(完整版)第24章圆复习总结与小结
新人教版数学九年级上册第二十四章圆 小结与复习
小结与复习
要点梳理
考点讲练
课堂小结
课后作业
要点梳理
一.与圆有关的概念 1.圆:平面内到定点的距离等于定长的所有点组成的图形. 2.弦:连结圆上任意两点的线段. 3.直径:经过圆心的弦是圆的直径,直径是最长的弦. 4.劣弧:小于半圆周的圆弧. 5.优弧:大于半圆周的圆弧.
·
6.等弧:在同圆或等圆中,能够互相重合的弧. 7.圆心角:顶点在圆心,角的两边与圆相交. 8.圆周角:顶点在圆上,角的两边与圆相交. [注意] (1)确定圆的要素:圆心决定位置,半径决定 大小.(2)不在同一条直线上的三个点确定一个圆.
O
O
弓形的面积=扇形的面积±三角形的面积
4.圆锥的侧面积 (1)圆锥的侧面展开图是一个 扇形 . (2)如果圆锥母线长为l,底面圆的半径为r,那么这
个扇形的半径为 l ,扇形的弧长为 2r .
(3)圆锥的侧面积为 lr . (4)圆锥的全面积为 lr r2 .
5.圆内接正多边形的计算 (1)正n边形的中心角为 360
A
B
C
D
针对训练
Байду номын сангаас
1.如图a,四边形ABCD为☉O的内接正方形,点P为 劣弧BC上的任意一点(不与B,C重合),则∠BPC的 度数是 135° .
A
D
O
B
C
图Pa
2.如图b,线段AB是直径,点D是☉O上一点, ∠CDB=20 °,过点C作☉O的切线交AB的延长 线于点E,则∠E等于 50 .
°
C
AO
(4)中心角:正多边形每一条边对应所对的外接圆 的圆心角都相等,叫做正多边形的中心角.
二、与圆有关的位置关系 1.点与圆的位置关系 判断点与圆的位置关系可由点到圆心的距离d与圆 的半径r比较得到. 设☉O的半径是r,点P到圆心的距离为d,则有
人教版九年级上册第24章:圆的知识点归纳总结大全
圆的知识点归纳总结大全一、圆的定义。
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素。
1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质。
1、圆的对称性。
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:➢平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
➢平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O 的半径为r ,OP=d 。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角三角形的外心就是斜边的中点。
)8、直线与圆的位置关系。
d 表示圆心到直线的距离,r 表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切; 直线与圆没有交点,直线与圆相离。
29、平面直角坐标系中,A (x 1,y 1)、B (x 2,y 2)。
则AB=221221)()(y y x x -+- 10、圆的切线判定。
九年级数学上册第二十四章圆知识点归纳总结(精华版)(带答案)
九年级数学上册第二十四章圆知识点归纳总结(精华版)单选题⌢上的一点(点P不与点D重合),则∠CPD的度数为()1、如图,正五边形ABCDE内接于⊙O,P为DEA.30°B.36°C.60°D.72°答案:B分析:根据圆周角的性质即可求解.连接CO、DO,正五边形内心与相邻两点的夹角为72°,即∠COD=72°,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,=36°,故∠CPD=72°×12故选B.小提示:此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.2、如图,AB是圆O的直径,弦AD平分∠BAC,过点D的切线交AC于点E,∠EAD=25°,则下列结论错误的是()A.AE⊥DE B.AE//OD C.DE=OD D.∠BOD=50°答案:C分析:过点D作DF⊥AB于点F,根据切线的性质得到OD⊥DE,证明OD∥AE,根据平行线的性质以及角平分线的性质逐一判断即可.解:∵DE是⊙O的切线,∴OD⊥DE,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠EAD,∴∠EAD=∠ODA,∴OD∥AE,∴AE⊥DE.故选项A、B都正确;∵∠OAD=∠EAD=∠ODA=25°,∠EAD=25°,∴∠BOD=∠OAD+∠ODA=50°,故选项D正确;∵AD平分∠BAC,AE⊥DE,DF⊥AB,∴DE=DF<OD,故选项C不正确;故选:C.小提示:本题考查的是切线的性质,角平分线的性质定理,平行线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.3、如图,已知直线y =34x -3,与x 轴、y 轴分别交于A 、B 两点,P 是以C (0,1)为圆心,1为半径的圆上一动点,连接PA 、PB ,则△PAB 面积的最小值是( )A .6B .112C .5D .92答案:B分析:过C 作CM ⊥AB 于M ,连接AC ,MC 的延长线交⊙C 于N ,则由三角形面积公式得,12×AB ×CM =12×OA ×BC ,可知圆C 上点到直线y =34x -3的最短距离是165−1=115,由此求得答案. 解:∵直线y =34x -3与x 轴、y 轴分别交于A 、B 两点,∴当x =0时,y =-3;y =0时,x =4∴OB =3;OA =4由勾股定理得,AB =√OA 2+OB 2=5∵C (0,1)∴OC =1∴BC =OB +OC =3+1=4过C 作CM ⊥AB 于M ,连接AC ,如图,则由三角形面积公式得,12×AB ×CM =12×OA ×BC , ∴5×CM =16,∴CM =165, ∴圆C 上点到直线y =34x -3的最小距离是 165−1=115,∴△PAB 面积的最小值是 12×5×115=112,故选:B . 小提示:本题考查了直线与圆的位置关系,三角形的面积,点到直线的距离公式的应用,解此题的关键是求出圆上的点到直线AB 的最小距离.4、如图所示,等边△ABC 的顶点A 在⊙O 上,边AB 、AC 与⊙O 分别交于点D 、E ,点F 是劣弧DE⌢上一点,且与D 、E 不重合,连接DF 、EF ,则∠DFE 的度数为( )A .115°B .118°C .120°D .125°答案:C分析:根据等边三角形的性质可得∠A =60°,再根据圆内接四边形的对角互补即可求得答案.解:∵ △ABC 是等边三角形,∴∠A =60°,∴∠DFE =180°−∠A =120°,故选C .小提示:本题考查了等边三角形的性质及圆内接四边形的性质,熟练掌握圆内接四边形的对角互补是解题的关键.5、如图,点A 是⊙O 外一点,过点A 作⊙O 的切线AB 、AC ,切点分别为B 、C 两点,连结AC 并延长交BO 的延长线于点D .若AB =3,BD =4,则⊙O 的半径为( )A .94B .83C .52D .32答案:D分析:连接OC ,根据题意得到RtΔABD 、RtΔCOD ,由切线长定理求得AC =AB =3,最后根据勾股定理在RtΔABD 、RtΔCOD 中求解即可.解:连接OC ,如图所示:∵点A 是⊙O 外一点,过点A 作⊙O 的切线AB 、AC ,切点分别为B 、C 两点,∴OC ⊥AD ,BD ⊥AB ,∴AC =AB =3,在RtΔABD中,∠ABD=90°,AB=3,BD=4,由勾股定理得AD=5,∴CD=AD−AC=5−3=2,设半径OC=OB=r,则OD=BD−OB=4−r,在RtΔCOD中,∠OCD=90°,CD=2,OC=r,OD=4−r,由勾股定理知CD2+OC2=OD2,得r2+22=(4−r)2,即8r=12,,解得r=32故选:D.小提示:本题考查在圆背景下利用勾股定理求线段长,掌握切线的性质、切线长定理以及在直角三角形中根据勾股定理列方程求解问题是解题关键.6、如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°答案:C分析:首先连接CD,由AD是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ACD=90°,又由圆周角定理,可得∠D=∠B=20°,再用三角形内角和定理求得答案.解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°.∵∠D=∠B=20°,∴∠CAD=180°−90°−∠D=180°−90°−20°=70°.故选:C.小提示:本题考查了圆周角定理、三角形的内角和定理.熟练掌握圆周角定理是解此题的关键.7、小王不慎把一面圆形镜子打碎了,其中三块如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.都不能答案:B分析:要确定圆的大小需知道其半径.根据垂径定理知第②块可确定半径的大小.解:第②块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选:B.小提示:本题考查了垂径定理的应用,确定圆的条件,解题的关键是熟练掌握:圆上任意两弦的垂直平分线的交点即为该圆的圆心.8、刘徽在《九章算术注》中首创“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元.某同学在学习“割圆术”的过程中,作了一个如图所示的圆内接正十二边形.若⊙O的半径为1,则这个圆内接正十二边形的面积为( )A .1B .3C .πD .2π答案:B分析:如图,过A 作AC ⊥OB 于C ,得到圆的内接正十二边形的圆心角为360°12=30°,根据三角形的面积公式即可得到结论.如图,过A 作AC ⊥OB 于C ,∵圆的内接正十二边形的圆心角为360°12=30°,∵OA =1,∴AC =12OA =12,∴S △OAB =12×1×12=14,∴这个圆的内接正十二边形的面积为12×14=3,故选:B .小提示:本题考查了正多边形与圆,三角形的面积的计算,解直角三角形,正确的作出辅助线是解题的关键.9、如图,⊙O 是等边三角形ABC 的外接圆,若⊙O 的半径为2,则△ABC 的面积为( )A.√32B.√3C.2√3D.3√3答案:D分析:过点O作OH⊥BC于点H,根据等边三角形的性质即可求出OH和BH的长,再根据垂径定理求出BC的长,最后运用三角形面积公式求解即可.解:过点O作OH⊥BC于点H,连接AO,BO,∵△ABC是等边三角形,∴∠ABC=60°,∵O为三角形外心,∴∠OAH=30°,∴OH=12OB=1,∴BH=√BO2−OH2=√3,AH=-AO+OH=2+1=3∴BC=2BH=2√3∴SΔABC=12BC×AH=12×2√3×3=3√3故选:D小提示:本题考查了等边三角形的性质、含30°角的直角三角形的性质,熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键.10、将一张正方形的透明纸片ABCD和⊙O按如图位置叠放,顶点A、D在⊙O上,边AB、BC、CD分别与⊙O 相交于点E、F、G、H,则下列弧长关系中正确的是()A .AD⌢=AE ⌢B .AD ⌢=AF ⌢ C .AF⌢=DG ⌢D .AF ⌢=DH ⌢ 答案:C分析:连接AF,DG ,根据弦与弧的关系,只要比较弦长即可比较弧长的大小即可求解. 如图,连接AF,DG ,过点O 作NM ⊥AD ,交AD 于M ,交BC 于N ,则MN ⊥BC ,∵四边形ABCD 是正方形,∴AD =AB =BC =CD ,∠B =∠C ,∴ AM =MD ,∴四边形AMNB,MNCD 是矩形,∴NB =AM =MD =NC ,∴FN =GN ,∴FB =GC ,∴Rt △ABF ≌Rt △CDG ,∴ AF =DG ,A. ∵AD >AE ,∴ AD⌢>AE ⌢,故该选项不正确,不符合题意; B. ∵AD =AB <AF ,∴AD⌢<AF ⌢,故该选项不正确,不符合题意; C. ∵ AF =DG ,∴ AF ⌢=DG ⌢,故该选项正确,符合题意;D.∵DH<DC<DG=AF,∴AF⌢>DH⌢,故该选项不正确,不符合题意;故选:C.小提示:本题考查了弦与弧的关系,掌握同圆或等圆中,等弦对等弧是解题的关键.填空题11、我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为______.答案:289分析:设直角三角形的三边分别为a,b,c,较长的直角边为a,较短的直角边为b,c为斜边,由切线长定理可得,直角三角形的内切圆的半径等于a+b−c2,即a+b−c=6,根据小正方的面积为49,可得(a−b)2=49,进而计算c2即a2+b2即可求解.解:设四个全等的直角三角形的三边分别为a,b,c,较长的直角边为a,较短的直角边为b,c为斜边,∵直角三角形的内切圆半径为3,小正方形的面积为49,∴a+b−c2=3,(a−b)2=49,∴a+b−c=6①,a−b=7②,∴a=13+c2,b=c−12,∵a2+b2=c2③,∴(13+c2)2+(c−12)2=c2,解得c=17或c=−5(舍去),大正方形的面积为c2=172=289,所以答案是:289.小提示:本题考查了切线长定理,勾股定理,解一元二次方程,二元一次方程组,掌握直角三角形的内切圆是解题的关键.的半径等于a+b−c212、如图,扇形OAB中,∠AOB=60°,OA=4√3+8,点E为弧AB的中点,C为半径OA上一点,将线段CE绕点C逆时针旋转90°得到线段CE′,若点E′恰好落在半径OB上,则OE′=_____.答案:4分析:过E点作EH⊥OA于H,过E′点作E′⊥OA于F,连接OE,如图,设OF=x,利用∠AOB=60°得到OE=2√3+4,OH= OE′=2x,E′F=√3x,再利用点E为弧AB的中点得到∠AOE=30°,所以EH=12√3EH=6+4√3,接着证明ΔCEH≅△E′CF,则CH=E′F=√3x,CF=EH=2√3+4,则可列方程x+2√3+4+√3x=6+4√3,然后解方程求出x,从而得到OE′的长.解:过E点作EH⊥OA于H,过E′点作E′⊥OA于F,连接OE,如图,设OF=x,∵∠AOB=60°,∴OE′=2OF=2x,E′F=√3OF=√3x,∵点E为弧AB的中点,∴∠AOE=∠BOE=1∠AOB=30°,2∴EH =12OE =12(4√3+8)=2√3+4, OH =√3EH =6+4√3,∵线段CE 绕点C 逆时针旋转90°得到线段CE′,∴CE =CE′,∠ECE′=90°,∵∠ECH +∠CEH =90°,∠ECH +∠E′CF =90°,∴∠CEH =∠E′CF ,在ΔCEH 和△E′CF 中{∠CHE =∠FE′C ∠CEH =∠E′CF CE =CE′,∴ΔCEH ≅△E′CF(AAS),∴CH =E′F =√3x ,CF =EH =2√3+4,∵OH =OF +FC +CH ,∴x +2√3+4+√3x =6+4√3,解得x =2,∴OE′=2x =4.故答案为4.小提示:本题考查了圆心角、弧、弦的关系、旋转的性质,解题的关键是在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.13、如图,△ABC 内接于☉O ,∠CAB=30°,∠CBA=45°,CD ⊥AB 于点D ,若☉O 的半径为2,则CD 的长为_____答案:√2分析:连接OA ,OC ,根据∠COA=2∠CBA=90°可求出AC=2√2,然后在Rt △ACD 中利用三角函数即可求得CD的长.解:连接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=√OA2+OC2=√22+22=2√2,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=2√2×1=√2,2故答案为√2.小提示:本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.14、如图,AB是⊙C的弦,直径MN⊥AB于点O,MN=10,AB=8,如图以O为原点建立坐标系.我们把横纵坐标都是整数的点叫做整数点,则线段OC长是_____,⊙C上的整数点有_______个.答案: 3 12分析:过C作直径UL∥x轴,连接AC,根据垂径定理求出AO=BO=4,根据勾股定理求出OC,再得出答案即可.解:过C作直径UL∥x轴,连接CA,则AC=1×10=5,2∵MN过圆心C,MN⊥AB,AB=8,∴AO=BO=4,∠AOC=90°,由勾股定理得:CO= √AC2−AO2=√52−42=3,∴ON=5-3=2,OM=5+3=8,即A(-4,0),B(4,0),M(0,8),N(0,-2),同理还有弦QR=AB=8,弦WE=TS=6,且WE、TS、QR都平行于x轴,Q(-4,6),R(4,6),W(-3,7),E(3,7),T(-3,-1),S(3,-1),U(-5,3),L(5,3),即共12个点,所以答案是:3;12.小提示:本题考查了垂径定理、勾股定理和坐标与图形的性质,能找出符合条件的所有点是解此题的关键.15、如图,在平面直角坐标系xOy中,点A,B,C的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为_______.答案:(2,1)分析:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,1).故答案为(2,1).小提示:本题考查垂径定理的应用,解答此题的关键是熟知垂径定理,即“垂直于弦的直径平分弦”.解答题16、如图,在△ABC,AC=BC,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.求证:DE 为⊙O的切线.答案:见解析分析:连接OD,证得OD∥AC,可知DE⊥OD,即可证得DE为⊙O的切线.解:连接OD,如图所示,∵AC=BC,∴∠A=∠ABC,∵OB=OD,∴∠ODB=∠ABC,∴∠ODB=∠A,∴OD∥AC,又∵DE⊥AC,∴DE⊥OD,∴DE为⊙O的切线.小提示:本题主要考查的是切线的判定,准确做出辅助线,证得平行是解题的关键.17、如图,已知AC为⊙O的直径.请用尺规作图法,作出⊙O的内接正方形ABCD.(保留作图痕迹.不写作法)答案:见解析分析:作AC的垂直平分线交⊙O于B、D,则四边形ABCD就是所求作的内接正方形.解:如图,正方形ABCD为所作.∵BD垂直平分AC,AC为⊙O的直径,∴BD为⊙O的直径,∴BD⊥AC,OB=OD,OA=OC,BD=AC,∴四边形ABCD是⊙O的内接正方形.小提示:本题考查了作图−复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆的基本性质,正方形的判定.18、如图,正方形ABCD的边长为4,以点A为圆心,AD为半径画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,求圆锥的底面圆的半径.答案:12分析:根据圆锥的底面周长与展开后所得扇形的弧长相等列式计算即可.解:∵正方形ABCD的边长为4∴AD=AE=4∵AC是正方形ABCD的对角线∴∠EAD=45°∴l DE⌢=45°×π×4=π180°∴圆锥底面周长为C=2πr=π,解得r=12∴该圆锥的底面圆的半径是12小提示:本题考查了圆锥的计算,解决本题的关键是掌握圆锥的底面周长与展开后所得扇形的弧长相等.。
人教版九年级数学上册第24章《圆》知识小结与复习
A
A.140°B.135°C.130°D.125°
DF
∠BOC=90°+ 1∠A 2
R
E
BM
Q
O
G
P
NC
3、边长分别为3,4,5的三角形的内切圆半径与外 接圆半径的比为( )
A.1∶5 B.2∶5 C.3∶5 D.4∶5
4.已知△ABC,AC=12,BC=5,AB=13。则 △ABC的外接圆半径为 。内切圆半径____ 5. 正三角形的边长为a,它的内切圆和外接圆的半 径分别是______, ____
O1
AM
O
B
如图,在矩形ABCD中,AB=20cm,BC=4cm,点 ⊙p从A开始折线A—B—C—D以4cm/秒的速度 移动,点⊙Q从C开始沿CD边以1cm/秒的速度移 动,如果点⊙P, ⊙Q分别从A,C同时出发,当其中一 点到达D时,另一点也随之停止运动,设运动的时 间t(秒) 如果⊙P和⊙Q的半径都是2cm,那么t 为何值时, ⊙P和⊙Q外切?
(2)若C△ABC= 36, S△ABC=18,则r内=_1____; (3)若BE=3,CE=2, △ABC的周长为18,则AB=_7___;
A
D
8
F
4
o
B
6E
C
1 S △ABC= 2 C △ABC·r内
2.△ABC中, ∠A=70°,⊙O截△ABC三条边所得的
弦长相等.则 ∠BOC=__D__.
3.两圆相切,圆心距为10cm,其中一个圆的半径为 6cm,则另一个圆的半径为_____.
4. 已知圆O1与圆O 2的半径分别为12和2,圆心O1的 坐标为(0,8),圆心O2 的坐标为(-6,0),则两圆的位置 关系是______.
第24章圆小结与复习教案
第二十四章《圆》小结一、本章知识结构框图二、本章知识点概括(一)圆的有关概念1、圆(两种定义)、圆心、半径;2、圆的确定条件:①圆心确定圆的位置,半径确定圆的大小;②不在同一直线上的三个点确定一个圆。
3、弦、直径;4、圆弧(弧)、半圆、优弧、劣弧;5、等圆、等弧,同心圆;6、圆心角、圆周角;7、圆内接多边形、多边形的外接圆;8、割线、切线、切点、切线长;9、反证法:假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立。
(二)圆的基本性质1、圆的对称性①圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。
*②圆是中心对称图形,圆心是对称中心。
2、圆的弦、弧、直径的关系①垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
* [引申] 一条直线若具有:Ⅰ、经过圆心;Ⅱ、垂直于弦;Ⅲ、平分弦;Ⅳ、平分弦所对的劣弧;Ⅴ、平分弦所对的优弧,这五个性质中的任何两条,必具有其余三条性质,即“知二推三”。
(注意:具有Ⅰ和Ⅲ时,应除去弦为直径的情况)3、弧、弦、圆心角的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
②在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。
③在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
归纳:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等。
4、圆周角的性质①定理:在同圆或等圆中,同弧或等弧所对圆周角相等,都等于这条弧所对的圆心角的一半。
②在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。
③推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
(三)与圆有关的位置关系1、点与圆的位置关系设⊙O的半径为r,OP=d则:点P在圆内d<r;点P在圆上d=r;点P在圆外d>r.2、直线与圆的位置关系设⊙O的半径为r,圆心O到l的距离为d则:直线l与⊙O相交d<r 直线和圆有两个公共点;直线l与⊙O相切d=r 直线和圆只有一个公共点;直线l与⊙O相离d>r 直线和圆没有公共点。
24.1第24章圆整章知识点归纳
第24章《圆》整章知识点归纳第一节圆的有关性质知识点一:圆的定义1、圆可以看作是到定点(圆心O)的距离定长(半径r)的点的集合.知识点二:圆的相关概念1、半圆是,但弧不一定是半圆.半圆既不是优弧,也不是劣弧..............2、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.知识点三:圆的对称性1、圆是轴对称图形,任何一条都是圆的对称轴.2、圆中心对称图形知识点四:垂径定理及推论(重点)1、垂径定理:垂直于弦的直径,并且平分弦所对的两条弧.2、垂径定理的推论:平分弦的直径垂直于弦,并且弦所对的两条弧.知识点五:弧、弦、圆心角之间的关系(重点、难点)1、圆心角定理:在同圆或等圆中,相等的圆心角所对的弦,所对的弧也.定理和推论可概括为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所的其余各组量也相等.(圆心角、弧、弦关系定理)知识点六:圆周角定理及其推论1、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.2、圆周角定理的推论:(1)所对的圆周角相等.(2)半圆(或直径)所对的圆周角是;90°的圆周角所对的弦是.知识点七:圆内接多边形1、圆的内接四边形性质:圆内接四边形的对角.第二节点和圆、直线和圆的位置关系知识点一:圆的确定1、的三个点确定一个圆2、要想过四点作圆,应先作出经过不在同一条直线上的三点的圆,如果第四到圆心的距离等于,则第四个点在圆上,否则不在圆上.3、确定一个圆的圆心的方法,只需作出此圆任意两条弦的,其交点就是圆心.l ll P知识点二:三角形的外接圆1、三角形的外接圆:经过三角形三个顶点可以作一个圆,这个圆叫做三角形的2、三角形的外心:三角形外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的,如图:⊙O是△ABC的外接圆,点O是△ABC的外心.(1)三角形的外心到三角形三个顶点的距离相等,等于外接圆的.(2)一个三角形有且只有一个外接圆,而一个圆却有个内接三角形.(3)三角形外心的位置:锐角三角形的外心在三角形;钝角三角形的外心在三角形;直角三角形的外心是.知识点三:反证法:(1)假设命题的不成立(2)从这个假设出发,经过推理论证,得出;(3)由矛盾判定不正确,从而肯定的结论正确.知识点四:直线和圆的位置关系1、直线与圆⇔d r>⇔直线与圆无交点;2、直线与圆相切⇔d r=⇔直线与圆有交点;3、直线与圆⇔d r<⇔直线与圆有两个交点;知识点五:切线的性质与判定定理1、切线的判定定理:经过并且于这条半径的直线是圆的切线;提示:在判定切线时,往往需要添加辅助线(连半径证垂直或作垂直证半径).3、切线性质定理:圆的切线垂直于的半径推论1:过圆心垂直于切线的直线必过切点.推论2:过切点垂直于切线的直线必过圆心.以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出第三个.知识点六:切线长定理切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.即:∵P A、PB是⊙O的两条切线∴P A=PB,PO平分∠BP A知识点七:三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的.边心距r 半径R中心角αbBC r=a+b-c2三角形的外接圆与内切圆以及外心与内心的对比第三节 正多边形和圆知识点一:正多边形的定义及其相关概念相等, 也相等的多边形叫做正多边形.知识点二:与正多边形的有关计算(1)正n 边形的每个内角为 (2)正n 边形的每个中心角为(3)正n 边形的每个外角为(4)正n 边形的半径R 、边心距r 、边长a 之间的关系为(5)正n 边形的边长a 、边心距r 、周长l ,面积S 之间的关系为na l =,rl s 2=知识点三:正多边形与圆的关系(1)把圆分成n (n ≥3)等份,①依次连接各分点所得的多边形就是这个圆的内接正n 边形;②经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形. (2)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.知识点四:正多边形的性质1、正多边形的各边相等,各角相等.2、正多边形都是轴对称图形,几边形就有几条对称轴,边数为偶数的正多边形也是中心对称图形.3、正n 边形的半径和边心距把正n 边形分成n 2个全等的直角三角形. 注意:正多边形都有一个外接圆,而圆有无数个内接正多边形.第四节 弧长和扇形面积知识点一:弧长公式知识点二:扇形面积公式 (其中l 为扇形的弧长,R 为半径) 知识点三:圆锥的有关概念1、圆锥的母线:连接圆锥顶点和底面圆周上 的线段叫做圆锥的母线,如图,线段P A 、PB 是圆锥的两条母线.2、圆锥的侧面积和全面积圆锥的侧面积公式:S 侧= 圆锥的全面积公式:注意:在计算圆锥的侧面积时,要注意各元素之间的对应关系,千万不要错认为圆锥底面圆的半径等于扇形半径或把母线当成扇形的弧长.PABO Rr。
第24章 圆的小结与复习
第24章 圆的小结与复习一、教材分析: 本节课教学内容、地位与作用; 圆这一章与前面所学的知识联系密切,三角形、平行四边形、相似形等在本章中都有较多的应用。
二、学情分析:本章概念很多,大部分学生能够了解概念,但是不能很好地去融会贯和应用,在进行推理论证学生也感觉到困难。
三、教学目标、重难点;【学习目标】1.复习本章内容,以求对本章知识有整体认识. 2.在巩固复习中,达到对圆各单元知识点熟练应用.【学习重点】对本章知识结构的总体认识.【学习难点】把握有关性质和定理解决问题.四、教学环节一、知识结构框图:二、概念复习 1、点与圆的位置关系点在圆内 d<r 点C 在圆内点在圆上 d=r 点B 在圆上点在此圆外 d>r 点A 在圆外2、直线与圆的位置关系•直线与圆相离d>r 无交点•直线与圆相切d=r 有一个交点•直线与圆相交d<r 有两个交点3、垂径定理垂径定理:垂直于弦的直径平分这条弦并且平分这条弦所对的两条弧推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;以上共3个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB⊥CD ③CE=DE ④⑤①②③④⑤或①③②④⑤或……4、圆心角定理•圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论也即:①∠AOB=∠DOE ②AB=DE ③OC=OF ④①②③④或②①③④……即:∠AOB=2∠ACB5、圆周角定理的推论:推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。
即:∠C=∠D推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径即:在⊙O中,∵AB是直径或∵∠C=90°∴∠C=90°∴AB是直径6、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角.即:在⊙O中,∵四边形ABCD是内接四边形,∴∠C+∠BAD=180°,B+∠D=180°,∠DAE=∠C7、切线的性质与判定定理(1)性质定理:圆的切线垂直于过切点的半径(如上图)∵MN是切线∴MN⊥OA(2)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线两个条件:过半径外端且垂直半径,二者缺一不可即:∵MN⊥OA且MN过半径OA外端∴MN是⊙O的切线切线长定理切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,圆心与这一点的连线平分两条切线的夹角. 即:∵PA 、PB 是的两条切线,∴PA=PB ,PO 平分∠BPA8、圆内接正多边形的计算(1)正三角形1::2弧长、扇形面积公式(1)弧长公式: (2)扇形面积公式:三、随堂训练 学生把通过“自学互研”得出的结论展示出来,并将疑难问题板演到黑板上由学生进行讨论,老师最后再予以点评。
人教版九年级数学第二十四章《圆》单元知识点总结
人教版九年级数学第二十四章《圆》单元知识点总结1.弦弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.2.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.①半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;②优弧:大于半圆的弧叫做优弧;③劣弧:小于半圆的弧叫做劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.5、弧、弦、圆心角的关系(1)圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(2)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.6、圆周角(1)圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2).圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(3).圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.7.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).8.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
第二十四章圆小结与复习
第二十四章圆小结与复习1.12.23.3圆是轴对称图形有无数条对称轴过圆心的每一条直线,过圆中一点最长的弦是直径最短的弦是与垂直的弦,弧的度数等于它所对的圆心角的度数,圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
第二十四章圆小结与复习2017-10-30 13:32:47 | #1楼第二十四章圆小结与复习24.1.1圆一、圆的概念1、圆的定义:(1)(2)2、圆的特征(1)(2)3、确定圆的条件:圆心、半径二、圆的有关概念弦、直径、虎半圆、优虎劣虎等圆、同心圆、等虎弦心距(10个)注:1、直径是弦,但弦不是直径2、半圆是虎但弧不是半圆三、圆的对称性1、圆是轴对称图形,有无数条对称轴(过圆心的每一条直线)2、圆是中心对称图形,圆心是对称中心(也是旋转对称图形,具有旋转不变性) 24.1.2垂径定理1、以下五个条件任意两个,均可得出其余三个:(1)过圆心的直线(2)垂直于弦(3)平分弦(4)平分优弧(5)平分劣弧(强调平分的弦不是直径)2、常用辅助线:连半径、做弦心距3、过圆中一点P最长的弦是直径,最短的弦是与OP垂直的弦4、垂径定理常常与勾股定理合用求值。
24.1.3虎弦、圆心角、弦心距1、圆心角:2、弧的度数等于它所对的圆心角的度数。
3、四者关系、推论:(前提:在同圆或等圆中)24.14圆周角1、圆周角:①②2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
3、圆周角定理的推论:(1)同弧或等弧所对的圆周角相等;在同圆或等圆中,相等圆周角所对的弧也相等。
(2)半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径,所对的弧是半圆。
(给直径想直角;给90°圆周角想直径)(3)在同圆或等圆中,同弦或等弦所对的圆周角相等或互补。
(同侧:相等;异侧:互补)(4)如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。
注:1、有弧找角、有角找弧是证明弧相等、角相等的常用思想。
第24章《圆》章节知识点复习总结专题
第24章《圆》章节知识点复习一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2(补充)、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的 垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外;三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+;A外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
第24章-----圆复习总结
第24章圆复习(2)学习目标:1.探索并理解与圆有关的位置关系:了解切线的概念、性质和判定,会过圆上一点画圆的切线.2.进一步认识和理解正多边形和圆的关系,能进行与正多边形有关的计算.3.熟练掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.学习重点:弧长及扇形面积公式及其应用。
学习难点:圆锥侧面积及全面积的计算一、知识梳理(一)重点知识、数学思想、方法回顾、梳理.(二)基础知识检测1.如图14,⊙O的半径为4cm,直线l⊥OA,垂足为O,则直线l沿射线OA方向平移_____cm 时与⊙O相切.图14 图15 图162.两圆有多种位置关系,图15中不存在的位置关系是_____________.3. 如图16,AB是⊙O的切线,OB=2OA,则∠B的度数是_______________.图17 图184. 如图17,AB与⊙O切于点B,AO=6cm,AB=4cm,则⊙O的半径为()...A.5.如图18,已知∠AOB=30°,M为OB边上任意一点,以M为圆心,半径为2cm作⊙M,当OM=______cm时,⊙M与OA相切.6.已知扇形的圆心角为120°,半径为2cm,则扇形的弧长是_______cm,扇形的面积________cm2.7.如图19,两个同心圆中,大圆的半径OA=4cm,∠AOB=∠BOC=60°,则图中阴影部分的面积是______cm2.cm 8.如图20,圆锥的底面半径为6cm,高为8cm,那么这个圆锥的侧面积是_______2图19 图20二、例题精解例1、如图21,在⊙O 中,直径AB 垂直于弦CD ,垂足为E ,连接AC ,将△ACE 沿AC 翻折得到△ACF,直线FC 与直线AB 相交于点G .(1)直线FC 与⊙O 有何位置关系?并说明理由;(2)若OB=BG=2,求CD 的长.图21例2、如图22,OA 、OB 是⊙O 的两条半径,且OA ⊥OB ,点C 是OB 延长线上的任意一点,过点C 作CD 切⊙O 于点D ,连接AD 交OC 于点E.⑴求证:CD=CE图22⑵若将图⑴中的半径OB 所在的直线向上平移交OA 于F ,交⊙O 于'B ,其他条件不变(如图23),那么上述结论CD=CE 还成立吗?为什么?图23⑶若将图⑴中的半径OB 所在的直线向上平移到⊙O 外的CF ,点E 是DA 延长线与CF 的交点,其它条件不变,(如图24),那么上述结论CD=CE 还成立吗?为什么?图24例3、如图25中图1所示,O 是圆柱形木块底面的圆心,过底面的一条弦AD ,沿母线AB 剖开,得剖面矩形ABCD ,AD=24cm ,AB=25cm ,若AmD 的长为底面周长的32,如图25中图2所示:(1)求⊙O 的半径;(2)求这个圆柱形木块的表面积.(结果可保留根号)图25三、学习体会_______________________________________________________________________________________________________________.四、自我测试1. 已知⊙O 1的半径为1cm ,⊙O 2的半径为4cm ,O 1O 2长为3cm ,则⊙O 1和⊙O 2的位置关系是( )A .外离B .外切C .相交D .内切2.生活处处皆学问,如图26,眼镜镜片所在的两圆的位置关系是( )A.外离B .外切C .内含D .内切图26 图27 图283.如图27,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ,则图中阴影部分的面积是( )A.6πB.5πC.4πD.3π4.如图28,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A.130° B.100° C.50° D.65°5. 已知:如图29,AB为⊙O直径,BC交⊙O于点D,DE⊥AC于E,要使DE是⊙O的切线,那么图中的角应满足的条件为_______(只需填一个条件).图29 图30 图316.如图30,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BC,则圆中阴影部分的面积为()A.12π B.π C.2π D.4π7.如图31,小圆的圆心在原点,半径为3,大圆的圆心坐标为)0,(a,半径为5,如果两圆内含,那么a的取值范围是.8. 如图32,AB是半圆的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BDE = 60°,PD =3,求PA的长.五、拓展提高1、如图33,已知直线PA交⊙0于A、B两点,AE是⊙0的直径.点C为⊙0上一点,且AC 平分∠PAE,过C作CD⊥PA,垂足为D。
人教版初三数学上册第二十四章圆的小结与复习
第24章圆小结与复习、圆的概念集合形式的概念:i、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:至U定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
练习题:一个圆的直径为8cm,到圆心的距离为则该点在圆_______________三、直线与圆的位置关系1、直线与圆相离— d • r = 无交点;2、直线与圆相切— d =r―有一个交点;3、直线与圆相交—d r―有两个交点;1、点在圆内— d :: r—点C在圆内;2、点在圆上― d = r―点B在圆上;3、点在圆外— d r—点A在圆外;5cm,、点与圆的位置关系练习题:、一个点到圆的最短距离为 3cm ,到圆的最长距离为 9cm ,则这个圆的半径为四、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:( 1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共 5个结论中,只要知道其中 2个即可推出其它3个结论,即:六、圆周角定理①AB 是直径② AB _CD③CE =DE ④弧BC =弧BD⑤弧AC =弧AD中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在O O 中,T AB // CD•••弧 AC 二弧 BD五、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对 的弧相等,弦心距相等。
第24章 小结与复习
弧长与扇形面积的计算
正多边形与圆
作图
Thanks
第二十四章 圆
小结与复习
目录页
要点梳理
考点精讲
当堂练习
课堂小结
要点梳理
✓ 教学目标 ✓ 教学重点
要点梳理 一.与圆有关的概念 1.圆:平面内到定点的距离等于定长的所有点组成的图形. 2.弦:连结圆上任意两点的线段. 3.直径:经过圆心的弦是圆的直径,直径是最长的弦. 4.劣弧:小于半圆周的圆弧. 5.优弧:大于半圆周的圆弧.
·
要点梳理 6.等弧:在同圆或等圆中,能够互相重合的弧. 7.圆心角:顶点在圆心,角的两边与圆相交. 8.圆周角:顶点在圆上,角的两边与圆相交. [注意] (1)确定圆的要素:圆心决定位置,半径决定 大小.(2)不在同一条直线上的三个点确定一个圆.
·
要点梳理 9.外接圆、内接正多边形:将一个圆n(n≥3)等分,依 次连接各等分点所得到的多边形叫作这个圆的内接 正多边形,这个圆是这个正多边形的外接圆.
如图, O为正方形对角线上一点,以点O 为圆 心,OA长为半径的☉O与BC相切于点M.
(1)求证:CD与☉O相切;
(1)证明:过点O作ON⊥CD于N.连接OM
∵BC与☉O相切于点M, ∴ ∠OMC=90
A
°, ∵四边形ABCD是正方形,点O在AC 上.
D
O
N
∴AC是∠BCD的角平分线,
∴ON=OM, ∴ CD与☉O相切.
与圆的位置关系.
要点梳理 2.直线与圆的位置关系 设r为圆的半径,d为圆心到直线的距离
直线与圆的 位置关系
相离
相切
图形
相交
d与r的关系 d>r 公共点个数 0个 公共点名称
人教版九年级数学上册第二十四章圆全章总复习及知识梳理
第二十四章 圆
旋转对称、中心 对称、轴对称
对称性
垂径定理及其推论(注意推论中“不是直径 的弦”的条件) 基本性质 弧、弦、圆心角 关系定理及其推 论 前提条件:在 同圆或等圆中
圆周角定理及其推论
第二十四章 圆
正多边形与圆
等分圆周
有关计算
第二十四章 圆
位置关系 切线的性质 直线与圆的 位置关系 切线的判定 切线的作用
且OM=3, 则⊙O的半径为( C ).
A.10 B. 8 C. 5 D.2
第二十四章 圆
分析
第二十四章 圆
相关题2 如图24-Z-4, 已知AB是⊙O的直径, 且AB=12.
弦CD⊥AB于点M, 且M是半径OB的中点, 则弦CD的长是
6 3 结果保留根号). ______(
第二十四章 圆
解析
【要点指导】一条弧所对的圆周角等于它所对的圆
心角的一半, 在解有关圆的问题时常常借助这个定理
进行角度转化.
第二十四章 圆
例 1 如图24-Z-1, 某珠宝店有一圆形货柜, 为了
增加珠宝的光彩, 在其圆形边缘上的点A处安装了
一台小灯, 它所发出的光线形成的最大张角是65°.
为了使整个货柜里的珠宝都能被灯光照射到, 最少 需在圆形边缘上安装这样的小灯( A.3台 B. 4台 C.5台
A
).
D.6台
第二十四章 圆
分析 ∵∠A=65°,
∴该圆周角所对的弧所对的圆心角是130°.
∵360°÷130°≈2.8, ∴至少要安装3台这样的小灯. 故选A.
第二十四章 圆
相关题1
如图24-Z-2, B, C是⊙A上的两点, AB的垂直平分
线与⊙A交于E, F两点,与线段AC交于点D.若∠BFC=20°, 则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.AB=2CD B.AB<2CD C.AB>2CD
D.不能确定
3、 如图2,⊙O中A⌒B的度数为60°,AC是⊙O的直径,那么
∠BOC等于 ( );
A.150° B.130°
C.120°
D.60°
4、在△ABC中,∠A=70°,若O为△ABC的外心,
∠BOC=
;若O为△ABC的内心,∠BOC=
.
C
第24章 圆
复习与小结
本章知识结构图
圆的基本性质
与圆有关的位置关系
圆
正多边形和圆
圆的对称性 弧、弦圆心角之间的关系
同弧上的圆周角与圆心角的关系
点和圆的位置关系
三角形的外接圆
直线和圆的位置关系 切线 三角形内切圆
圆和圆的位置关系
等分圆
有关圆的计算
弧长 扇形的面积
圆锥的侧面积和全面积
圆的基本性质
点、直线与圆 的位置关系
AB=16,CD=12,则AB、CD间的 距离是_2_c_m或14cm .
1.两条弦在圆心的同侧 2.两条弦在圆心的两侧
A
●O
B
C
D
A C
B ●O
D
推论2:圆内的两条平行弦所夹的弧相等
练一练
1.两个同心圆的直径分别为5 cm和3 cm,则圆环部分的宽 度为_____ cm;
2.如图1,已知⊙O,AB为直径,AB⊥CD,垂足为E,由图你
5.如图,是某机械厂的一种零件平面图. (1)请你根据所学的知识找出该零件所在圆的圆心(要求正确 画图,不写做法,保留痕迹). (2)若弦AB=80cm,A⌒B的中点C到AB的距离是20cm,求该零件所 在的半径长.
A
B
6.如图,AB是⊙O的任意一条弦,OC⊥AB,垂足为P, 若 CP=7cm,AB=28cm ,你能帮老师求出这面镜子的半 径吗?
还能知道哪些正确的结论?请把它们一一写出来
;
3.为改善市区人民生活环境,市建设污水管网工程,某圆
柱型水管的直径为100 cm,截面如图2,若管内污水的面宽
AB=60 cm,则污水的最大深度为
cm
A
C
E
D
O
m
n
B
图1
O
A
B
图2
4.M是⊙O内一点,已知过点M的⊙O最长的弦为10 cm, 最短的弦长为8 cm,则OM=_____ cm.
④ OD=O′D′
圆周角定理及推论
D
B
C
C
E
●O
A
●O
BA
●O
B
A
C
定理: 在同圆或等圆中,同弧或等弧所对的圆周角相等, 都等于这弧所对的圆心角的一半.
推论:1.同弧(或等弧)所对的圆周角相等; 在同圆或等圆中,相等的圆周角所对的弧相等
2.直径(或半圆)所对的圆周角是直角; 90°的圆周角所对的弦是直径.
圆是到定点的距离等于定长的点的集合。 圆上各点到定点(圆心)的距离都等于定长(半径); 到定点的距离等于定长的点都在圆上。
一个圆把平面内的所有点 分成了多少类? 你能模仿圆的集合定义思 想,说说什么是圆的内部 和圆的外部吗?
与圆有关的概念
弦和直径 什么是弦?什么是直径? 直径是弦吗?弦是直径吗?
弧与半圆 什么是圆弧(弧)?怎样表示? 弧分成哪几类? 半圆是弧吗?弧是半圆吗?
(5)平分优弧.
知二得三
D
注意: “ 直径平分弦则垂直弦.”
这句话对吗?( 错 )
垂径定理推论1
(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所 对的两条弧。
(2)平分弦所对的一条弧的直径,垂直平分弦,并且平分 弦所对的另一条弧。
(3)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
例.⊙O的半径为10cm,弦AB∥CD,
弓形是什么?有几种类型? 同心圆、同圆、等圆和等弧
怎样的两个圆叫同心圆? 怎样的两个圆叫等圆? 同圆和等圆有什么性质? 什么叫等弧?
圆的性质
圆是轴对称图形,每一条直径所在的直线都是对称轴。 圆是以圆心为对称中心的中心对称图形。 圆还具有旋转不变性,即圆绕圆心旋转任意一个角度 α,都能与原来的图形重合。
O
C
∴ ∠ B=180°-70 °=110 °
A
B
7.平面上一点P到⊙O上一点的距离最长为6cm,最 短为2cm,则圆O的半径为_2_或__4_c_m_.
与圆有关的位置关系:
垂径定理
1.定理 条弧.
C
A
M└
●O
垂直于弦的直径平分弦,并且平分弦所的两
B
若 ① CD是直径
② CD⊥AB
可推得
③AM=BM,
④A⌒C=B⌒C, ⑤A⌒D=B⌒D.
D
重视:模型“垂径定理直角三角形”
C
垂径定理推论
A M└
B
(1)直径 (过圆心的线);(2)垂直弦;
●O
(3) 平分弦 ;(4)平分劣弧;
正多边 形和圆
弧长和扇 形面积
圆
知识树
垂径定理 圆心角,圆
旋转
周角定理
中心 圆的基本性质
轴
几个相关概念与计算
正多边 形和圆
等分圆
外接圆
内切圆
点、直线与圆 的位置关系
确弧定长和圆扇 的形条的计件算
圆锥的侧 面积和全 面积
圆 切线的性质和判定
弧长 扇形面积
知识树
运动变 化观点
数形结 合思想
分类、方 程思想
D
A
O
B
图1
图2
5.如图:圆O中弦AB等于半径R,则这条弦所对的圆 心角是_6_0°_,圆周角是_30_°_或_150_°_.
O A
B
6.已知ABC三点在圆O上,连接ABCO,如果
∠ AOC=140 °,求∠ B的度数. 解:在优弧AC上定一点D,连结AD、CD. D
∵ ∠ AOC=140 °
∴ ∠ D=70 °
3.如果三角形一边上的中线等于这边的一半, 那么这个三角形是直角三角形
练一练
1、如图1,AB是⊙O的直径,C为圆上一点,A⌒C度数为60°,
OD⊥2B、C,已D知为A垂⌒B,足C⌒,D是且同OD圆=的10两,段则弧AB,=_且__A_⌒B_=,2CB⌒DC,=_则__弦__A;B与CD之
间的关系为( );
C
7
B
P
14
A
O 综合应用垂径定理和勾股定理可求得半径
圆心角、弧、弦、弦心距的关系
在同圆或等圆中,如果①两个圆心角,②两条弧, ③两条弦,④两条弦心距中,有一组量相等,那么它们 所对应的其余各组量都分别相等.
A
D
B
●O
┏
A′ D′ B′
如由条件: ③AB=A′B′
可推出
①∠AOB=∠A′O′B′
②A⌒B=A⌒′B′
辅助线 规律
圆
能力树
圆的定义
1.圆的定义辨析
篮球是圆吗?
圆必须在一个平面内
以3cm为半径画圆,能画多少个? 以点O为圆心画圆,能画多少个? 由此,你发现半径和圆心分别有什么作用?
半径确定圆的大小;圆心确定圆的位置
圆是“圆周”还是“圆面”?
圆是一条封闭曲线
圆周上的点与圆心有什么关系?
2.圆的定义(集合观点)