⎩⎪⎨⎪⎧ x =-2,y =2,即B (-2,2);由⎩⎪⎨⎪⎧x +2y =2,x -7y =2得⎩⎪⎨⎪⎧x =2,y =0,即C (2,0);由⎩⎪⎨⎪⎧y -4=x ,x -7y =2得⎩⎪⎨⎪⎧x =-5,y =-1,即A (-5,-1).要使不等式-2≤kx -y ≤2恒成立,则⎩⎪⎨⎪⎧-2≤-2k -2≤2,-2≤2k ≤2,-2≤-5k +1≤2,即⎩⎪⎨⎪⎧-2≤k ≤0,-1≤k ≤1,-15≤k ≤35,所以-15≤k ≤0.13.(2018届高三·池州摸底)已知a >b >1,且2log a b +3log b a =7,则a +1b 2-1的最小值为________.解析:令log a b =t ,由a >b >1得0<t <1,2log a b +3log b a =2t +3t =7,得t =12,即log a b =12,a=b 2,所以a +1b 2-1=a -1+1a -1+1≥2a -1a -1+1=3,当且仅当a =2时取等号.故a +1b 2-1的最小值为3. 答案:314.(2017·石家庄模拟)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤4,则z =y -2x +3的最小值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,因为目标函数z =y -2x +3表示区域内的点与点P (-3,2)连线的斜率.由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =-125.答案:-12515.(2017·成都二诊)若关于x 的不等式ax 2-|x |+2a <0的解集为空集,则实数a 的取值范围为________.解析:ax 2-|x |+2a <0⇒a <|x |x 2+2,当x ≠0时,|x |x 2+2≤|x |2x 2×2=24(当且仅当x =±2时取等号),当x =0时,|x |x 2+2=0<24,因此要使关于x 的不等式ax 2-|x |+2a <0的解集为空集,只需a ≥24,即实数a 的取值范围为⎣⎢⎡⎭⎪⎫24,+∞. 答案:⎣⎢⎡⎭⎪⎫24,+∞ 16.(2018届高三·福州调研)不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x -2y +2≤0,x +y -4≤0的解集记作D ,实数x ,y 满足如下两个条件:①∀(x ,y )∈D ,y ≥ax ;②∃(x ,y )∈D ,x -y ≤a . 则实数a 的取值范围为________.解析:由题意知,不等式组所表示的可行域D 如图中阴影部分(△ABC 及其内部)所示,由⎩⎪⎨⎪⎧x -2y +2=0,x +y -4=0,得⎩⎪⎨⎪⎧ x =2,y =2,所以点B 的坐标为(2,2).由⎩⎪⎨⎪⎧2x -y +1=0,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3,所以点C 的坐标为(1,3).因为∀(x ,y )∈D ,y ≥ax , 由图可知,a ≤k OB ,所以a ≤1.由∃(x ,y )∈D ,x -y ≤a ,设z =x -y ,则a ≥z min .当目标函数z =x -y 过点C (1,3)时,z =x -y 取得最小值,此时z min =1-3=-2,所以a ≥-2. 综上可知,实数a 的取值范围为[-2,1]. 答案:[-2,1]课时跟踪检测(四) 函数的图象与性质[A 级——“12+4”保分小题提速练]1.函数f (x )=⎩⎪⎨⎪⎧ax +b ,x ≤0,log c ⎝ ⎛⎭⎪⎫x +19,x >0的图象如图所示,则a +b +c =( )A.43 B.73 C .4D.133解析:选D 将点(0,2)代入y =log c ⎝ ⎛⎭⎪⎫x +19,得2=log c 19,解得c =13.再将点(0,2)和(-1,0)分别代入y =ax +b ,解得a =2,b =2,∴a +b +c =133.2.(2018届高三·武汉调研)已知函数f (x )的部分图象如图所示,则f (x )的解析式可以是( )A .f (x )=2-x22xB .f (x )=cos xx 2C .f (x )=-cos 2xxD .f (x )=cos xx解析:选D A 中,当x →+∞时,f (x )→-∞,与题图不符,故不成立;B 为偶函数,与题图不符,故不成立;C 中,当x >0,x →0时,f (x )<0,与题图不符,故不成立.选D.3.下列函数中,既是奇函数又是减函数的是( ) A .f (x )=x 3,x ∈(-3,3) B .f (x )=tan x C .f (x )=x |x |D .f (x )=ln 2e e --x x解析:选D 选项A 、B 、C 、D 对应的函数都是奇函数,但选项A 、B 、C 对应的函数在其定义域内都不是减函数,故排除A 、B 、C ;对于选项D ,因为f (x )=ln 2e e --x x,所以f (x )=(e -x -e x)ln 2,由于函数g (x )=e -x与函数h (x )=-e x 都是减函数,又ln 2>0,所以函数f (x )=(e -x-e x)ln 2是减函数,故选D.4.函数f (x )= -x 2+9x +10-2x -的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D 要使原函数有意义,则⎩⎪⎨⎪⎧-x 2+9x +10≥0,x -1>0,x -1≠1,解得1<x ≤10且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,10]. 5.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln(2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称解析:选 C 由题易知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln[x (2-x )]=ln[-(x-1)2+1],由复合函数的单调性知,函数f (x )=ln x +ln(2-x )在(0,1)单调递增,在(1,2)单调递减,所以排除A 、B ;又f ⎝ ⎛⎭⎪⎫12=ln 12+ln ⎝ ⎛⎭⎪⎫2-12=ln 34,f ⎝ ⎛⎭⎪⎫32=ln 32+ln ⎝⎛⎭⎪⎫2-32=ln 34,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32=ln 34,所以排除D.故选C. 6.函数f (x )=x x2的图象大致是( )解析:选 A 由题意知,函数f (x )的定义域为(-∞,0)∪(0,+∞),f (-x )=-πx-x2=x x2=f (x ),∴f (x )为偶函数,排除C 、D ; 当x =1时,f (1)=cos π1=-1<0,排除B ,故选A. 7.(2018届高三·衡阳八中月考)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1) D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:选B 因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称.又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52,即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 8.(2017·甘肃会宁一中摸底)已知函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a的取值范围是( )A.⎣⎢⎡⎭⎪⎫-1,12B.⎝⎛⎭⎪⎫-1,12C .(-∞,-1]D.⎝ ⎛⎭⎪⎫0,12 解析:选A 法一:当x ≥1时,ln x ≥0,要使函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,只需⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.法二:取a =-1,则函数f (x )的值域为R ,所以a =-1满足题意,排除B 、D ;取a =-2,则函数f (x )的值域为(-∞,-1)∪[0,+∞),所以a =-2不满足题意,排除C ,故选A.9.(2018届高三·辽宁实验中学摸底)已知函数f (x )=(x -a )(x -b )(其中a >b ),若f (x )的图象如图所示,则函数g (x )=a x +b 的图象大致为( )解析:选A 由一元二次方程的解法易得(x -a )(x -b )=0的两根为a ,b ,根据函数零点与方程的根的关系,可得f (x )=(x -a )(x -b )的零点就是a ,b ,即函数f (x )的图象与x 轴交点的横坐标为a ,b .观察f (x )=(x -a )·(x -b )的图象,可得其与x 轴的两个交点分别在区间(-2,-1)与(0,1)上,又由a >b ,可得-2<b <-1,0<a <1.函数g (x )=a x+b ,由0<a <1可知其是减函数,又由-2<b <-1可知其图象与y 轴的交点在x 轴的下方,分析选项可得A 符合这两点,B 、C 、D 均不满足,故选A.10.函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在(-1,3)上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)解析:选C 作出函数f (x )的图象如图所示.当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0); 当x ∈(0,1)时,由xf (x )>0得x ∈∅; 当x ∈(1,3)时,由xf (x )>0得x ∈(1,3). 故x ∈(-1,0)∪(1,3).11.(2017·安徽六安一中测试)已知函数y =3-|x |3+|x |的定义域为[a ,b ](a ,b ∈Z),值域为[0,1],则满足条件的整数对(a ,b )共有( )A .6个B .7个C .8个D .9个解析:选B 函数y =3-|x |3+|x |=63+|x |-1,易知函数是偶函数,x >0时是减函数,所以函数的图象如图所示,根据图象可知,函数y =3-|x |3+|x |的定义域可能为[-3,0],[-3,1],[-3,2],[-3,3],[-2,3],[-1,3],[0,3],共7种,所以满足条件的整数对(a ,b )共有7个.12.已知函数f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:选C 作出函数g (x )=1-x 2和函数|f (x )|=|2x-1|的图象如图①所示,得到函数h (x )的图象如图②所示,由图象得函数h (x )有最小值-1,无最大值.13.若函数f (x )=a -12x+1为奇函数,则a =________. 解析:由题意知f (0)=0,即a -12+1=0,解得a =12.答案:1214.已知f (x )=ax 3+bx +1(ab ≠0),若f (2 017)=k ,则f (-2 017)=________.解析:由f (2 017)=k 可得,a ×2 0173+b ×2 017+1=k ,∴2 0173a +2 017b =k -1,∴f (-2 017)=-a ×2 0173-b ×2 017+1=2-k .答案:2-k15.(2017·安徽二校联考)已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x,则f (log 49)=______.解析:因为log 49=log 23>0,又f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-22log 3-=-221log 3-=-13.答案:-1316.已知y =f (x )是偶函数,当x >0时,f (x )=x +4x,且当x ∈[-3,-1]时,n ≤f (x )≤m 恒成立,则m -n 的最小值是________.解析:∵当x ∈[-3,-1]时,n ≤f (x )≤m 恒成立, ∴n ≤f (x )min 且m ≥f (x )max ,∴m -n 的最小值是f (x )max -f (x )min , 由偶函数的图象关于y 轴对称知,当x ∈[-3,-1]时,函数的最值与x ∈[1,3]时的最值相同,又当x >0时,f (x )=x +4x,在[1,2]上递减,在[2,3]上递增,且f (1)>f (3), ∴f (x )max -f (x )min =f (1)-f (2)=5-4=1. 故m -n 的最小值是1. 答案:1[B 级——中档小题强化练]1.函数f (x )=1+ln ⎝ ⎛⎭⎪⎫x 2+2e 的图象大致是( )解析:选D 因为f (0)=ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D. 2.(2018届高三·东北三校联考)已知函数f (x )=ln(|x |+1)+x 2+1,则使得f (x )>f (2x -1)成立的x 的取值范围是 ( )A.⎝ ⎛⎭⎪⎫13,1 B.⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞) C .(1,+∞)D.⎝⎛⎭⎪⎫-∞,13 解析:选A 易知函数f (x )为偶函数,且当x ≥0时,f (x )=ln(x +1)+x 2+1 是增函数, ∴使得f (x )>f (2x -1)成立的x 满足|2x -1|<|x |, 解得13<x <1.3.(2017·潍坊一模)设函数f (x )为偶函数,且∀x ∈R ,f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12,当x ∈[2,3]时,f (x )=x ,则当x ∈[-2,0]时,f (x )=( )A .|x +4|B .|2-x |C .2+|x +1|D .3-|x +1|解析:选D 因为f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12, 所以f (x )=f (x +2),得f (x )的周期为2. 因为当x ∈[2,3]时,f (x )=x , 所以当x ∈[0,1]时,x +2∈[2,3],f (x )=f (x +2)=x +2.又f (x )为偶函数,所以当x ∈[-1,0]时,-x ∈[0,1],f (x )=f (-x )=-x +2,当x ∈[-2,-1]时,x +2∈[0,1],f (x )=f (x +2)=x +4,所以当x ∈[-2,0]时,f (x )=3-|x +1|.4.(2017·安庆二模)如图,已知l 1⊥l 2,圆心在l 1上、半径为1 m 的圆O 沿l 1以1 m/s 的速度匀速竖直向上移动,且在t =0时,圆O 与l 2相切于点A ,圆O 被直线l 2所截得到的两段圆弧中,位于l 2上方的圆弧的长记为x ,令y =cos x ,则y 与时间t (0≤t ≤1,单位:s)的函数y =f (t )的图象大致为( )解析:选B 法一:如图所示,cosx2=设∠MON =α,由弧长公式知x =α,在Rt △AOM 中,|AO |=1-t ,|OA ||OM |=1-t ,∴y =cos x =2cos 2x 2-1=2(t -1)2-1(0≤t ≤1).故其对应的大致图象应为B.法二:由题意可知,当t =1时,圆O 在直线l 2上方的部分为半圆,所对应的弧长为π×1=π,所以cos π=-1,排除A 、D ;当t =12时,如图所示,易知∠BOC =2π3,所以cos 2π3=-12<0,排除C ,故选B.5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________.解析:因为f (x )是奇函数,且当0≤x ≤1时,f (x )=2x (1-x ),所以当-1≤x <0时,0<-x ≤1,f (-x )=-2x (1+x )=-f (x ),即f (x )=2x (1+x ).又f (x )的周期为2,所以f ⎝ ⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=2×⎝ ⎛⎭⎪⎫-12×12=-12.答案:-126.(2017·张掖模拟)已知定义在R 上的函数f (x ),对任意的实数x ,均有f (x +3)≤f (x )+3,f (x +2)≥f (x )+2且f (1)=2,则f (2 017)的值为________.解析:∵f (x +3)≤f (x )+3,f (x +2)≥f (x )+2, ∴f (x +1)+2≤f (x +3)≤f (x )+3, ∴f (x +1)≤f (x )+1,又f (x )+3+f (x +2)≥f (x +3)+f (x )+2, 即f (x +2)+1≥f (x +3),∴f (x +1)+1≥f (x +2)≥f (x )+2, ∴f (x +1)≥f (x )+1,∴f (x +1)=f (x )+1,利用叠加法,得f (2 017)=2 018.答案:2 018[C 级——压轴小题突破练]1.设m ∈Z ,对于给定的实数x ,若x ∈⎝ ⎛⎦⎥⎤m -12,m +12,则我们就把整数m 叫做距实数x 最近的整数,并把它记为{x },现有关于函数f (x )=x -{x }的四个命题:①f ⎝ ⎛⎭⎪⎫-12=-12;②函数f (x )的值域是⎝ ⎛⎦⎥⎤-12,12;③函数f (x )是奇函数;④函数f (x )是周期函数,其最小正周期为1. 其中,真命题的个数为( ) A .1 B .2 C .3D .4解析:选B ①∵-1-12<-12≤-1+12,∴⎩⎨⎧⎭⎬⎫-12=-1, ∴f ⎝ ⎛⎭⎪⎫-12=-12-⎩⎨⎧⎭⎬⎫-12=-12+1=12, 所以①是假命题;②令x =m +a ,m ∈Z ,a ∈⎝ ⎛⎦⎥⎤-12,12,则f (x )=x -{x }=a ,∴f (x )∈⎝ ⎛⎦⎥⎤-12,12,所以②是真命题; ③∵f ⎝ ⎛⎭⎪⎫12=12-0=12,f ⎝ ⎛⎭⎪⎫-12=12≠-f ⎝ ⎛⎭⎪⎫12, ∴函数f (x )不是奇函数,故③是假命题; ④∵f (x +1)=(x +1)-{x +1}=x -{x }=f (x ), ∴函数f (x )的最小正周期为1,故④是真命题. 综上,真命题的个数为2,故选B.2.如图所示,在△ABC 中,∠B =90°,AB =6 cm ,BC =8 cm ,点P 以 1 cm/s 的速度沿A →B →C 的路径向C 移动,点Q 以2 cm/s 的速度沿B →C →A 的路径向A 移动,当点Q 到达A 点时,P ,Q 两点同时停止移动.记△PCQ 的面积关于移动时间t 的函数为S =f (t ),则f (t )的图象大致为( )解析:选A 当0≤t ≤4时,点P 在AB 上,点Q 在BC 上,此时PB =6-t ,CQ =8-2t ,则S =f (t )=12QC ×BP =12(8-2t )×(6-t )=t 2-10t +24; 当4<t ≤6时,点P 在AB 上,点Q 在CA 上,此时AP =t ,P 到AC 的距离为45t ,CQ =2t -8,则S=f (t )=12QC ×45t =12(2t -8)×45t =45(t 2-4t );当6<t ≤9时,点P 在BC 上,点Q 在CA 上,此时CP =14-t ,QC =2t -8,则S =f (t )=12QC ×CP sin∠ACB =12(2t -8)(14-t )×35=35(t -4)(14-t ).综上,函数f (t )对应的图象是三段抛物线,依据开口方向得图象是A. 3.(2017·河北邯郸一中月考)已知函数f 1(x )=|x -1|,f 2(x )=13x +1,g (x )=f 1x +f 2x2+|f 1x-f 2x2,若a ,b ∈[-1,5],且当x 1,x 2∈[a ,b ]时,g x 1-g x 2x 1-x 2>0恒成立,则b-a 的最大值为________.解析:当f 1(x )≥f 2(x )时,g (x )=f 1x +f 2x2+f 1x -f 2x2=f 1(x );当f 1(x )<f 2(x )时,g (x )=f 1x +f 2x2+f 2x -f 1x2=f 2(x ).综上,g (x )=⎩⎪⎨⎪⎧f 1x ,f 1xf 2x ,f 2x ,f 1x <f 2x ,即g (x )是f 1(x ),f 2(x )两者中的较大者.在同一平面直角坐标系中分别画出函数f 1(x )与f 2(x )的图象,如图所示,则g (x )的图象如图中实线部分所示.由图可知g (x )在[0,+∞)上单调递增,又g (x )在[a ,b ]上单调递增,故a ,b ∈[0,5],所以b -a 的最大值为5.答案:54.(2017·湘中名校联考)定义在R 上的函数f (x )在(-∞,-2)上单调递增,且f (x -2)是偶函数,若对一切实数x ,不等式f (2sin x -2)>f (sin x -1-m )恒成立,则实数m 的取值范围为________.解析:因为f (x -2)是偶函数, 所以函数f (x )的图象关于x =-2对称. 又f (x )在(-∞,-2)上为增函数, 则f (x )在(-2,+∞)上为减函数,所以不等式f (2sin x -2)>f (sin x -1-m )恒成立等价于|2sin x -2+2|<|sin x -1-m +2|, 即|2sin x |<|sin x +1-m |,两边同时平方, 得3sin 2x -2(1-m )sin x -(1-m )2<0, 即(3sin x +1-m )(sin x -1+m )<0,即⎩⎪⎨⎪⎧3sin x +1-m >0,sin x -1+m <0或⎩⎪⎨⎪⎧3sin x +1-m <0,sin x -1+m >0,即⎩⎪⎨⎪⎧3sin x >m -1,sin x <1-m 或⎩⎪⎨⎪⎧3sin x <m -1,sin x >1-m ,即⎩⎪⎨⎪⎧m -1<-3,1-m >1或⎩⎪⎨⎪⎧m -1>3,1-m <-1,即m <-2或m >4,故m 的取值范围为(-∞,-2)∪(4,+∞). 答案:(-∞,-2)∪(4,+∞)课时跟踪检测(五) 基本初等函数、函数与方程[A 级——“12+4”保分小题提速练]1.若f (x )是幂函数,且满足f f=2,则f ⎝ ⎛⎭⎪⎫19=( ) A.12 B.14 C .2D .4解析:选B 设f (x )=x α,由ff=9α3α=3α=2,得α=log 32,∴f ⎝ ⎛⎭⎪⎫19=⎝ ⎛⎭⎪⎫19log 32=14. 2.(2017·云南模拟)设a =60.7,b =log 70.6,c =log 0.60.7,则a ,b ,c 的大小关系为( ) A .c >b >a B .b >c >a C .c >a >bD .a >c >b解析:选D 因为a =60.7>1,b =log 70.6<0,0<c =log 0.60.7<1,所以a >c >b . 3.函数f (x )=|log 2x |+x -2的零点个数为( ) A .1 B .2 C .3D .4解析:选B 函数f (x )=|log 2x |+x -2的零点个数,就是方程|log 2x |+x -2=0的根的个数.令h (x )=|log 2x |,g (x )=2-x ,画出两函数的图象,如图. 由图象得h (x )与g (x )有2个交点,∴方程|log 2x |+x -2=0的解的个数为2.4.(2017·河南适应性测试)函数y =a x-a (a >0,a ≠1)的图象可能是( )解析:选C 由函数y =a x-a (a >0,a ≠1)的图象过点(1,0),得选项A 、B 、D 一定不可能;C 中0<a <1,有可能,故选C.5.已知奇函数y =⎩⎪⎨⎪⎧fx ,x >0,g x ,x <0.若f (x )=a x(a >0,a ≠1)对应的图象如图所示,则g (x )=( )A.⎝ ⎛⎭⎪⎫12-xB .-⎝ ⎛⎭⎪⎫12xC .2-xD .-2x解析:选D 由图象可知,当x >0时,函数f (x )单调递减,则0<a <1,∵f (1)=12,∴a =12,即函数f (x )=⎝ ⎛⎭⎪⎫12x ,当x <0时,-x >0,则f (-x )=⎝ ⎛⎭⎪⎫12-x =-g (x ),即g (x )=-⎝ ⎛⎭⎪⎫12-x =-2x,故g (x )=-2x,x <0,选D.6.已知f (x )=a x和g (x )=b x是指数函数,则“f (2)>g (2)”是“a >b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 由题可得,a >0,b >0且a ≠1,b ≠1. 充分性:f (2)=a 2,g (2)=b 2, 由f (2)>g (2)知,a 2>b 2,再结合y =x 2在(0,+∞)上单调递增, 可知a >b ,故充分性成立; 必要性:由题可知a >b >0,构造函数h (x )=f x g x =a x b x =⎝ ⎛⎭⎪⎫a b x ,显然ab>1,所以h (x )单调递增,故h (2)=a 2b2>h (0)=1,所以a 2>b 2,故必要性成立.7.函数f (x )=e x+x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析:选C 法一:∵f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,∴f (0)f (1)<0,故函数f (x )=e x+x -2的零点所在的一个区间是(0,1),选C.法二:函数f (x )=e x+x -2的零点,即函数y =e x的图象与y =-x+2的图象的交点的横坐标,作出函数y =e x与直线y =-x +2的图象如图所示,由图可知选C.8.已知函数f (x )=ln x +3x -8的零点x 0∈[a ,b ],且b -a =1,a ,b ∈N *,则a +b =( ) A .0 B .2 C .5D .7解析:选 C ∵f (2)=ln 2+6-8=ln 2-2<0,f (3)=ln 3+9-8=ln 3+1>0,且函数f (x )=ln x +3x -8在(0,+∞)上为单调递增函数,∴x 0∈[2,3],即a =2,b =3,∴a +b =5.9.(2018届高三·湖南四校联考)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,g x ,x <0,若f (x )为奇函数,则g ⎝ ⎛⎭⎪⎫-14的值为( )A .-14B.14 C .-2D .2解析:选D 法一:当x >0时,f (x )=log 2x , ∵f (x )为奇函数,∴当x <0时,f (x )=-log 2(-x ), 即g (x )=-log 2(-x ), ∴g ⎝ ⎛⎭⎪⎫-14=-log 214=2. 法二:g ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫-14=-f ⎝ ⎛⎭⎪⎫14=-log 214=-log 22-2=2.10.(2017·杭州二模)已知直线x =m (m >1)与函数f (x )=log a x (a >0且a ≠1),g (x )=log b x (b >0且b ≠1)的图象及x 轴分别交于A ,B ,C 三点,若AB ―→=2BC ―→,则( )A .b =a 2B .a =b 2C .b =a 3D .a =b 3。
2018届高三理科数学二轮复习跟踪强化训练:18Word版含解析

6.(2017 ·山西大同模拟 )已知数列 { an} 的通项公式为 an= (-1)n(2n
-1) ·cosn2π+1(n∈N*),其前 n 项和为 Sn,则 S60=(
)
A .- 30 B.- 60 C.90 D.120 [ 解析 ] 由题意可得,当 n=4k-3(k∈ N*)时,an=a4k-3= 1;当 n = 4k- 2(k∈N* )时,an=a4k-2=6- 8k;当 n= 4k- 1(k∈N* )时,an= a4k -1=1;当 n=4k(k∈N* )时,an= a4k=8k.∴a4k- 3+ a4k-2+a4k- 1+ a4k=8, ∴ S60= 8×15= 120. [ 答案 ] D 二、填空题
-
1 an=
d(n∈N*
,d
为常数
),则称数列
{
an}
为“调和数列”,
已知正项
1 数列 bn 为“调和数列”,且 b1+ b2+…+ b2019= 20190,则 b2b2018 的
最大值是 ________.
1 [ 解析 ] 因为数列 bn 是“调和数列 ”,所以 bn+1-bn=d,
即数列 { bn} 是等差数列,
∴ an+ 1- an= 3n- 1,∴ an-a1=a2- a1+ a3- a2+ … +an-1- an- 2+
an
-
an-
1=
1+
3+
…+
3n-
2=
1-3n- 1- 3
1
,
3n-1+1 ∵ a1= 1,∴ an= 2 .
3n-1+ 017 ·安徽省淮北一中高三最后一卷改编 )若数列 { an} 满足 an+1
= (a1a2a3a4)504× a1= 1×2=2.故选 D.
【配套K12】通用版2018年高考数学二轮复习课时跟踪检测二理

课时跟踪检测(二)A 组——12+4提速练一、选择题1.(2017·宝鸡质检)函数f(x)=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z)B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x<k π2+5π12(k ∈Z),所以函数f(x)=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12 (k ∈Z),故选B. 2.函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f(x)的解析式为( )A .f(x)=sin ⎝ ⎛⎭⎪⎫2x +π4B .f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4C .f(x)=sin ⎝⎛⎭⎪⎫4x +π4 D .f(x)=sin ⎝⎛⎭⎪⎫4x -π4 解析:选A 由题图可知, 函数f(x)的最小正周期为T =2πω=⎝ ⎛⎭⎪⎫3π8-π8×4=π,所以ω=2,即f(x)=sin(2x +φ).又函数f(x)的图象经过点⎝⎛⎭⎪⎫π8,1,所以sin ⎝ ⎛⎭⎪⎫π4+φ=1,则π4+φ=2k π+π2(k ∈Z),解得φ=2k π+π4(k ∈Z),又|φ|<π2,所以φ=π4,即函数f(x)=sin ⎝⎛⎭⎪⎫2x +π4,故选A.3.(2017·天津高考)设函数f(x)=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f(x)的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析:选A 法一:由f ⎝ ⎛⎭⎪⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z),①由f ⎝⎛⎭⎪⎫11π8=0,得11π8ω+φ=k′π(k′∈Z),②由①②得ω=-23+43(k′-2k).又最小正周期T =2πω>2π,所以0<ω<1,ω=23.又|φ|<π,将ω=23代入①得φ=π12.选项A 符合.法二:∵f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f(x)的最小正周期大于2π, ∴f(x)的最小正周期为4⎝⎛⎭⎪⎫11π8-5π8=3π,∴ω=2π3π=23,∴f(x)=2sin ⎝ ⎛⎭⎪⎫23x +φ.由2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z.又|φ|<π,∴取k =0,得φ=π12.故选A.4.(2017·湖北荆州质检)函数f(x)=2x -tan x 在⎝ ⎛⎭⎪⎫-π2,π2上的图象大致为( )解析:选C 因为函数f(x)=2x -tan x 为奇函数,所以函数图象关于原点对称,排除选项A ,B ,又当x→π2时,y<0,排除选项D ,故选C.5.(2017·安徽芜湖模拟)若将函数y =sin 2⎝⎛⎭⎪⎫x +π6的图象向右平移m(m>0)个单位长度后所得的图象关于直线x =π4对称,则m 的最小值为( )A.π12B.π6C.π4D.π3解析:选B 平移后所得的函数图象对应的解析式是y =sin 2⎝ ⎛⎭⎪⎫x -m +π6,因为该函数的图象关于直线x =π4对称,所以2⎝ ⎛⎭⎪⎫π4-m +π6=k π+π2(k ∈Z),所以m =π6-k π2(k ∈Z),又m>0,故当k =0时,m 最小,此时m =π6.6.(2017·云南检测)函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则f(x)的单调递增区间为( )A .(-1+4k π,1+4k π),k ∈ZB .(-3+8k π,1+8k π),k ∈ZC .(-1+4k,1+4k),k ∈ZD .(-3+8k,1+8k),k ∈Z解析:选D 由题图,知函数f(x)的最小正周期为T =4×(3-1)=8,所以ω=2πT =π4,所以f(x)=sin ⎝⎛⎭⎪⎫π4x +φ.把(1,1)代入,得sin ⎝ ⎛⎭⎪⎫π4+φ=1,即π4+φ=π2+2k π(k ∈Z),又|φ|<π2,所以φ=π4,所以f(x)=sin ⎝ ⎛⎭⎪⎫π4x +π4.由2k π-π2≤π4x +π4≤2k π+π2(k∈Z),得8k -3≤x≤8k+1(k ∈Z),所以函数f(x)的单调递增区间为(8k -3,8k +1)(k ∈Z),故选D.7.(2017·全国卷Ⅲ)函数f(x)=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( ) A.65 B .1 C.35D.15解析:选 A 因为cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π3-π2=sin ⎝ ⎛⎭⎪⎫x +π3,所以f(x)=65sin ⎝ ⎛⎭⎪⎫x +π3,于是f(x)的最大值为65.8.(2017·武昌调研)若f(x)=cos 2x +acos ⎝ ⎛⎭⎪⎫π2+x 在区间⎝ ⎛⎭⎪⎫π6,π2上是增函数,则实数a 的取值范围为( )A .[-2,+∞)B .(-2,+∞)C .(-∞,-4)D .(-∞,-4]解析:选D f(x)=1-2sin 2x -asin x ,令sin x =t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g(t)=-2t 2-at +1,t ∈⎝ ⎛⎭⎪⎫12,1,因为f(x)在⎝ ⎛⎭⎪⎫π6,π2上单调递增,所以-a 4≥1,即a≤-4,故选D. 9.已知函数f(x)=sin(2x +φ)(0<φ<π),若将函数f(x)的图象向左平移π6个单位长度后所得图象对应的函数为偶函数,则φ=( )A.5π6B.2π3C.π3D.π6解析:选D 函数f(x)的图象向左平移π6个单位长度后所得图象对应的函数解析式为y=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,由于该函数是偶函数,∴π3+φ=π2+k π(k ∈Z),即φ=π6+k π(k ∈Z),又0<φ<π,∴φ=π6,故选D.10.若函数f(x)=sin ωx +3cos ωx(ω>0)满足f(α)=-2,f(β)=0,且|α-β|的最小值为π2,则函数f(x)的解析式为( )A .f(x)=2sin ⎝ ⎛⎭⎪⎫x +π3B .f(x)=2sin ⎝ ⎛⎭⎪⎫x -π3C .f(x)=2sin ⎝ ⎛⎭⎪⎫x +π6D .f(x)=2sin ⎝⎛⎭⎪⎫x -π6 解析:选A f(x)=sin ωx +3cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π3.因为f(α)=-2,f(β)=0,且|α-β|min =π2,所以T 4=π2,得T =2π(T 为函数f(x)的最小正周期),故ω=2πT=1,所以f(x)=2sin ⎝⎛⎭⎪⎫x +π3,故选A.11.(2018届高三·广西三市联考)已知x =π12是函数f(x)=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f(x)的图象向右平移3π4个单位长度后得到函数g(x)的图象,则函数g(x)在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为( ) A .-2 B .-1C .- 2D .- 3解析:选B f(x)=3sin(2x +φ)+cos(2x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ.∵x =π12是f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴2×π12+π6+φ=k π+π2(k ∈Z),即φ=π6+k π(k ∈Z),∵0<φ<π,∴φ=π6,则f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴g(x)=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -3π4+π3=-2sin ⎝ ⎛⎭⎪⎫2x -π6,则g(x)在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1,故选B.12.(2017·广州模拟)已知函数f(x)=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f(x)在⎝ ⎛⎭⎪⎫0,π4上单调递减B .f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f(x)在⎝ ⎛⎭⎪⎫0,π4上单调递增D .f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递增 解析:选D f(x)=sin(ωx +φ)+cos(ωx +φ)=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4,因为0<φ<π且f(x)为奇函数,所以φ=3π4,即f(x)=-2sin ωx ,又直线y =2与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f(x)的最小正周期为π2,由2πω=π2,可得ω=4,故f(x)=-2sin 4x ,由2k π+π2≤4x≤2k π+3π2,k ∈Z ,得k π2+π8≤x≤k π2+3π8,k ∈Z ,令k =0,得π8≤x≤3π8,此时f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递增,故选D.二、填空题13.(2017·全国卷Ⅱ)函数f(x)=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.解析:依题意,f(x)=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝ ⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f(x)max =1. 答案:114.已知函数f(x)=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6=________.解析:函数f(x)=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则其图象的一条对称轴为x =π6,所以f ⎝ ⎛⎭⎪⎫π6=±2.答案:±215.(2017·深圳调研)已知函数f(x)=cos xsin x(x ∈R),则下列四个结论中正确的是________.(写出所有正确结论的序号)①若f(x 1)=-f(x 2),则x 1=-x 2; ②f(x)的最小正周期是2π;③f(x)在区间⎣⎢⎡⎦⎥⎤-π4,π4上是增函数;④f(x)的图象关于直线x =3π4对称. 解析:因为f(x)=cos xsin x =12sin 2x ,所以f(x)是周期函数,且最小正周期为T =2π2=π,所以①②错误;由2k π-π2≤2x≤2k π+π2(k ∈Z),解得k π-π4≤x≤k π+π4(k ∈Z),当k =0时,-π4≤x≤π4,此时f(x)是增函数,所以③正确;由2x =π2+k π(k ∈Z),得x =π4+k π2(k ∈Z),取k =1,则x =3π4,故④正确.答案:③④16.已知函数f(x)=Acos 2(ωx +φ)+1⎝ ⎛⎭⎪⎫A>0,ω>0,0<φ<π2的最大值为3,f(x)的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f(1)+f(2)+…+f(2 016)+f(2 017)=________.解析:∵函数f(x)=Acos 2(ωx +φ)+1=A·1+ωx +2φ2+1=A2cos(2ωx +2φ)+1+A 2⎝ ⎛⎭⎪⎫A>0,ω>0,0<φ<π2的最大值为3,∴A 2+1+A2=3,∴A =2.根据函数图象相邻两条对称轴间的距离为2,可得函数的最小正周期为4,即2π2ω=4,∴ω=π4.再根据f(x)的图象与y 轴的交点坐标为(0,2),可得cos 2φ+1+1=2,∴cos 2φ=0,又0<φ<π2,∴2φ=π2,φ=π4.故函数f(x)的解析式为f(x)=cos ⎝ ⎛⎭⎪⎫π2x +π2+2=-sin π2x +2,∴f(1)+f(2)+…+f(2016)+f(2017)=-⎝ ⎛⎭⎪⎫sin π2+sin 2π2+sin 3π2+…+sin 2 016π2+sin 2 017π2+2×2 017=504×0-sin π2+4034=0-1+4 034=4 033.答案:4 033B 组——能力小题保分练1.曲线y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4和直线y =12在y 轴右侧的交点的横坐标按从小到大的顺序依次记为P 1,P 2,P 3,…,则|P 3P 7|=( )A .πB .2πC .4πD .6π解析:选B y =2cos ⎝⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4=cos 2x -sin 2x =cos 2x ,故曲线对应的函数为周期函数,且最小正周期为π,直线y =12在y 轴右侧与函数y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4在每个周期内的图象都有两个交点,又P 3与P 7相隔2个周期,故|P 3P 7|=2π,故选B.2.已知函数f(x)=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,则φ的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤-π3,π6C.⎣⎢⎡⎭⎪⎫-π4,0 D.⎣⎢⎡⎦⎥⎤-π3,0 解析:选D 因为函数f(x)=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,又-π6+φ<2x +φ≤π3+φ,所以2×π6+φ≤π3,且2×⎝ ⎛⎭⎪⎫-π12+φ≥-π2,解得-π3≤φ≤0,故选D.3.已知函数f(x)=Asin(ωx +φ)⎝ ⎛⎭⎪⎫A>0,ω>0,|φ|<π2的部分图象如图所示,则( )A .f(x)的图象关于直线x =-2π3对称B .f(x)的图象关于点⎝ ⎛⎭⎪⎫-5π12,0对称 C .若方程f(x)=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m 的取值范围是(-2,- 3 ]D .将函数y =2sin ⎝ ⎛⎭⎪⎫2x -π6的图象向左平移π6个单位长度得到函数f(x)的图象解析:选C 根据题中所给的图象,可知函数f(x)的解析式为f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴当x =-2π3时,2×⎝ ⎛⎭⎪⎫-2π3+π3=-π,f ⎝ ⎛⎭⎪⎫-2π3=2sin(-π)=0,从而f(x)的图象关于点⎝ ⎛⎭⎪⎫-2π3,0对称,而不是关于直线x =-2π3对称,故A 不正确;当x =-5π12时,2×⎝ ⎛⎭⎪⎫-5π12+π3=-π2,∴f(x)的图象关于直线x =-5π12对称,而不是关于点⎝ ⎛⎭⎪⎫-5π12,0对称,故B 不正确;当x ∈⎣⎢⎡⎦⎥⎤-π2,0时,2x +π3∈⎣⎢⎡⎦⎥⎤-2π3,π3,f(x)∈[-2, 3 ],结合正弦函数图象的性质,可知若方程f(x)=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m的取值范围是(-2,- 3 ],故C 正确;根据图象平移变换的法则,可知应将y =2sin ⎝⎛⎭⎪⎫2x -π6的图象向左平移π4个单位长度得到f(x)的图象,故D 不正确.故选C.4.如果两个函数的图象平移后能够重合,那么称这两个函数互为生成函数.给出下列四个函数:①f(x)=sin x +cos x ;②f(x)=2(sin x +cos x); ③f(x)=sin x ;④f(x)=2sin x + 2. 其中互为生成函数的是( ) A .①② B .①④ C .③④D .②④解析:选B 首先化简题中①②两个函数解析式可得:①f(x)=2sin ⎝ ⎛⎭⎪⎫x +π4,②f(x)=2sin ⎝⎛⎭⎪⎫x +π4,可知③f(x)=sin x 的图象要与其他函数的图象重合,只经过平移不能完成,还必须经过伸缩变换才能实现,∴③f(x)=sin x 不与其他函数互为生成函数;同理①f(x)=2sin ⎝ ⎛⎭⎪⎫x +π4(④f(x)=2sin x +2)的图象与②f(x)=2sin ⎝⎛⎭⎪⎫x +π4的图象也必须经过伸缩变换才能重合,而④f(x)=2sin x +2的图象向左平移π4个单位长度,再向下平移2个单位长度即可得到①f(x)=2sin ⎝⎛⎭⎪⎫x +π4的图象,∴①④互为生成函数,故选B.5.已知函数f(x)=Asin(ωx +φ)(A ,ω,φ均为正常数)的最小正周期为π,且当x =2π3时,函数f(x)取得最小值,则( ) A .f(1)<f(-1)<f(0) B .f(0)<f(1)<f(-1) C .f(-1)<f(0)<f(1) D .f(1)<f(0)<f(-1)解析:选C 因为函数f(x)=Asin(ωx +φ)的最小正周期为π,所以ω=2ππ=2,故f(x)=Asin(2x +φ),因为当x =2π3时,函数f(x)取得最小值,所以2×2π3+φ=2k π-π2,k ∈Z ,解得φ=2k π-11π6,k ∈Z ,又φ>0,故可取k =1,则φ=π6,故f(x)=Asin ⎝ ⎛⎭⎪⎫2x +π6,所以f(-1)=Asin ⎝ ⎛⎭⎪⎫-2+π6<0,f(1)=Asin ⎝ ⎛⎭⎪⎫2+π6>0,f(0)=Asin π6=12A>0,故f(-1)最小.又sin ⎝ ⎛⎭⎪⎫2+π6=sin ⎝ ⎛⎭⎪⎫π-2-π6=sin ⎝ ⎛⎭⎪⎫5π6-2>sin π6,故f(1)>f(0).综上可得f(-1)<f(0)<f(1),故选C.6.若函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g(x)=cos(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,则φ=________. 解析:因为函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g(x)=cos(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,故它们的最小正周期相同,即2πω=2π2,所以ω=2,故函数f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π+π2,k ∈Z ,则x =k π2+π8,k ∈Z ,故函数f(x)的图象的对称轴为x =k π2+π8,k ∈Z.令2x +φ=m π,m ∈Z ,则x =m π2-φ2,m∈Z ,故函数g(x)的图象的对称轴为x =m π2-φ2,m ∈Z ,故k π2+π8-m π2+φ2=n π2,m ,n ,k ∈Z ,即φ=(m +n -k)π-π4,m ,n ,k ∈Z ,又|φ|<π2,所以φ=-π4.答案:-π4。
2018年高考数学(文)二轮复习练习:小题提速练4 Word版含答案

小题提速练(四) “12选择+4填空”80分练 (时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =ln ⎝ ⎛⎭⎪⎫1x-1的定义域为( )【导学号:04024184】A .(-∞,0]B .(0,1)C .(1,+∞)D .(-∞,0)∪(1,+∞)B [由已知得1x -1>0,x ≠0,所以1-x x >0,x ≠0,所以x -1x<0,x ≠0,所以0<x <1.故选B.]2.复数(1-i)(2+2i)=( )A .4B .-4C .2D .-2A [(1-i)(2+2i)=2+2i -2i +2=4.]3.已知等比数列{a n }的公比为-12,则a 1+a 3+a 5a 2+a 4+a 6的值是( )A .-2B .-12C.12 D .2A [a 1+a 3+a 5a 2+a 4+a 6=a 1+a 3+a 5-12a 1+a 3+a 5=-2.]4.若m =6,n =4,则运行如图1所示的程序框图后,输出的结果是( )图1A.1100B .100C .10D .1D [因为m >n ,所以y =lg(m +n )=lg(6+4)=1.故选D.]5.设α,β,γ为不重合的平面,m ,n 为不同的直线,则m ⊥β的一个充分条件是( )【导学号:04024185】A .α⊥β,α∩β=n ,m ⊥nB .α∩γ=m ,α⊥γ,β⊥γC .α⊥γ,β⊥γ,m ⊥αD .n ⊥α,n ⊥β,m ⊥αD [因为n ⊥α,m ⊥α,所以m ∥n ,又n ⊥β,所以m ⊥β,故选D.]6.若实数x ,y 满足条件⎩⎨⎧3x -y ≤0,x -3y +2≥0,y ≥0,则3x +y 的最大值为( )A .0 B. 3 C .2 3D.233C [如图所示,画出不等式组表示的平面区域,作直线l :3x +y =0,平移直线l ,当直线l 经过点A (1,3)时,3x +y 取得最大值,即(3x +y )max =23,故选C.]7.在△ABC 中,若点D 满足BD →=2DC →,则AD →=( )A.13AC →+23AB →B.53AB →-23AC →C.23AC →-13AB →D.23AC →+13AB → D [根据题意画出图形如图所示.因为BD →=2DC →,所以AD →-AB →=2(AC →-AD →),所以3AD →=AB →+2AC →,所以AD →=13AB →+23AC →.]8.一个几何体的三视图如图2所示,则该几何体的体积等于( )图2A .5π B.556π C.1256π D.716π D [由三视图可知,该几何体为直径为5的球中挖去一个底面直径是3,高是4的圆柱后剩余的几何体,所以该几何体的体积为43π·⎝ ⎛⎭⎪⎫523-π·⎝ ⎛⎭⎪⎫322×4=716π.]9.将函数f (x )=-cos 2x 的图象向右平移π4个单位长度后得到函数g (x )的图象,则函数g (x )( )A .最大值为1,图象关于直线x =π2对称B .在⎝ ⎛⎭⎪⎫0,π4上单调递减,为奇函数C .在⎝ ⎛⎭⎪⎫-3π8,π8上单调递增,为偶函数D .周期为π,图象关于点⎝⎛⎭⎪⎫3π8,0对称B [依题意有g (x )=-cos 2⎝ ⎛⎭⎪⎫x -π4=-cos ⎝ ⎛⎭⎪⎫2x -π2=-sin 2x ,显然g (x )在⎝ ⎛⎭⎪⎫0,π4上单调递减,为奇函数.故选B.]10.在平面直角坐标系xOy 中,动点P 到圆(x -2)2+y 2=1上的点的最小距离与其到直线x =-1的距离相等,则P 点的轨迹方程是( )【导学号:04024186】A .y 2=8x B .x 2=8y C .y 2=4xD .x 2=4yA [由题意知点P 在直线x =-1的右侧,且点P 在圆的外部,故可将条件等价转化为“P 点到定点(2,0)的距离与其到定直线x =-2的距离相等”.根据抛物线的定义知,P 点的轨迹方程为y 2=8x .] 11.若函数f (x )=-m xx 2+m的图象如图3所示,则m 的取值范围为( )图3A .(-∞,-1)B .(-1,2)C .(0,2)D .(1,2)D [由图可知,函数图象过原点,即f (0)=0,所以m ≠0.当x >0时,f (x )>0,所以2-m >0,即m <2.函数f (x )在[-1,1]上单调递增,所以f ′(x )>0在[-1,1]上恒成立,因为f ′(x )=-mx 2+m -2x -m x x 2+m 2=m -x 2-m x 2+m2,且m -2<0,所以x 2-m <0在[-1,1]上恒成立,所以m >1.综上得1<m <2.故选D. ]12.已知直角三角形ABC 的两直角边AB ,AC 的长分别为方程x 2-2(1+3)x +43=0的两根,且AB <AC ,斜边BC 上有异于端点B ,C 的两点E ,F ,且EF =1,设∠EAF =θ,则tan θ的取值范围为( ) A.⎝ ⎛⎦⎥⎤239,6311 B.⎝ ⎛⎦⎥⎤39,2311 C.⎝ ⎛⎦⎥⎤39,4311 D.⎝⎛⎦⎥⎤439,16311C [由已知得,AB =2,AC =23,BC =AB 2+AC 2=4,建立如图所示的直角坐标系,可得A (0,0),B (2,0),C (0,23).设BF →=λBC →⎝⎛⎭⎪⎫λ∈⎝⎛⎭⎪⎫0,34,BE →=⎝⎛⎭⎪⎫λ+14BC →,则F (2-2λ,23λ),E ⎝ ⎛⎭⎪⎫32-2λ,23λ+32,所以AE →·AF →=3-4λ-3λ+4λ2+12λ2+3λ=16λ2-4λ+3=16·⎝ ⎛⎭⎪⎫λ-182+114∈⎣⎢⎡⎭⎪⎫114,9.而点A 到BC 的距离d =AB ·AC BC =3,则S △AEF =12EF ·3=32,所以S △AEF AE →·AF →=12|AE →||AF →|sin θ|AE →||AF →|cos θ,所以tan θ=2S △AEF AE →·AF →=3AE →·AF→∈⎝ ⎛⎦⎥⎤39,4311.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知函数f (x )=ln x -ax 2,且函数f (x )的图象在点(2,f (2))处的切线的斜率是-32,则a=________.[解析] 由题意知,f ′(2)=-32,又f ′(x )=1x -2ax ,所以-32=12-2a ×2,得a =12.[答案] 1214.在距离某晚会直播不到20天的时候,某媒体报道,由两位明星合演的小品节目被毙,为此,某网站针对“是否支持该节目上晚会”对网民进行调查,得到如下数据:为________.[解析] 由分层抽样法的特点得,从持“支持”态度的网民中抽取的人数为48×8 0008 000+6 000+10 000=48×13=16.[答案] 1615.已知三棱锥P ABC 中,PA ,PB ,PC 两两垂直,且PA =2,PB =PC =1,则三棱锥P ABC 的外接球的体积为________.[解析] 三棱锥P ABC 的三条侧棱PA ,PB ,PC 两两垂直,且PA =2,PB =PC =1,则该三棱锥的外接球就是三棱锥扩展成的长方体的外接球.易得长方体的体对角线长为12+12+22=6,所以该三棱锥的外接球的半径为62,所以三棱锥P ABC 的外接球的体积为4π3×⎝ ⎛⎭⎪⎫623=6π.[答案]6π16.在△ABC 中,b cos C +c cos B =a cos C +c cos A =2,且a cos C +3a sin C =a +b ,则△ABC 的面积为________.【导学号:04024187】[解析] 由已知条件与余弦定理,得b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2,a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc=2,解得a =2,b =2.又a cos C +3a sin C =a +b ,即2cos C +23sin C=4,得sin ⎝ ⎛⎭⎪⎫C +π6=1,所以C +π6=π2,得C =π3,所以△ABC 的面积S =12×2×2sin π3=3. [答案] 3。
2018年高考数学(理)二轮复习 专项精练:(高考22题) 12+4分项练15(含答案解析)

12+4分项练15 算法与复数1.(2017·全国Ⅱ)3+i1+i 等于( )A .1+2iB .1-2iC .2+iD .2-i答案 D 解析3+i 1+i =(3+i )(1-i )(1+i )(1-i )=3-3i +i +12=2-i. 2.(2017届福建省厦门外国语学校适应性考试)复数z =2i 1+i+i 5的共轭复数为( ) A .1-2i B .1+2i C .i -1 D .1-i答案 A解析 根据题意化简得z =1+2i ,z =1-2i ,故选A.3.(2017届安徽省蚌埠市质检)复数(a -i)(1-i)(a ∈R )的实部与虚部相等,则实数a 等于( ) A .-1 B .0 C .1 D .2答案 B解析 由题意可得(a -i)(1-i)=a -i -a i +i 2=(a -1)-(a +1)i ,结合题意可知,a -1=-a -1 ,解得a =0. 故选B.4.(2017·福建省泉州市质检)已知复数z =a +i(a ∈R ).若|z |<2,则z +i 2在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 B解析 因为|z |=a 2+1<2,所以a 2<1, 而z +i 2=a -1+i 中,a -1<0,b =1>0,所以z +i 2在复平面内对应的点位于第二象限,故选B.5.如图,在复平面内,复数z 1和z 2对应的点分别是A 和B ,则z 2z 1等于()A.15+25iB.25+15i C .-25-15iD .-15-25i答案 D解析 由题图得z 1=-2-i ,z 2=i , 所以z 2z 1=i -2-i =-i (2-i )(2+i )(2-i )=-15-25i ,故选D.6.(2017·河北省衡水中学模拟)执行如图所示的程序框图,输出S 的值等于()A .-23tanπ9-21B.tan 25π9-3tanπ9-22C .-23tanπ9-22D.tan 25π9-3tanπ9-21答案 A 解析 由题可知S =tan4π9tan 3π9+tan 5π9tan 4π9+tan 6π9tan 5π9+…+tan 24π9tan 23π9, 即S =tan 4π9-tan 3π9tan π9-1+tan 5π9-tan4π9tanπ9-1+tan 6π9-tan 5π9tan π9-1+…+tan 24π9-tan23π9tanπ9-1=-23tan π9-21,即得S =-23tanπ9-21.7.(2017·全国Ⅰ)如图所示的程序框图是为了求出满足3n-2n>1 000的最小偶数n ,那么在◇和▭两个空白框中,可以分别填入( )A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +2答案 D解析 因为题目要求的是“满足3n-2n>1 000的最小偶数n ”,所以n 的叠加值为2,所以▭内填入“n =n +2”.由程序框图知,当◇内的条件不满足时,输出n ,所以◇内填入“A ≤1 000”.故选D.8.(2017·泉州质检)执行一次如图所示的程序框图,若输出i 的值为0,则下列关于框图中函数f (x )(x ∈R )的表述,正确的是( )A .f (x )是奇函数,且为减函数B .f (x )是偶函数,且为增函数C .f (x )不是奇函数,也不为减函数D .f (x )不是偶函数,也不为增函数 答案 D解析 因为输出i =0,根据框图,应该有a -b ≠0,a -b ≤0,即f (m )≠f (-m ),f (m )≤f (-m ),又m >-m ,所以函数不是偶函数,也不是增函数,故选D.9.(2017届湖南省长沙市一中模拟)如图,若N =10,则输出的S 值等于( )A.109B.910C.1011D.1211答案 C解析 阅读流程图可得,该流程图计算的数值为S =0+11×2+12×3+…++110×11=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫110-111=1011.故选C.10.秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,3,则输出v 的值为( )A .16B .18C .48D .143答案 C解析 初始值n =3,x =3,程序运行过程如下:v =1,i =2,满足条件i ≥0,执行循环体,v =1×3+2=5,i =1;满足条件i≥0,执行循环体,v=5×3+1=16,i=0;满足条件i≥0,执行循环体,v=16×3+0=48,i=-1,不满足条件i≥0,退出循环,输出v的值为48,故选C.11.(2017届辽宁省锦州市质检)执行如图所示的程序框图,则输出i的值为( )A.1 006 B.1 007C.1 008 D.1 009答案 D解析n=1,r=0,s=1,r+s=1,i=1,1<2 017;n=2,r=-1,s=0,r+s≠1;n=3,r=0,s=-1,r+s≠1;n=4,r=1,s=0,r+s=1,i=2,4<2 017,上述循环为一个周期,且i表示r+s=1出现的次数,一个周期出现2次.当n=2 017时结束循环,2 017=504×4+1,所以i=504×2+1=1 009.故选D.12.(2017届黑龙江省哈尔滨市第三中学二模)宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.右图是源于其思想的一个程序框图,若输入的a,b分别为3,2,则输出的n等于 ( )A .2B .3C .4D .5答案 A解析 a =3,b =2,a =3+32=92,b =4,92≥4,所以n =2,进入循环a =92+94=274,b =8,274≤8,所以输出n =2,故选A.13.(2017届上海市宝山区二模)已知复数z 满足2i·z =1+i(i 为虚数单位),则|z |=________. 答案 1解析 由题意得z =1+i 2i =22-22i ,所以|z |=1.14.(2017·天津)已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为________.答案 -2 解析 ∵a ∈R , ∴a -i 2+i =(a -i )(2-i )(2+i )(2-i )=2a -1-(a +2)i5=2a -15-a +25i 为实数, ∴-a +25=0,∴a =-2.15.(2017届江苏省南通、扬州、泰州模拟)如图所示程序框图,则输出的k的值是________.答案 3解析由题设中提供的算法流程图中的算法程序可知当S=1,k=1时,S=1+12=2<10,k=1+1=2;当S=2,k =2时,S=2+22=6<10,k=1+2=3;当S=6,k=3时,S=6+32=15>10,此时运算程序结束,输出k=3. 16.(2017·孝义质检)现有若干(大于20)件某种自然生长的中药材,从中随机抽取20件,其重量都精确到克,规定每件中药材重量不小于15克为优质品.如图所示的程序框图表示统计20个样本中的优质品数,其中m表示每件药材的重量,则图中①,②两处依次应该填的整数分别是________.答案14,19解析因为上述程序框图的功能是将20件药材中的优质品的个数统计出来.按照规定每件中药材重量不小于15克为优质品,因此m>14.样本容量是20,因此n>19.因此应该填写的数字依次是14,19.。
2018年高考数学(文)二轮复习课件:第2部分+必考补充专题+突破点17+集合与常用逻辑用语

专题限时集训(十七)பைடு நூலகம்
点击图标进入
突破点17
集合与常用逻辑用语
栏目 导航
核心知识提炼
专题限时集训
[核心知识提炼] 提炼1 集合的概念、关系及运算 (1)集合元素的特性:确定性、互异性、无序性. (2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C. (3)空集是任何集合的子集. (4)含有n个元素的集合的子集有2n个,真子集有2n-1个,非空真子集有2n-2 个. (5)重要结论: A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.
提炼3简单的逻辑联结词 (1)命题p∨q,只要p,q有一真,即为真;命题p∧q,只有p,q均为真,才为 真;綈p和p为真假对立的命题.
(2)命题 p∨q 的否定是(綈 p)∧(綈 q);命题 p∧q 的否定是(綈 p)∨(綈 q).
提炼 4 全(特)称命题及其否定 (1)全称命题 p:∀x∈M,p(x).它的否定﹁p:∃x0∈M,﹁p(x0). (2)特称命题 p:∃x0∈M,p(x0).它的否定﹁p:∀x∈M,﹁p(x).
提炼 2 充要条件 设集合 A={x|x 满足条件 p},B={x|x 满足条件 q},则有
从逻辑观点看 p 是 q 的充分不必要条件(p⇒q,q p) p 是 q 的必要不充分条件(q⇒p,p q) p 是 q 的充要条件(p⇔q) A=B 从集合观点看
p 是 q 的既不充分也不必要条件(p q, q p) A 与 B 互不包含
[K12学习]通用版2018年高考数学二轮复习课时跟踪检测六理
![[K12学习]通用版2018年高考数学二轮复习课时跟踪检测六理](https://img.taocdn.com/s3/m/7ae1ab36de80d4d8d15a4fe0.png)
课时跟踪检测(六)A 组——12+4提速练一、选择题1.(2017·成都模拟)在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=( ) A .12 B .18 C .24D .30解析:选B ∵a 3+a 5+a 7=a 3(1+q 2+q 4)=6(1+q 2+q 4)=78,解得q 2=3,∴a 5=a 3q 2=6×3=18.故选B.2.(2017·兰州模拟)已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( )A .36B .72C .144D .288解析:选B ∵a 8+a 10=2a 9=28,∴a 9=14,∴S 9=a 1+a 92=72.3.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.4.设等比数列{}a n 的前n 项和为S n ,若S 1=13a 2-13,S 2=13a 3-13,则公比q =( )A .1B .4C .4或0D .8解析:选B ∵S 1=13a 2-13,S 2=13a 3-13,∴⎩⎪⎨⎪⎧a 1=13a 1q -13,a 1+a 1q =13a 1q 2-13,解得⎩⎪⎨⎪⎧a 1=1,q =4或⎩⎪⎨⎪⎧a 1=-13,q =0(舍去),故所求的公比q =4.5.已知S n 是公差不为0的等差数列{}a n 的前n 项和,且S 1,S 2,S 4成等比数列,则a 2+a 3a 1的值为( )A .4B .6C .8D .10解析:选C 设数列{}a n 的公差为d ,则S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d ,故(2a 1+d )2=a 1(4a 1+6d ),整理得d =2a 1,所以a 2+a 3a 1=2a 1+3d a 1=8a 1a 1=8. 6.(2018届高三·湖南十校联考)已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( )A .72B .88C .92D .98解析:选C 由S n +1=S n +a n +3,得a n +1-a n =3,所以数列{a n }是公差为3的等差数列,S 8=a 1+a 82=a 4+a 52=92.7.已知数列{}a n 满足a n +1=⎩⎪⎨⎪⎧2a n,0≤a n<12,2a n-1,12≤a n<1.若a 1=35,则a 2 018=( )A.15B.25C.35D.45解析:选A 因为a 1=35,根据题意得a 2=15,a 3=25,a 4=45,a 5=35,所以数列{}a n 以4为周期,又2 018=504×4+2,所以a 2 018=a 2=15,故选A.8.若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( )A.32B.94C .1D .2解析:选D 设等比数列的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9,a 1·a 1q ·a 1q 2·a 1q 3=814,化简得a 21q 3=92,则1a 1+1a 1q +1a 1q2+1a 1q 3=a 1+a 1q +a 1q 2+a 1q 3a 21q3=2.9.(2017·广州模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( ) A.5-12 B.5+12C.3-52D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q 2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q2a 4+a 4q 2=a 3+q 2a 4+q 2=1q =25+1=5-12,故选A. 10.(2017·张掖模拟)等差数列{a n }中,a na 2n是一个与n 无关的常数,则该常数的可能值的集合为( )A .{1}B.⎩⎨⎧⎭⎬⎫1,12C.⎩⎨⎧⎭⎬⎫12 D.⎩⎨⎧⎭⎬⎫0,12,1解析:选B a n a 2n =a 1+n -d a 1+n -d =a 1-d +nd a 1-d +2nd ,若a 1=d ≠0,则a n a 2n =12;若a 1≠0,d =0,则a n a 2n =1.∵a 1-d +nd ≠0,∴a na 2n ≠0,∴该常数的可能值的集合为⎩⎨⎧⎭⎬⎫1,12.11.(2018届高三·湖南十校联考)等差数列{a n }的前n 项和为S n ,且a 1<0,若存在自然数m ≥3,使得a m =S m ,则当n >m 时,S n 与a n 的大小关系是( )A .S n <a nB .S n ≤a nC .S n >a nD .大小不能确定解析:选C 若a 1<0,存在自然数m ≥3,使得a m =S m ,则d >0,否则若d ≤0,数列是递减数列或常数列,则恒有S m <a m ,不存在a m =S m .由于a 1<0,d >0,当m ≥3时,有a m =S m ,因此a m >0,S m >0,又S n =S m +a m +1+…+a n ,显然S n >a n .故选C.12.(2017·洛阳模拟)等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,则当n ∈N *时,S n -1S n的最大值与最小值之和为( )A .-23B .-712C.14D.56解析:选C 依题意得,S n =32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=1-⎝ ⎛⎭⎪⎫-12n.当n 为奇数时,S n =1+12n 随着n的增大而减小,1<S n =1+12n ≤S 1=32,S n -1S n 随着S n 的增大而增大,0<S n -1S n ≤56;当n 为偶数时,S n =1-12n 随着n 的增大而增大,34=S 2≤S n =1-12n <1,S n -1S n 随着S n 的增大而增大,-712≤S n -1S n <0.因此S n -1S n 的最大值与最小值分别为56,-712,其最大值与最小值之和为56+⎝ ⎛⎭⎪⎫-712=14. 二、填空题13.(2017·合肥质检)已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项和S 9=________.解析:由已知,得a 2n +1=4a n a n +1-4a 2n ,即a 2n +1-4a n a n +1+4a 2n =(a n +1-2a n )2=0,所以a n+1=2a n ,又因为a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故S 9=-291-2=210-2=1 022.答案:1 02214.(2017·兰州模拟)已知数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且当n ≥2时,有2a na n S n -S 2n=1成立,则S 2 017=________.解析:当n ≥2时,由2a n a n S n -S 2n =1,得2(S n -S n -1)=(S n -S n -1)S n -S 2n =-S n S n -1,∴2S n -2S n -1=1,又2S 1=2,∴⎩⎨⎧⎭⎬⎫2S n 是以2为首项,1为公差的等差数列,∴2S n =n +1,故S n =2n +1,则S 2 017=11 009. 答案:11 00915.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n·⎝ ⎛⎭⎪⎫12-12n n ()=223+22n n n -=227+22n n -.记t =-n 22+7n2=-12(n 2-7n )=-12⎝ ⎛⎭⎪⎫n -722+498,结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:6416.(2017·广州模拟)设S n 为数列{a n }的前n 项和,已知a 1=2,对任意p ,q ∈N *,都有a p +q =a p +a q ,则f (n )=S n +60n +1(n ∈N *)的最小值为________. 解析:a 1=2,对任意p ,q ∈N *,都有a p +q =a p +a q ,令p =1,q =n ,则有a n +1=a n +a 1=a n +2.故{a n }是等差数列,所以a n =2n ,S n =2×+n n 2=n 2+n ,f (n )=S n +60n +1=n 2+n +60n +1=n +2-n ++60n +1=n +1+60n +1-1.当n +1=8,即n =7时,f (7)=8+608-1=292;当n +1=7,即n =6时,f (6)=7+607-1=1027,因为292<1027,则f (n )=S n +60n +1(n ∈N *)的最小值为292.答案:292B 组——能力小题保分练1.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值为( )A .6B .7C .8D .9 解析:选D 不妨设a >b ,由题意得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,∴a >0,b >0,则a ,-2,b 成等比数列,a ,b ,-2成等差数列,∴⎩⎪⎨⎪⎧ab =-2,a -2=2b ,∴⎩⎪⎨⎪⎧a =4,b =1,∴p =5,q =4,∴p +q =9.2.(2017·郑州质检)已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( )A.⎝ ⎛⎭⎪⎫13,+∞B.⎣⎢⎡⎭⎪⎫13,+∞C.⎝ ⎛⎭⎪⎫23,+∞ D.⎣⎢⎡⎭⎪⎫23,+∞ 解析:选D 依题意得,当n ≥2时,a n =a 1a 2a 3…a na 1a 2a 3…a n -1=2n2n -2=2n 2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1=12×⎝ ⎛⎭⎪⎫14n -1,即数列⎩⎨⎧⎭⎬⎫1a n 是以12为首项,14为公比的等比数列,等比数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和等于12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n <23,因此实数t 的取值范围是⎣⎢⎡⎭⎪⎫23,+∞. 3.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k=________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n n +2,1S n =2nn +=2⎝ ⎛⎭⎪⎫1n -1n +1, 因此∑k =1n1S k =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2n n +1.答案:2n n +14.(2017·兰州模拟)已知数列{a n },{b n },若b 1=0,a n =1nn +,当n ≥2时,有b n =b n -1+a n -1,则b 2 018=________.解析:由b n =b n -1+a n -1,得b n -b n -1=a n -1,∴b 2-b 1=a 1,b 3-b 2=a 2,…,b n -b n -1=a n -1,∴b 2-b 1+b 3-b 2+…+b n -b n -1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -n,即b n -b 1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -n =11-12+12-13+…+1n -1-1n=1-1n =n -1n ,∵b 1=0,∴b n =n -1n ,∴b 2 018=2 0172 018.答案:2 0172 0185.(2017·石家庄质检)已知数列{a n }的前n 项和为S n ,数列{a n }为12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n,…,若S k =14,则a k =________. 解析:因为1n +2n +…+n -1n =1+2+…+n -1n =n 2-12,1n +1+2n +1+…+nn +1=1+2+…+n n +1=n 2,所以数列12,13+23,14+24+34,…,1n +1+2n +1+…+n n +1是首项为12,公差为12的等差数列,所以该数列的前n 项和T n =12+1+32+…+n 2=n 2+n 4.令T n =n 2+n 4=14,解得n =7(n =-8舍去),所以a k =78.答案:786.在数列{a n }和{b n }中,a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n ,a 1=1,b 1=1.设c n =1a n +1b n,则数列{c n }的前2 018项和为________.解析:由已知a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 得a n +1+b n +1=2(a n +b n ),又a 1+b 1=2,所以数列{a n +b n }是首项为2,公比为2的等比数列,即a n +b n =2n,将a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 相乘并化简,得a n +1b n +1=2a n b n ,即a n +1b n +1a nb n=2.所以数列{a n b n }是首项为1,公比为2的等比数列,所以a n b n =2n -1,因为c n =1a n +1b n,所以c n=a n +b n a n b n =2n 2n -1=2,数列{c n }的前2 018项和为2×2 018=4 036. 答案:4 036。
2018年高考文科数学二轮创新专题复习 课时跟踪检测二 含答案 精品

课时跟踪检测(二) A 组——12+4提速练一、选择题1.(2017·宝鸡质检)函数f (x )=tan ⎝⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z)B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x <k π2+5π12(k ∈Z),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z),故选B.2.函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4 B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4 C .f (x )=sin ⎝⎛⎭⎪⎫4x +π4 D .f (x )=sin ⎝⎛⎭⎪⎫4x -π4 解析:选A 由题图可知, 函数f (x )的最小正周期为T =2πω=⎝ ⎛⎭⎪⎫3π8-π8×4=π,所以ω=2,即f (x )=sin(2x +φ).又函数f (x )的图象经过点⎝ ⎛⎭⎪⎫π8,1,所以sin ⎝ ⎛⎭⎪⎫π4+φ=1,则π4+φ=2k π+π2(k ∈Z),解得φ=2k π+π4(k ∈Z),又|φ|<π2,所以φ=π4,即函数f (x )=sin ⎝⎛⎭⎪⎫2x +π4,故选A. 3.(2017·天津高考)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析:选A 法一:由f ⎝ ⎛⎭⎪⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z),①由f ⎝ ⎛⎭⎪⎫11π8=0,得11π8ω+φ=k ′π(k ′∈Z),②由①②得ω=-23+43(k ′-2k ).又最小正周期T =2πω>2π,所以0<ω<1,ω=23.又|φ|<π,将ω=23代入①得φ=π12.选项A 符合.法二:∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π,∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ.由2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z.又|φ|<π,∴取k =0,得φ=π12.故选A. 4.(2017·湖北荆州质检)函数f (x )=2x -tan x 在⎝ ⎛⎭⎪⎫-π2,π2上的图象大致为( )解析:选C 因为函数f (x )=2x -tan x 为奇函数,所以函数图象关于原点对称,排除选项A ,B ,又当x →π2时,y <0,排除选项D ,故选C.5.(2017·安徽芜湖模拟)若将函数y =sin 2⎝⎛⎭⎪⎫x +π6的图象向右平移m (m >0)个单位长度后所得的图象关于直线x =π4对称,则m 的最小值为( )A.π12B.π6C.π4D.π3解析:选B 平移后所得的函数图象对应的解析式是y =sin 2⎝ ⎛⎭⎪⎫x -m +π6,因为该函数的图象关于直线x =π4对称,所以2⎝ ⎛⎭⎪⎫π4-m +π6=k π+π2(k ∈Z),所以m =π6-k π2(k ∈Z),又m >0,故当k =0时,m 最小,此时m =π6. 6.(2017·云南检测)函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则f (x )的单调递增区间为( )A .(-1+4k π,1+4k π),k ∈ZB .(-3+8k π,1+8k π),k ∈ZC .(-1+4k,1+4k ),k ∈ZD .(-3+8k,1+8k ),k ∈Z解析:选D 由题图,知函数f (x )的最小正周期为T =4×(3-1)=8,所以ω=2πT =π4,所以f (x )=sin ⎝ ⎛⎭⎪⎫π4x +φ.把(1,1)代入,得sin ⎝ ⎛⎭⎪⎫π4+φ=1,即π4+φ=π2+2k π(k ∈Z),又|φ|<π2,所以φ=π4,所以f (x )=sin ⎝ ⎛⎭⎪⎫π4x +π4.由2k π-π2≤π4x +π4≤2k π+π2(k ∈Z),得8k -3≤x ≤8k +1(k ∈Z),所以函数f (x )的单调递增区间为(8k -3,8k +1)(k ∈Z),故选D.7.(2017·全国卷Ⅲ)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( ) A.65 B .1 C.35D.15解析:选A 因为cos ⎝⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫x +π3-π2=sin ⎝ ⎛⎭⎪⎫x +π3,所以f (x )=65sin ⎝ ⎛⎭⎪⎫x +π3,于是f (x )的最大值为65.8.(2017·武昌调研)若f (x )=cos 2x +a cos ⎝ ⎛⎭⎪⎫π2+x 在区间⎝ ⎛⎭⎪⎫π6,π2上是增函数,则实数a 的取值范围为( )A .[-2,+∞)B .(-2,+∞)C .(-∞,-4)D .(-∞,-4]解析:选D f (x )=1-2sin 2x -a sin x ,令sin x =t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g (t )=-2t 2-at +1,t ∈⎝ ⎛⎭⎪⎫12,1,因为f (x )在⎝ ⎛⎭⎪⎫π6,π2上单调递增,所以-a 4≥1,即a ≤-4,故选D.9.已知函数f (x )=sin(2x +φ)(0<φ<π),若将函数f (x )的图象向左平移π6个单位长度后所得图象对应的函数为偶函数,则φ=( )A.5π6B.2π3C.π3D.π6解析:选 D 函数f (x )的图象向左平移π6个单位长度后所得图象对应的函数解析式为y =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,由于该函数是偶函数,∴π3+φ=π2+k π(k ∈Z),即φ=π6+k π(k ∈Z),又0<φ<π,∴φ=π6,故选D.10.若函数f (x )=sin ωx +3cos ωx (ω>0)满足f (α)=-2,f (β)=0,且|α-β|的最小值为π2,则函数f (x )的解析式为( )A .f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3B .f (x )=2sin ⎝ ⎛⎭⎪⎫x -π3C .f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6D .f (x )=2sin ⎝⎛⎭⎪⎫x -π6 解析:选A f (x )=sin ωx +3cos ωx =2sin ⎝⎛⎭⎪⎫ωx +π3.因为f (α)=-2,f (β)=0,且|α-β|min =π2,所以T 4=π2,得T =2π(T 为函数f (x )的最小正周期),故ω=2πT=1,所以f (x )=2sin ⎝⎛⎭⎪⎫x +π3,故选A.11.(2018届高三·广西三市联考)已知x =π12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f (x )的图象向右平移3π4个单位长度后得到函数g (x )的图象,则函数g (x )在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为( ) A .-2 B .-1 C .- 2D .- 3解析:选 B f (x )=3sin(2x +φ)+cos(2x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ.∵x =π12是f (x )=2sin ⎝⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴2×π12+π6+φ=k π+π2(k ∈Z),即φ=π6+k π(k ∈Z),∵0<φ<π,∴φ=π6,则f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -3π4+π3=-2sin ⎝⎛⎭⎪⎫2x -π6,则g (x )在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1,故选B.12.(2017·广州模拟)已知函数f (x )=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f (x )在⎝⎛⎭⎪⎫0,π4上单调递减 B .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f (x )在⎝⎛⎭⎪⎫0,π4上单调递增 D .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增解析:选D f (x )=sin(ωx +φ)+cos(ωx +φ)=2sin ⎝⎛⎭⎪⎫ωx +φ+π4,因为0<φ<π且f (x )为奇函数,所以φ=3π4,即f (x )=-2sin ωx ,又直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f (x )的最小正周期为π2,由2πω=π2,可得ω=4,故f (x )=-2sin 4x ,由2k π+π2≤4x ≤2k π+3π2,k ∈Z ,得k π2+π8≤x ≤k π2+3π8,k∈Z ,令k =0,得π8≤x ≤3π8,此时f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增,故选D.二、填空题13.(2017·全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.解析:依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f (x )max =1. 答案:114.已知函数f (x )=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6=________.解析:函数f (x )=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则其图象的一条对称轴为x =π6,所以f ⎝ ⎛⎭⎪⎫π6=±2.答案:±215.(2017·深圳调研)已知函数f (x )=cos x sin x (x ∈R),则下列四个结论中正确的是________.(写出所有正确结论的序号)①若f (x 1)=-f (x 2),则x 1=-x 2; ②f (x )的最小正周期是2π;③f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上是增函数;④f (x )的图象关于直线x =3π4对称.解析:因为f (x )=cos x sin x =12sin 2x ,所以f (x )是周期函数,且最小正周期为T =2π2=π,所以①②错误;由2k π-π2≤2x ≤2k π+π2(k ∈Z),解得k π-π4≤x ≤k π+π4(k ∈Z),当k =0时,-π4≤x ≤π4,此时f (x )是增函数,所以③正确;由2x =π2+k π(k ∈Z),得x =π4+k π2(k ∈Z),取k =1,则x =3π4,故④正确. 答案:③④16.已知函数f (x )=A cos 2(ωx +φ)+1⎝⎛⎭⎪⎫A >0,ω>0,0<φ<π2的最大值为3,f (x )的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f (1)+f (2)+…+f (2 016)+f (2017)=________.解析:∵函数f (x )=A cos 2(ωx +φ)+1=A ·1+ωx +2φ2+1=A2cos(2ωx +2φ)+1+A 2⎝ ⎛⎭⎪⎫A >0,ω>0,0<φ<π2的最大值为3,∴A 2+1+A2=3,∴A =2.根据函数图象相邻两条对称轴间的距离为2,可得函数的最小正周期为4,即2π2ω=4,∴ω=π4.再根据f (x )的图象与y 轴的交点坐标为(0,2),可得cos 2φ+1+1=2,∴cos 2φ=0,又0<φ<π2,∴2φ=π2,φ=π4.故函数f (x )的解析式为f (x )=cos ⎝ ⎛⎭⎪⎫π2x +π2+2=-sin π2x +2,∴f (1)+f (2)+…+f (2 016)+f (2 017)=-⎝⎛⎭⎪⎫sinπ2+sin 2π2+sin 3π2+…+sin 2 016π2+sin 2 017π2+2×2 017=504×0-sin π2+4 034=0-1+4 034=4 033.答案:4 033B 组——能力小题保分练1.曲线y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4和直线y =12在y 轴右侧的交点的横坐标按从小到大的顺序依次记为P 1,P 2,P 3,…,则|P 3P 7|=( )A .πB .2πC .4πD .6π解析:选B y =2cos ⎝⎛⎭⎪⎫x +π4cos ⎝⎛⎭⎪⎫x -π4=cos 2x -sin 2x =cos 2x ,故曲线对应的函数为周期函数,且最小正周期为π,直线y =12在y 轴右侧与函数y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4在每个周期内的图象都有两个交点,又P 3与P 7相隔2个周期,故|P 3P 7|=2π,故选B.2.已知函数f (x )=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,则φ的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤-π3,π6C.⎣⎢⎡⎭⎪⎫-π4,0D.⎣⎢⎡⎦⎥⎤-π3,0解析:选D 因为函数f (x )=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,又-π6+φ<2x +φ≤π3+φ,所以2×π6+φ≤π3,且2×⎝ ⎛⎭⎪⎫-π12+φ≥-π2,解得-π3≤φ≤0,故选D. 3.已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则( )A .f (x )的图象关于直线x =-2π3对称 B .f (x )的图象关于点⎝ ⎛⎭⎪⎫-5π12,0对称C .若方程f (x )=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m 的取值范围是(-2,-3 ]D .将函数y =2sin ⎝ ⎛⎭⎪⎫2x -π6的图象向左平移π6个单位长度得到函数f (x )的图象 解析:选C 根据题中所给的图象,可知函数f (x )的解析式为f (x )=2sin ⎝⎛⎭⎪⎫2x +π3,∴当x =-2π3时,2×⎝ ⎛⎭⎪⎫-2π3+π3=-π,f ⎝ ⎛⎭⎪⎫-2π3=2sin(-π)=0,从而f (x )的图象关于点⎝ ⎛⎭⎪⎫-2π3,0对称,而不是关于直线x =-2π3对称,故A 不正确;当x =-5π12时,2×⎝ ⎛⎭⎪⎫-5π12+π3=-π2,∴f (x )的图象关于直线x =-5π12对称,而不是关于点⎝ ⎛⎭⎪⎫-5π12,0对称,故B 不正确;当x ∈⎣⎢⎡⎦⎥⎤-π2,0时,2x +π3∈⎣⎢⎡⎦⎥⎤-2π3,π3,f (x )∈[-2, 3 ],结合正弦函数图象的性质,可知若方程f (x )=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m 的取值范围是(-2,- 3 ],故C 正确;根据图象平移变换的法则,可知应将y =2sin ⎝⎛⎭⎪⎫2x -π6的图象向左平移π4个单位长度得到f (x )的图象,故D 不正确.故选C.4.如果两个函数的图象平移后能够重合,那么称这两个函数互为生成函数.给出下列四个函数:①f (x )=sin x +cos x ;②f (x )=2(sin x +cos x ); ③f (x )=sin x ;④f (x )=2sin x + 2. 其中互为生成函数的是( )A .①②B .①④C .③④D .②④解析:选 B 首先化简题中①②两个函数解析式可得:①f (x )=2sin ⎝⎛⎭⎪⎫x +π4,②f (x )=2sin ⎝⎛⎭⎪⎫x +π4,可知③f (x )=sin x 的图象要与其他函数的图象重合,只经过平移不能完成,还必须经过伸缩变换才能实现,∴③f (x )=sin x 不与其他函数互为生成函数;同理①f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4(④f (x )=2sin x +2)的图象与②f (x )=2sin ⎝⎛⎭⎪⎫x +π4的图象也必须经过伸缩变换才能重合,而④f (x )=2sin x +2的图象向左平移π4个单位长度,再向下平移2个单位长度即可得到①f (x )=2sin ⎝⎛⎭⎪⎫x +π4的图象,∴①④互为生成函数,故选B. 5.已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正常数)的最小正周期为π,且当x =2π3时,函数f (x )取得最小值,则( )A .f (1)<f (-1)<f (0)B .f (0)<f (1)<f (-1)C .f (-1)<f (0)<f (1)D .f (1)<f (0)<f (-1)解析:选C 因为函数f (x )=A sin(ωx +φ)的最小正周期为π,所以ω=2ππ=2,故f (x )=A sin(2x +φ),因为当x =2π3时,函数f (x )取得最小值,所以2×2π3+φ=2k π-π2,k ∈Z ,解得φ=2k π-11π6,k ∈Z ,又φ>0,故可取k =1,则φ=π6,故f (x )=A sin ⎝⎛⎭⎪⎫2x +π6,所以f (-1)=A sin ⎝⎛⎭⎪⎫-2+π6<0,f (1)=A sin ⎝⎛⎭⎪⎫2+π6>0,f (0)=A sin π6=12A >0,故f (-1)最小.又sin ⎝ ⎛⎭⎪⎫2+π6=sin ⎝ ⎛⎭⎪⎫π-2-π6=sin ⎝ ⎛⎭⎪⎫5π6-2>sin π6,故f (1)>f (0).综上可得f (-1)<f (0)<f (1),故选C.6.若函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g (x )=cos(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,则φ=________.解析:因为函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g (x )=cos(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,故它们的最小正周期相同,即2πω=2π2,所以ω=2,故函数f (x )=2sin ⎝⎛⎭⎪⎫2x +π4.令2x +π4=k π+π2,k ∈Z ,则x =k π2+π8,k ∈Z ,故函数f (x )的图象的对称轴为x =k π2+π8,k ∈Z.令2x +φ=m π,m ∈Z ,则x =m π2-φ2,m ∈Z ,故函数g (x )的图象的对称轴为x =m π2-φ2,m ∈Z ,故k π2+π8-m π2+φ2=n π2,m ,n ,k ∈Z ,即φ=(m +n -k )π-π4,m ,n ,k ∈Z ,又|φ|<π2,所以φ=-π4.答案:-π4。
2018年高考数学(文)二轮专题复习课件:第二部分 专题二 函数与导数4.2

专题二
2.4.2 导数与不等式及参数范围
考向一 考向二
-10-
(2)证明 由(1)知,x1∈(-1,0),要证x2>-x1>0,只需证f(x2)<f(-x1), 因为f(x1)=f(x2)=m, 所以只需证f(x1)<f(-x1),
只需证
������ 1 +1 e ������ 1
<
-������ 1 +1 e -������ 1 2 ������ 1
专题二
2.4.2 导数与不等式及参数范围
考向一 考向二
-6-
对点训练1(2017辽宁大连一模,文20)已知函数f(x)=ax-ln x. (1)过原点O作函数f(x)图象的切线,求切点的横坐标; (2)对∀x∈[1,+∞),不等式f(x)≥a(2x-x2)恒成立,求实数a的取值范 围.
解 (1)设切点为M(x0,f(x0)),直线的切线方程为y-f(x0)=k(x-x0),
2.4.2
导数与不等式及参数范围
专题二
2.4.2 导数与不等式及参数范围
考向一 考向二
-2-
求参数的取值范围(多维探究) 解题策略一 构造函数法 角度一 从条件关系式中构造函数
例1已知函数f(x)=(x+1)ln x-a(x-1). (1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程; (2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围. 难点突破一(直接构造函数) 求f(x)>0(x>1)a的范围,因f(1)=0,只需 f(x)在(1,+∞)单调递增.f(x)>0(x>1)⇔f(x)在(1,+∞)单调递增
2018年高考数学二轮复习课时跟踪检测(通用版)(四)理 Word版 含答案

课时跟踪检测(四)1.(2018届高三·西安八校联考)已知△ABC 内接于单位圆,角A ,B ,C 的对边分别为a ,b ,c ,且2a cos A =c cos B +b cos C .(1)求cos A 的值;(2)若b 2+c 2=4,求△ABC 的面积.解:(1)∵2a cos A =c cos B +b cos C ,∴2sin A cos A =sin C cos B +sin B cos C ,即2sin A cos A =sin(B +C )=sin A .又0<A <π,∴sin A ≠0.∴2cos A =1,∴cos A =12. (2)由(1)知cos A =12,∴sin A =32. ∵a sin A=2,∴a =2sin A = 3. 由a 2=b 2+c 2-2bc cos A ,得bc =b 2+c 2-a 2=4-3=1,∴S △ABC =12bc sin A =12×1×32=34.2.(2017·兰州模拟)已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a sin B +b cos A =0.(1)求角A 的大小;(2)若a =25,b =2,求△ABC 的面积S .解:(1)∵a sin B +b cos A =0,∴sin A sin B +sin B cos A =0,即sin B (sin A +cos A )=0,由于B 为三角形的内角,∴sin B ≠0,∴sin A +cos A =0,∴2sin ⎝⎛⎭⎪⎫A +π4=0,而A 为三角形的内角,∴A =3π4. (2)在△ABC 中,a 2=c 2+b 2-2cb cos A ,即20=c 2+4-4c ×⎝ ⎛⎭⎪⎫-22,解得c =-42(舍)或c =22, ∴S =12bc sin A =12×2×22×22=2. 3.如图,在△ABC 中,∠ABC =90°,AB =3,BC =1,P 为△ABC内一点,∠BPC =90°.(1)若PB =12,求PA ; (2)若∠APB =150°,求tan ∠PBA .解:(1)由已知得,∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=3+14-2×3×12cos 30°=74,故PA =72. (2)设∠PBA =α,由已知得PB =sin α.在△PBA 中,由正弦定理得3sin 150°=sin αsin 30°-α, 化简得3cos α=4sin α.所以tan α=34,即tan ∠PBA =34. 4.(2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B 2. (1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .解:(1)由题设及A +B +C =π得sin B =8sin 2B2, 即sin B =4(1-cos B ),故17cos 2B -32cos B +15=0,解得cos B =1517,cos B =1(舍去). (2)由cos B =1517,得sin B =817, 故S △ABC =12ac sin B =417ac . 又S △ABC =2,则ac =172. 由余弦定理及a +c =6得 b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B )=36-2×172×⎝ ⎛⎭⎪⎫1+1517=4. 所以b =2.5.如图,已知D 是△ABC 的边BC 上一点.(1)若cos ∠ADC =-210,∠B =π4,且AB =DC =7,求AC 的长; (2)若∠B =π6,AC =25,求△ABC 面积的最大值. 解:(1)因为cos ∠ADC =-210, 所以cos ∠ADB =cos(π-∠ADC )=-cos ∠ADC =210,所以sin ∠ADB =7210. 在△ABD 中,由正弦定理,得AD =AB ·sin∠B sin ∠ADB =7×227210=5, 所以在△ACD 中,由余弦定理,得AC =AD 2+DC 2-2AD ·DC cos ∠ADC =52+72-2×5×7×⎝ ⎛⎭⎪⎫-210=74+7 2. (2)在△ABC 中,由余弦定理,得AC 2=20=AB 2+BC 2-2AB ·BC cos ∠B =AB 2+BC 2-3AB ·BC ≥(2-3)AB ·BC ,所以AB ·BC ≤202-3=40+203, 所以S △ABC =12AB ·BC sin ∠B ≤10+53, 所以△ABC 面积的最大值为10+5 3.。
(通用版)2018年高考数学二轮复习课时跟踪检测(二十六)理

课时跟踪检测(二十六)一、选择题1.已知直线ax +by =1经过点(1,2),则2a +4b的最小值为( ) A. 2B .2 2C .4D .4 2解析:选B 因为直线ax +by =1经过点(1,2),所以a +2b =1,则2a+4b≥22a·22b=22a +2b=22,当且仅当a =2b =12时等号成立.2.(2018届高三·湖南五市十校联考)已知函数f (x )=x +sin x (x ∈R),且f (y 2-2y +3)+f (x 2-4x +1)≤0,则当y ≥1时,yx +1的取值范围是( )A.⎣⎢⎡⎦⎥⎤14,34 B.⎣⎢⎡⎦⎥⎤14,1 C .[1,32-3]D.⎣⎢⎡⎭⎪⎫13,+∞ 解析:选A 函数f (x )=x +sin x (x ∈R)为奇函数,又f ′(x )=1+cos x ≥0,所以函数f (x )在其定义域内单调递增,则f (x 2-4x +1)≤f (-y 2+2y -3),即x 2-4x +1≤-y 2+2y -3,化简得(x -2)2+(y -1)2≤1,当y ≥1时表示的区域为上半圆及其内部,如图所示.令k =y x +1=yx --,其几何意义为过点(-1,0)与半圆相交或相切的直线的斜率,斜率最小时直线过点(3,1),此时k min =13--=14,斜率最大时直线刚好与半圆相切,圆心到直线的距离d =|2k -1+k |k 2+1=1(k >0),解得k max=34,故选A. 3.(2017·石家庄质检)在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤r 2(r 为常数)表示的平面区域的面积为π,若x ,y 满足上述约束条件,则z =x +y +1x +3的最小值为( ) A .-1 B .-52+17C.13D .-75解析:选 D 作出不等式组表示的平面区域,如图中阴影部分所示,由题意,知14πr 2=π,解得r =2.z =x +y +1x +3=1+y -2x +3,表示可行域内的点与点P (-3,2)连线的斜率加上1,由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =1-125=-75,故选D.4.(2017·沈阳质检)已知函数f (x )=⎩⎪⎨⎪⎧2x+22,x ≤1,|log 2x -,x >1,则函数F (x )=f [f (x )]-2f (x )-32的零点个数是( )A .4B .5C .6D .7解析:选A 令f (x )=t ,则函数F (x )可化为y =f (t )-2t -32,则函数F (x )的零点问题可转化为方程f (t )-2t -32=0的根的问题.令y =f (t )-2t -32=0,即f (t )=2t +32,如图①,由数形结合得t 1=0,1<t 2<2,如图②,再由数形结合得,当f (x )=0时,x =2,有1个解,当f (x )=t 2时,有3个解,所以y =f [f (x )]-2f (x )-32共有4个零点.故选A.5.(2018届高三·湖北七市(州)联考)已知函数f (x )=x 2+(a +8)x +a 2+a -12(a <0),且f (a 2-4)=f (2a -8),则f n -4a n +1(n ∈N *)的最小值为( )A.374 B.358 C.283 D.485解析:选A 二次函数f (x )=x 2+(a +8)x +a 2+a -12图象的对称轴为直线x =-a +82,由f (a 2-4)=f (2a -8)及二次函数的图象,可以得出a 2-4+2a -82=-a +82,解得a =-4或a =1,又a <0,∴a =-4,f (x )=x 2+4x ,∴f n -4a n +1=n 2+4n +16n +1=n +2+n ++13n +1=n +1+13n +1+2≥2n +13n +1+2=213+2,当且仅当n +1=13n +1,即n =13-1时等号成立,又n ∈N *,∴当n =4时,f n -4a n +1=485,n=3时,f n -4a n +1=374<485,∴最小值为374,故选A.6.(2018届高三·广东省五校联考)已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f (x )g ′(x )>f ′(x )g (x ),f (x )=a x ·g (x )(a >0,a ≠1),fg+f -g -=52.在有穷数列⎩⎨⎧⎭⎬⎫f n gn (n =1,2,…,10)中,任意取正整数k (1≤k ≤10),则前k 项和大于1516的概率是( ) A.15 B.25 C.35 D.45解析:选C 由f (x )=a x·g (x ),可得a x=f xg x,⎣⎢⎡⎦⎥⎤f x g x ′=f xg x -f x gx[g x2<0,所以f xg x为减函数,所以0<a <1.由f g+f -g -=52,可得a +1a =52,解得a =12或a =2,又0<a <1,所以a =12.当a =12时,f n g n=⎝ ⎛⎭⎪⎫12n 是以12为首项,12为公比的等比数列,则前k 项和为12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12k =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k 1-12=1-⎝ ⎛⎭⎪⎫12k .由1-⎝ ⎛⎭⎪⎫12k >1516可得k >4,即当5≤k ≤10时,前k 项和大于1516,故所求的概率为10-410=610=35,故选C. 二、填空题7.若对于定义在R 上的函数f (x ),其图象是连续不断的,且存在常数λ(λ∈R)使得f (x +λ)+λf (x )=0对任意实数x 都成立,则称f (x )是一个“λ伴随函数”.有下列关于“λ伴随函数”的结论:①f (x )=0是常数函数中唯一的“λ伴随函数”; ②f (x )=x 不是“λ伴随函数”; ③f (x )=x 2是一个“λ伴随函数”; ④“12伴随函数”至少有一个零点.其中不正确的是________.(填序号)解析:对于①,若f (x )=c ≠0,则取λ=-1,此时f (x +λ)+λf (x )=f (x -1)-f (x )=c -c =0,则f (x )=c ≠0是“-1伴随函数”,①错误;对于②,当f (x )=x 时,若f (x )是“λ伴随函数”,则f (x +λ)+λf (x )=0,即(x +λ)+λx =0对任意x 成立,易知不存在这样的λ,所以f (x )=x 不是“λ伴随函数”,②正确;对于③,若f (x )=x 2是一个“λ伴随函数”,则(x +λ)2+λx 2=0对任意实数x 都成立,易知不存在这样的λ,所以f (x )=x 2不是“λ伴随函数”,③错误;对于④,若f (x )是“12伴随函数”,则f ⎝ ⎛⎭⎪⎫x +12+12f (x )=0,取x =0,有f ⎝ ⎛⎭⎪⎫12+12f (0)=0,若f (0),f ⎝ ⎛⎭⎪⎫12均为0,则函数有零点,若f (0),f ⎝ ⎛⎭⎪⎫12均不为零,则f (0),f ⎝ ⎛⎭⎪⎫12异号,由零点存在定理知,函数在⎝ ⎛⎭⎪⎫0,12上一定有零点,④正确.答案:①③8.(2017·南昌模拟)已知实数x ,y 满足⎩⎪⎨⎪⎧3x -2y -3≤0,x -3y +6≥0,2x +y -2≥0,在这两个实数x ,y 之间插入三个实数,使这五个数构成等差数列,那么这个等差数列后三项和的最大值为________.解析:设在这两个实数x ,y 之间插入三个实数a 1,a 2,a 3,即x ,a 1,a 2,a 3,y 构成等差数列,所以这个等差数列后三项的和为a 2+a 3+y =x +y2+x +y2+y2+y =34(x +3y ),令z =x +3y ,作出不等式组表示的可行域,如图中阴影部分所示,将直线x +3y =0平移至A 处时,z 取最大值.由⎩⎪⎨⎪⎧3x -2y -3=0,x -3y +6=0,解得A (3,3),所以z max =3+3×3=12.所以(a 2+a 3+y )max =34(x+3y )max =34×12=9.答案:99.设定义在(0,+∞)上的单调函数f (x ),对任意的x ∈(0,+∞)都有f [f (x )-log 2x ]=3.若方程f (x )+f ′(x )=a 有两个不同的实数根,则实数a 的取值范围是________.解析:由于函数f (x )是单调函数,因此不妨设f (x )-log 2x =t ,则f (t )=3,再令x =t ,则f (t )-log 2t =t ,得log 2t =3-t ,解得t =2,故f (x )=log 2x +2,f ′(x )=1x ln 2.构造函数g (x )=f (x )+f ′(x )-a =log 2x +1x ln 2-a +2,∵方程f (x )+f ′(x )=a 有两个不同的实数根,∴g (x )有两个不同的零点.g ′(x )=1x ln 2-1x 2ln 2=1ln 2⎝ ⎛⎭⎪⎫x -1x 2,当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0,∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,又当x →0时,g (x )→+∞,当x →+∞时,g (x )→+∞,则若使g (x )有两个零点,必有g (x )min =g (1)=1ln 2-a +2<0,得a >1ln 2+2,∴实数a 的取值范围是⎝ ⎛⎭⎪⎫1ln 2+2,+∞.答案:⎝⎛⎭⎪⎫1ln 2+2,+∞三、解答题10.(2017·福州模拟)已知函数f (x )=e x-ax +b (a ,b ∈R). (1)若f (x )在x =0处的极小值为2,求a ,b 的值;(2)设g (x )=f (x )+ln(x +1),当x ≥0时,g (x )≥1+b ,试求a 的取值范围. 解:(1)f ′(x )=e x-a , ∵f (x )在x =0处的极小值为2,∴⎩⎪⎨⎪⎧f =0,f =2,即⎩⎪⎨⎪⎧1-a =0,1+b =2,解得⎩⎪⎨⎪⎧a =1,b =1.(2)∵g (x )=f (x )+ln(x +1)=e x-ax +b +ln(x +1), ∴g ′(x )=1x +1+e x-a , 设h (x )=1x +1+e x -a ,则h ′(x )=e x-1x +2,当x ≥0时,e x≥1,1x +2≤1,∴h ′(x )=e x-1x +2≥0,∴h (x )=1x +1+e x-a 在[0,+∞)上为增函数. ∴h (x )≥h (0)=2-a ,即g ′(x )=1x +1+e x-a ≥2-a . ∴当a ≤2时,g ′(x )≥0,∴g (x )=e x-ax +b +ln(x +1)在[0,+∞)上为增函数, ∴当x ≥0时,g (x )≥g (0)=1+b ,符合题意;当a >2时,有h (0)=2-a <0,h (ln a )=11+ln a>0,h (0)·h (ln a )<0,则存在x 0∈(0,ln a ),使得h (x 0)=0,于是g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,则有g (x 0)<g (0)=1+b , 此时g (x )≥1+b 不恒成立,不符合题意. 综上,可得实数a 的取值范围为(-∞,2]. 11.(2017·张掖模拟)设函数f (x )=x 22-a ln x .(1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)求函数f (x )的单调区间和极值;(3)若函数f (x )在区间(1,e 2]内恰有两个零点,试求a 的取值范围. 解:(1)当a =1时,f (x )=x 22-ln x ,则f ′(x )=x -1x ,所以f ′(1)=0,又f (1)=12,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -12=0×(x -1),即y =12.(2)由f (x )=x 22-a ln x ,得f ′(x )=x -a x =x 2-ax(x >0).①当a ≤0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增,函数既无极大值,也无极小值;②当a >0时,由f ′(x )=0,得x =a 或x =-a (舍去). 于是,当x 变化时,f ′(x )与f (x )的变化情况如下表:a-ln a2函数f (x )在x =a 处取得极小值f (a )=a-ln a2,无极大值.综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞),函数f (x )既无极大值也无极小值;当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞),函数f (x )有极小值a-ln a2,无极大值.(3)当a ≤0时,由(2)知函数f (x )在区间(0,+∞)上单调递增,故函数f (x )在区间(1,e 2]内至多有一个零点,不合题意.当a >0时,由(2)知,当x ∈(0,a )时,函数f (x )单调递减;当x ∈(a ,+∞)时,函数f (x )单调递增,函数f (x )在(0,+∞)上的最小值为f (a )=a-ln a2.若函数f (x )在区间(1,e 2]内恰有两个零点,则需满足⎩⎪⎨⎪⎧1<a <e 2,fa,f ,f2,即⎩⎪⎨⎪⎧1<a <e 4,a -ln a2<0,12>0,e 42-2a ≥0,整理得⎩⎪⎨⎪⎧1<a <e 4,a >e ,a ≤e 44,所以e<a ≤e44.故所求a 的取值范围为⎝ ⎛⎦⎥⎤e ,e 44. 12.(2017·石家庄质检)已知函数f (x )=m ln(x +1),g (x )=xx +1(x >-1).(1)讨论函数F (x )=f (x )-g (x )的单调性;(2)若y =f (x )与y =g (x )的图象有且仅有一条公切线,试求实数m 的值. 解:(1)F ′(x )=f ′(x )-g ′(x )=mx +1-1x +2=m x +-1x +2(x >-1). 当m ≤0时,F ′(x )<0,函数F (x )在(-1,+∞)上单调递减;当m >0时,令F ′(x )<0,得x <-1+1m,函数F (x )在⎝ ⎛⎭⎪⎫-1,-1+1m 上单调递减;令F ′(x )>0,得x >-1+1m,函数F (x )在⎝⎛⎭⎪⎫-1+1m,+∞上单调递增.综上所述,当m ≤0时,F (x )在(-1,+∞)上单调递减;当m >0时,F (x )在⎝ ⎛⎭⎪⎫-1,-1+1m 上单调递减,在⎝⎛⎭⎪⎫-1+1m,+∞上单调递增.(2)函数f (x )=m ln(x +1)的图象在点(a ,m ln(a +1))处的切线方程为y -m ln(a +1)=m a +1(x -a ),即y =m a +1x +m ln(a +1)-ma a +1.函数g (x )=xx +1的图象在点⎝ ⎛⎭⎪⎫b ,b b +1处的切线方程为y -bb +1=1b +2(x -b ),即y =1b +2x +b 2b +2.因为y =f (x )与y =g (x )的图象有且仅有一条公切线,所以⎩⎪⎨⎪⎧m a +1=1b +2, ①m a +-ma a +1=b2b +2, ②有唯一一对(a ,b )满足这个方程组,且m >0.由①得:a +1=m (b +1)2,代入②,消去a ,整理得: 2m ln(b +1)+2b +1+m ln m -m -1=0,关于b (b >-1)的方程有唯一解. 令g (b )=2m ln(b +1)+2b +1+m ln m -m -1, 则g ′(b )=2m b +1-2b +2=2[m b +-1]b +2, 因为m >0,所以g (b )在⎝ ⎛⎭⎪⎫-1,-1+1m 上单调递减,在⎝⎛⎭⎪⎫-1+1m,+∞上单调递增,所以g (b )min =g ⎝ ⎛⎭⎪⎫-1+1m =m -m ln m -1,因为b →+∞时,g (b )→+∞,b →-1时,g (b )→+∞, 所以只需m -m ln m -1=0.令σ(m )=m -m ln m -1,则σ′(m )=-ln m 在(0,+∞)上为单调递减函数,且m =1时,σ′(m )=0,即σ(m )max =σ(1)=0,所以m =1时,关于b 的方程2m ln(b +1)+2b +1+m ln m -m -1=0有唯一解,此时a =b =0,公切线方程为y =x .。
2018年高考文科数学二轮创新专题复习 课时跟踪检测十

课时跟踪检测(十六) A 组——12+4提速练一、选择题1.(2017·惠州调研)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =132,则它的渐近线方程为( )A .y =±32xB .y =±23xC .y =±94xD .y =±49x解析:选A 由双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =132,可得c 2a 2=134,∴b 2a 2+1=134,可得b a =32,故双曲线的渐近线方程为y =±32x .2.(2017·全国卷Ⅰ)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A.13B.12C.23D.32解析:选D 由题可知,双曲线的右焦点为F (2,0),当x =2时,代入双曲线C 的方程,得4-y 23=1,解得y =±3,不妨取点P (2,3),因为点A (1,3),所以AP ∥x 轴,又PF ⊥x 轴,所以AP ⊥PF ,所以S △APF =12|PF |·|AP |=12×3×1=32.3.已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)解析:选A 由题意得(m 2+n )(3m 2-n )>0,解得-m 2<n <3m 2,所以m 2+n >0,3m 2-n >0,又由该双曲线两焦点间的距离为4,得m 2+n +3m 2-n =4,即m 2=1,所以-1<n <3.4.(2017·全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63 B.33C.23D.13解析:选A 以线段A 1A 2为直径的圆的方程为x 2+y 2=a 2,由原点到直线bx -ay +2ab =0的距离d =2abb 2+a 2=a ,得a 2=3b 2,所以C 的离心率e =1-b 2a 2=63. 5.(2017·全国卷Ⅱ)过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为( )A. 5 B .2 2 C .2 3D .3 3解析:选C 由题意,得F (1,0), 则直线FM 的方程是y =3(x -1). 由⎩⎨⎧y =3x -,y 2=4x ,得x =13或x =3.由M 在x 轴的上方,得M (3,23), 由MN ⊥l ,得|MN |=|MF |=3+1=4.又∠NMF 等于直线FM 的倾斜角,即∠NMF =60°, 因此△MNF 是边长为4的等边三角形, 所以点M 到直线NF 的距离为4×32=2 3. 6.(2017·广州模拟)已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若椭圆C上存在点P 使∠F 1PF 2为钝角,则椭圆C 的离心率的取值范围是( )A.⎝⎛⎭⎪⎫22,1 B.⎝ ⎛⎭⎪⎫12,1 C.⎝⎛⎭⎪⎫0,22 D.⎝ ⎛⎭⎪⎫0,12 解析:选A 法一:设P (x 0,y 0),由题意知|x 0|<a ,因为∠F 1PF 2为钝角,所以PF 1―→·PF 2―→<0有解,即(-c -x 0,-y 0)·(c -x 0,-y 0)<0,化简得c 2>x 20+y 20,即c 2>(x 20+y 20)min,又y 20=b 2-b 2a2x 20,0≤x 20<a 2,故x 20+y 20=b 2+c 2a2x 20∈[b 2,a 2),所以(x 20+y 20)min =b 2,故c 2>b 2,又b 2=a 2-c 2,所以e2=c 2a 2>12,解得e >22,又0<e <1,故椭圆C 的离心率的取值范围是⎝ ⎛⎭⎪⎫22,1.法二:椭圆上存在点P 使∠F1PF 2为钝角⇔以原点O 为圆心,以c 为半径的圆与椭圆有四个不同的交点⇔b <c .如图,由b <c ,得a 2-c 2<c 2,即a 2<2c 2,解得e =c a >22,又0<e <1,故椭圆C 的离心率的取值范围是⎝ ⎛⎭⎪⎫22,1. 7.在平面直角坐标系xOy 中,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,其中F 2也是抛物线C 2:y 2=4x 的焦点,点M 为C 1与C 2在第一象限内的交点,且|MF 2|=53,则椭圆的长轴长为( )A .2B .4C .6D .8解析:选B 依题意知F 2(1,0),设M (x 1,y 1).由抛物线的定义得|MF 2|=1+x 1=53,即x 1=23.将x 1=23代入抛物线方程得y 1=263,故M ⎝ ⎛⎭⎪⎫23,263,又M 在椭圆C 1上,故⎝ ⎛⎭⎪⎫232a 2+⎝ ⎛⎭⎪⎫2632b 2=1,结合a 2-b 2=1,得a 2=4,则a =2,故椭圆的长轴长为4.8.(2017·福州模拟)已知抛物线C :y 2=4x 的焦点为F ,准线为l .若射线y =2(x -1)(x ≤1)与C ,l 分别交于P ,Q 两点,则|PQ ||PF |=( )A. 2 B .2 C. 5D .5解析:选C 由题意,知抛物线C :y 2=4x 的焦点F (1,0),设准线l :x =-1与x 轴的交点为F 1.过点P 作直线l 的垂线,垂足为P 1(图略),由⎩⎪⎨⎪⎧x =-1,y =x -,x ≤1,得点Q 的坐标为(-1,-4),所以|FQ |=2 5.又|PF |=|PP 1|,所以|PQ ||PF |=|PQ ||PP 1|=|QF ||FF 1|=252=5,故选C.9.(2017·沈阳模拟)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M与双曲线C 的焦点不重合,点M 关于F 1,F 2的对称点分别为A ,B ,线段MN 的中点在双曲线的右支上,若|AN |-|BN |=12,则a =( )A .3B .4C .5D .6解析:选A 如图,设MN 的中点为P .∵F 1为MA 的中点,F 2为MB 的中点,∴|AN |=2|PF 1|,|BN |=2|PF 2|,又|AN |-|BN |=12,∴|PF 1|-|PF 2|=6=2a ,∴a =3.故选A.10.设AB 是椭圆的长轴,点C 在椭圆上,且∠CBA =π4,若AB =4,BC =2,则椭圆的两个焦点之间的距离为( )A.463 B.263 C.433D.233解析:选 A 不妨设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),如图,由题意知,2a =4,a =2,∵∠CBA =π4,BC =2,∴点C 的坐标为(-1,1),∵点C 在椭圆上,∴122+1b 2=1,∴b 2=43,∴c 2=a 2-b 2=4-43=83,c =263,则椭圆的两个焦点之间的距离为2c =463.11.(2017·云南调研)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )A. 3B. 2 C .2 D .3解析:选A 设双曲线C 的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此AB 是双曲线的通径,则|AB |=2b 2a ,依题意2b 2a =4a ,∴b 2a 2=2,∴c 2-a 2a2=e2-1=2,∴e = 3.12.(2017·陕西质检)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点分别为F 1,F 2,若P 为双曲线上一点,且|PF 1|=2|PF 2|,则双曲线离心率e 的取值范围是( )A .(1,3)B .(1,3]C .(3,+∞)D .(0,3]解析:选 B 由已知得⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|=2|PF 2|,即|PF 1|=4a ,|PF 2|=2a ,因为|PF 1|+|PF 2|≥2c ,即4a +2a ≥2c ,所以e ≤3,又双曲线的离心率e >1,所以双曲线的离心率e 的取值范围是(1,3].二、填空题13.(2017·郑州模拟)过抛物线y =14x 2的焦点F 作一条倾斜角为30°的直线交抛物线于A ,B 两点,则|AB |=________.解析:依题意,设点A (x 1,y 1),B (x 2,y 2),题中的抛物线x 2=4y 的焦点坐标是F (0,1),直线AB 的方程为y =33x +1,即x =3(y -1).由⎩⎨⎧x 2=4y ,x =3y -,消去x 得3(y -1)2=4y ,即3y 2-10y +3=0,y 1+y 2=103,则|AB |=|AF |+|BF |=(y 1+1)+(y 2+1)=y 1+y 2+2=163. 答案:16314.A ,F 分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点和右焦点.A ,F 在双曲线的一条渐近线上的射影分别为B ,Q ,O 为坐标原点,△ABO 与△FQO 的面积之比为12,则该双曲线的离心率为________.解析:易知△ABO 与△FQO 相似,相似比为a c ,故a 2c 2=12,所以离心率e =ca= 2.答案: 215.(2018届高三·广东五校联考)已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足0<x 202+y 20<1,则|PF 1|+|PF 2|的取值范围是________.解析:由点P (x 0,y 0)满足0<x 202+y 20<1,可知P (x 0,y 0)一定在椭圆内(不包括原点),因为a=2,b =1,所以由椭圆的定义可知|PF 1|+|PF 2|<2a =22,又|PF 1|+|PF 2|≥|F 1F 2|=2,故|PF 1|+|PF 2|的取值范围是[2,22).答案:[2,22)16.(2018届高三·湘中名校联考)已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA ―→+FB ―→+FC ―→=0,则1k AB +1k AC +1k BC=________.解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),F ⎝ ⎛⎭⎪⎫p 2,0,由FA ―→+FB ―→=-FC ―→,得⎝ ⎛⎭⎪⎫x 1-p 2,y 1+⎝ ⎛⎭⎪⎫x 2-p 2,y 2=-⎝ ⎛⎭⎪⎫x 3-p 2,y 3,y 1+y 2+y 3=0.因为k AB =y 2-y 1x 2-x 1=2p y 1+y 2,k AC =y 3-y 1x 3-x 1=2p y 1+y 3,k BC=y 3-y 2x 3-x 2=2p y 2+y 3,所以1k AB +1k AC +1k BC =y 1+y 22p +y 3+y 12p +y 2+y 32p =y 1+y 2+y 3p=0. 答案:0B 组——能力小题保分练1.(2018届高三·湖北七市(州)联考)双曲线x 2a 2-y 2b2=1(a ,b >0)的离心率为3,左、右焦点分别为F 1,F 2,P 为双曲线右支上一点,∠F 1PF 2的角平分线为l ,点F 1关于l 的对称点为Q ,|F 2Q |=2,则双曲线的方程为( )A .x 22-y 2=1B .x 2-y 22=1C .x 2-y 23=1D .x 23-y 2=1解析:选B ∵∠F 1PF 2的角平分线为l ,点F 1关于l 的对称点为Q ,∴|PF 1|=|PQ |,P ,F 2,Q 三点共线,而|PF 1|-|PF 2|=2a ,∴|PQ |-|PF 2|=2a ,即|F 2Q |=2=2a ,解得a =1.又e =ca=3,∴c =3∴b 2=c 2-a 2=2,∴双曲线的方程为x 2-y 22=1.故选B.2.已知椭圆x 29+y 25=1,F 为其右焦点,A 为其左顶点,P 为该椭圆上的动点,则能够使PA ―→·PF―→=0的点P 的个数为( )A .4B .3C .2D .1解析:选B 由题意知,a =3,b =5,c =2,则F (2,0),A (-3,0).当点P 与点A 重合时,显然PA ―→·PF ―→=0,此时P (-3,0).当点P 与点A 不重合时,设P (x ,y ),PA ―→·PF ―→=0⇔PA ⊥PF ,即点P 在以AF 为直径的圆上,则圆的方程为⎝ ⎛⎭⎪⎫x +122+y 2=254.① 又点P 在椭圆上,所以x 29+y 25=1,②由①②得4x 2+9x -9=0,解得x =-3(舍去)或34,则y =±534,此时P ⎝ ⎛⎭⎪⎫34,±534.故能够使PA ―→·PF ―→=0的点P 的个数为3.3.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C于另一点B ,且点B 在x 轴上的射影恰好为右焦点F .若13<k <12,则椭圆C 的离心率的取值范围是( )A.⎝ ⎛⎭⎪⎫14,34B.⎝ ⎛⎭⎪⎫23,1C.⎝ ⎛⎭⎪⎫12,23 D.⎝ ⎛⎭⎪⎫0,12 解析:选C 由题图可知,|AF |=a +c ,|BF |=a 2-c 2a ,于是k =|BF ||AF |=a 2-c 2a a +c .又13<k <12,所以13<a 2-c2a a +c<12,化简可得13<1-e <12,从而可得12<e <23,故选C. 4.(2017·贵阳检测)双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(2,1)在“右”区域内,则双曲线离心率e 的取值范围是( )A.⎝ ⎛⎭⎪⎫1,52 B.⎝⎛⎭⎪⎫52,+∞ C.⎝ ⎛⎭⎪⎫1,54D.⎝ ⎛⎭⎪⎫54,+∞ 解析:选B 依题意,双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±ba x ,且“右”区域是由不等式组⎩⎪⎨⎪⎧y <ba x ,y >-ba x所确定的,又点(2,1)在“右”区域内,于是有1<2b a ,即b a >12,因此该双曲线的离心率e =1+⎝ ⎛⎭⎪⎫b a2∈⎝ ⎛⎭⎪⎫52,+∞,故选B.5.(2017·全国卷Ⅰ)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10解析:选A 抛物线C :y 2=4x 的焦点为F (1,0), 由题意可知l 1,l 2的斜率存在且不为0. 不妨设直线l 1的斜率为k ,则l 1:y =k (x -1),l 2:y =-1k(x -1),由⎩⎪⎨⎪⎧y 2=4x ,y =k x -消去y ,得k 2x 2-(2k 2+4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=2k 2+4k 2=2+4k2,由抛物线的定义可知,|AB |=x 1+x 2+2=2+4k 2+2=4+4k2.同理得|DE |=4+4k 2,∴|AB |+|DE |=4+4k2+4+4k 2=8+4⎝ ⎛⎭⎪⎫1k 2+k 2≥8+8=16,当且仅当1k2=k 2,即k =±1时取等号,故|AB |+|DE |的最小值为16.6.(2018届高三·西安八校联考)已知抛物线C :y 2=4x 的焦点为F ,直线y =3(x -1)与C 交于A ,B (A 在x 轴上方)两点.若AF ―→=m FB ―→,则m 的值为________.解析:由题意知F (1,0),由⎩⎨⎧y =3x -,y 2=4x ,解得⎩⎪⎨⎪⎧x 1=13,y 1=-233,⎩⎨⎧x 2=3,y 2=2 3.由A 在x 轴上方,知A (3,23),B ⎝ ⎛⎭⎪⎫13,-233,则AF ―→=(-2,-23),FB ―→=⎝ ⎛⎭⎪⎫-23,-233,因为AF ―→=m FB ―→,所以m =3.答案:3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(二十六)1.(2017·石家庄质检)在平面直角坐标系xOy 中,直线l 的参数方程是⎩⎪⎨⎪⎧x =2+t cos α,y =t sin α(t 为参数),以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ+2ρ2sin 2θ=12,且直线l 与曲线C 交于P ,Q 两点.(1)求曲线C 的直角坐标方程及直线l 恒过的定点A 的坐标; (2)在(1)的条件下,若|AP |·|AQ |=6,求直线l 的普通方程.解:(1)∵x =ρcos θ,y =ρsin θ,∴C 的直角坐标方程为x 2+2y 2=12. 直线l 恒过的定点为A (2,0).(2)把直线l 的方程代入曲线C 的直角坐标方程中得, (sin 2α+1)t 2+4(cos α)t -8=0. 由t 的几何意义知|AP |=|t 1|,|AQ |=|t 2|. ∵点A 在椭圆内,这个方程必有两个实根, ∴t 1t 2=-8sin 2α+1,∵|AP |·|AQ |=|t 1t 2|=6, ∴81+sin 2α=6,即sin 2α=13, ∵α∈(0,π), ∴sin α=33,cos α=±63, ∴直线l 的斜率k =±22, 因此,直线l 的方程为y =22(x -2)或y =-22(x -2). 2.(2017·郑州质检)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(φ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2是圆心为⎝⎛⎭⎪⎫3,π2,半径为1的圆.(1)求曲线C 1的普通方程,C 2的直角坐标方程;(2)设M 为曲线C 1上的点,N 为曲线C 2上的点,求|MN |的取值范围. 解:(1)消去参数φ可得C 1的普通方程为x 24+y 2=1.由题可知,曲线C 2的圆心的直角坐标为(0,3), ∴C 2的直角坐标方程为x 2+(y -3)2=1.(2)设M (2cos φ,sin φ),曲线C 2的圆心为C 2, 则|MC 2|=s φ2+φ-2=4cos 2φ+sin 2φ-6sin φ+9=-3sin 2φ-6sin φ+13 =-φ+2+16.∵-1≤sin φ≤1,∴|MC 2|min =2,|MC 2|max =4. 根据题意可得|MN |min =2-1=1,|MN |max =4+1=5, 即|MN |的取值范围是[1,5].3.(2017·合肥模拟)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos t ,y =3+2sin t(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π4=- 2. (1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任意一点,求A ,B 两点的极坐标和△PAB 面积的最小值.解:(1)由⎩⎨⎧x =-5+2cos t ,y =3+2sin t ,消去参数t ,得圆C 的普通方程为(x +5)2+(y -3)2=2. 由ρcos ⎝ ⎛⎭⎪⎫θ+π4=-2,得ρcos θ-ρsin θ=-2, 所以直线l 的直角坐标方程为x -y +2=0.(2)直线l 与x 轴,y 轴的交点分别为A (-2,0),B (0,2),化为极坐标为A (2,π),B ⎝⎛⎭⎪⎫2,π2.设点P 的坐标为(-5+2cos t,3+2sin t ),则点P 到直线l 的距离为d =|-5+2cos t -3-2sin t +2|2=⎪⎪⎪⎪⎪⎪-6+2cos ⎝ ⎛⎭⎪⎫t +π42,所以d min =42=2 2.又|AB |=22,所以△PAB 面积的最小值是S min =12×22×22=4.4.(2018届高三·西安八校联考)在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2sin θ,θ∈[)0,2π.(1)求曲线C 的直角坐标方程;(2)在曲线C 上求一点D ,使它到直线l :⎩⎨⎧x =3t +3,y =-3t +2(t 为参数)的距离最短,并求出点D 的直角坐标.解:(1)由ρ=2sin θ,θ∈[0,2π),可得ρ2=2ρsin θ. 因为ρ2=x 2+y 2,ρsin θ=y ,所以曲线C 的直角坐标方程为x 2+(y -1)2=1. (2)由直线l 的参数方程⎩⎨⎧x =3t +3,y =-3t +2(t 为参数),消去t 得直线l 的普通方程为y =-3x +5.因为曲线C :x 2+(y -1)2=1是以G (0,1)为圆心、1为半径的圆,(易知C ,l 相离) 设点D (x 0,y 0),且点D 到直线l :y =-3x +5的距离最短, 所以曲线C 在点D 处的切线与直线l :y =-3x +5平行. 即直线GD 与l 的斜率的乘积等于-1,即y 0-1x 0×(-3)=-1, 又x 20+(y 0-1)2=1, 可得x 0=-32(舍去)或x 0=32,所以y 0=32, 即点D 的直角坐标为⎝⎛⎭⎪⎫32,32. 5.(2018届高三·广东五校联考)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =sin α(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=4 2. (1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)设P 为曲线C 1上的动点,求点P 到曲线C 2上点的距离的最小值.解:(1)由曲线C 1:⎩⎨⎧x =2cos α,y =sin α得曲线C 1的普通方程为x 22+y 2=1.由曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ+π4=42得,22ρ(sin θ+cos θ)=42, 即曲线C 2的直角坐标方程为x +y -8=0. (2)易知椭圆C 1与直线C 2无公共点,椭圆上的点P (2cos α,sin α)到直线x +y -8=0的距离为d =|2cos α+sin α-8|2=|3α+φ-8|2,其中φ是锐角且tan φ= 2.所以当sin(α+φ)=1时,d 取得最小值82-62.6.(2017·成都模拟)在平面直角坐标系xOy 中,倾斜角为α⎝⎛⎭⎪⎫α≠π2的直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρcos 2θ-4sin θ=0.(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)已知点P (1,0).若点M 的极坐标为⎝⎛⎭⎪⎫1,π2,直线l 经过点M 且与曲线C 相交于A ,B 两点,设线段AB 的中点为Q ,求|PQ |的值.解:(1)∵直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),∴直线l 的普通方程为y =tan α·(x -1).由ρcos 2θ-4sin θ=0得ρ2cos 2θ-4ρsin θ=0,即x 2-4y =0. ∴曲线C 的直角坐标方程为x 2=4y .(2)∵点M 的极坐标为⎝⎛⎭⎪⎫1,π2,∴点M 的直角坐标为(0,1). 又直线l 经过点M ,∴1=tan α·(0-1), ∴tan α=-1,即直线l 的倾斜角α=3π4.∴直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =22t (t 为参数).代入x 2=4y ,得t 2-62t +2=0. 设A ,B 两点对应的参数分别为t 1,t 2. ∵Q 为线段AB 的中点, ∴点Q 对应的参数值为t 1+t 22=622=3 2.又点P (1,0)是直线l 上对应t =0的点,则|PQ |=⎪⎪⎪⎪⎪⎪t 1+t 22=3 2.7.(2017·南昌模拟)在平面直角坐标系xOy 中,曲线C 1过点P (a,1),其参数方程为⎩⎨⎧x =a +2t ,y =1+2t(t 为参数,a ∈R).以O 为极点,x 轴非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1与曲线C 2交于A ,B 两点,且|PA |=2|PB |,求实数a 的值.解:(1)∵曲线C 1的参数方程为⎩⎨⎧x =a +2t ,y =1+2t ,∴其普通方程为x -y -a +1=0.∵曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0, ∴ρ2cos 2θ+4ρcos θ-ρ2=0,∴x 2+4x -x 2-y 2=0,即曲线C 2的直角坐标方程为y 2=4x .(2)设A ,B 两点所对应的参数分别为t 1,t 2,由⎩⎨⎧y 2=4x ,x =a +2t ,y =1+2t ,得2t 2-22t +1-4a=0.Δ=(22)2-4×2(1-4a )>0,即a >0,由根与系数的关系得⎩⎪⎨⎪⎧t 1+t 2=2,t 1·t 2=1-4a2,根据参数方程的几何意义可知|PA |=2|t 1|,|PB |=2|t 2|, 又|PA |=2|PB |,∴2|t 1|=2×2|t 2|,即t 1=2t 2或t 1=-2t 2.当t 1=2t 2时,有⎩⎪⎨⎪⎧ t 1+t 2=3t 2=2,t 1·t 2=2t 22=1-4a 2,解得a =136>0,符合题意.当t 1=-2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=-t 2=2,t 1·t 2=-2t 22=1-4a 2,解得a =94>0,符合题意.综上所述,实数a 的值为136或94.8.(2017·贵阳检测)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+3cos t ,y =5+3sin t (其中t 为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)求曲线C 1的普通方程和C 2的直角坐标方程;(2)若A ,B 分别为曲线C 1,C 2上的动点,求当AB 取最小值时△AOB 的面积.解:(1)由⎩⎪⎨⎪⎧x =4+3cos t ,y =5+3sin t得C 1的普通方程为(x -4)2+(y -5)2=9.由ρ=2sin θ得ρ2=2ρsin θ,将x 2+y 2=ρ2,y =ρsin θ代入上式,得C 2的直角坐标方程为x 2+(y -1)2=1. (2)如图,当A ,B ,C 1,C 2四点共线,且A ,B 在线段C 1C 2上时,|AB |取得最小值,由(1)得C 1(4,5),C 2(0,1),∴kC 1C 2=5-14-0=1,则直线C 1C 2的方程为x -y +1=0,∴点O 到直线C 1C 2的距离d =12=22,又|AB |=|C 1C 2|-1-3=-2+-2-4=42-4,∴S △AOB =12d |AB |=12×22×(42-4)=2- 2.。