信号与系统第三章PPT课件
信号与系统第三章PPT课件
.
它们都是傅里叶级数收敛的充分条件。相当广泛的 信号都能满足Dirichlet条件,因而用傅里叶级数表 示周期信号具有相当的普遍适用性。
几个不满足Dirichlet条件的信号
.
三.Gibbs现象 满足 Dirichlet 条件的信号,其傅里叶级数是如
• “非周期信号都可以用正弦信号的加权积分来 表示”——傅里叶的第二个主要论点
.
傅立叶分析方法的历史
古巴比伦人 “三角函数和” 描述周期性过程、预测天体运
动
1748年 欧拉 振动弦的形状是振荡模的线性组合
1753年 D·伯努利 弦的实际运动可用标准振荡模的线性组合来表示
1759年 拉格朗日 不能用三角级数来表示具有间断点的函数
x[k]h[nk]
x[k]h[n k]
k
.
对时域的任何一个信号 x ( t ) 或者 x ( n ) ,若能将其
表示为下列形式: x(t) a 1 es1 t a 2 es2 t a 3 es3 t
由于 es1t H(s1)es1t
es2t H(s2)es2t
es3t H(s3)es3t
利用齐次性与可加性,有
k
例: y(t)x(t3) ❖ 系统输入为 x(t) ej2t
系统 H(s) ? y(t) ?
H(s) h(t)estdt
❖ 系统输入为 x(t)cos(4t)cos(7t)
系统 y(t) ?
.
*问题:究竟有多大范围的信号可以用复指数信号的 线性组合来表示?
.
3.3 连续时间周期信号的傅里叶级数表示
第k次谐波 e jk 0t 的周期为
信号与系统第三章
y (4) 3 y (3) 2 y (2) f (4) 10 ...
特点:便于用计算机求解
2、差分方程的经典解
• 若单输入-单输出的LTI系统的激励为 f(k),全响应为y(k),则描述系统激 励与响应之间关系的数学模型是n阶 常系数线性差分方程,一般可写为:
a y (k i ) b
例3.1-1
• 解:将差分方程中除y(k)以外的各项都移到等 号右端,得
y(k ) 3 y(k 1) 2 y(k 2) f (k )
对k=2,将已知初始值y(0)=0,y(1)=2代入上式,得
y(2) 3 y(1) 2 y(0) f (2) 2
依次迭代可得 y (3) 3 y (2) 2 y (1) f (3) 10
位移单位序列:
运算:
• 加: (k) 2 (k) =3(k)
乘:(k) (k) (k)
延时:
0
取样性质:f (k)(k) f (0)(k)
2. 单位阶跃序列: (k)
(1)定义: (2)运算:
3) δ(k)与ε(k)的关系:
δ(k)=△ε(k)= ε(k)-ε(k-1) 差分表示,对应 的微分δ(t)=dε(t)/dt ε(k)=
第三章 离散系统的时域分析
连续系统与离散系统的比较
时域连续系统
f (t ) y(t )
常系数线性微分方程 卷积积分
时域离散系统
f (k ) y (k )
常系数线性差分方程 卷积和
y(t ) yzi (t ) yzs (t )
yzs (t ) f (t ) h(t )
y(k ) yzi (k ) yzs (k )
信号与系统 第3章-3
解 若直接按定义求图示信号的频谱,会遇到形如te-jωt的繁 复积分求解问题。而利用时域积分性质,则很容易求解。 将f(t)求导,得到图 3.5-5(b)所示的波形f1(t),将f1(t)再求导, 得到图 3.5-5(c)所示的f2(t), 显然有
第3章 连续信号与系统的频域分析
f 2 (t ) = f (t ) = f " (t )
ω )为各频率点
上单位频带中的信号能量,所以信号在整个频率范围的全部
W = ∫ G (ω )dω
0
∞
式中
G (ω ) =
1
π
F ( jω )
2
第3章 连续信号与系统的频域分析 表 3.2 傅里叶变换的性质
第3章 连续信号与系统的频域分析
3.6 周期信号的傅里叶变换
设f(t)为周期信号,其周期为T,依据周期信号的傅里叶级数分 析, 可将其表示为指数形式的傅里叶级数。即
f ( −t ) ↔ F ( − jω )
也称为时间倒置定理 倒置定理。 倒置定理
第3章 连续信号与系统的频域分析
若已知f(t) ↔ F(jω ),求f(at - b)的傅立叶变换。
此题可用不同的方法来求解。 解 此题可用不同的方法来求解。
第3章 连续信号与系统的频域分析
(2) 先利用尺度变换性质,有 先利用尺度变换性质,
第3章 连续信号与系统的频域分析 2. 时移性 时移性 若f(t) ←→ F(jω), 且t0为实常数(可正可负),则有
f ( t − t0 ) ↔ F ( jω ) e
此性质可证明如下
− jω t 0
F [ f (t − t 0 )] = ∫− ∞ f (t − t 0 )e 令τ = t − t 0
信号与系统第三章:傅里叶变换
bn
n1
sin(n1t)
其中
an
,
bn
称为傅里叶系数,
1
2
T
。
16
傅里叶系数如何求得
Ci
t2 t1
f
(t
)
i
(t
)dt
t2
t1
i
2
(
t
)dt
1 Ki
t2 t1
f
(t
)
i
(t
)dt
式中: Ki
t2
t1
i
2
(t
)dt
an
2 T
T
2 T
f (t) cos(n1t)dt
2
a0 2
,
1 T
0 T
2
(1)
cos(n1t
)dt
2 T
T
2 0
cos(n1t
)dt
23
0
T
1
n1
2 T
sin(n1t
)
T 2
2 T
1
n1
sin(n1t
)
2 0
1
2
T
an
0
n 0,1, 2,3,L
24
bn
2 T
T
2 T
f (t) sin(n1t)dt
2
2 T
0 T
2
(1)
sin(n1t
)dt
2 T
T
2 0
26
T
T
0
T/ 2
t
0
T/ 2
t
(a)基波
(b)基波+三次谐波
0
T/ 2
Tt
信号与系统_第三章连续信号的正交分解_ppt课件
信号与系统_第 三章连续信号 的正交分解
第 三 章 连 续 信 号 的 正 交 分 解
学习内容及要求
内容:
信号的分量与分解、正交函数集的概念,信号 的傅立叶级数分解
周期信号的频谱分析 非周期信号的频谱分析,常用典型信号的傅立 叶变换,掌握傅立叶变换的技巧 傅立叶变换的性质,帕塞瓦尔定理与能量频谱
示任何的复杂信号;
找到---信号如何分解,如何将信号分解或表示为该函数集中单 元函数的组合(付里叶级数(三角付里叶级数,指数付里叶级 数)) –从信号分量组成情况讨论信号特性
周期信号频谱; 非周期信号频谱;
–信号时域特性与频域特性的关系
第 三 章 连 续 信 号 的 正 交 分 解
§3.1 引言
t 2
2 (t) min 1 2 1 t 1 2 2 f ( t ) dt 1 t1 t t 2 1
1 2
12
t2 t1
t2
t1
f1(t)f2(t)dt
t2 t1 2 2 1 2
[ f (t)dt ] f (t)dt
2 1
A n C 1V 1 C 2V 2 C rV r C nV n 并且: V V K V 2 m m m m V ,l m m 0 l V
为使近似误差矢量的模 或是模的平方最小,
Cr AV r V r V r AV r V r
t2
t1
f1(t) f2(t)dt
t2 t1
f2 (t)dt
2
§3.2 正交函数集与信号分解
第 三 章 连 续 信 号 的 正 交 分 解
信号与线性系统分析--第三章
第三章 离散系统的时域分析
本章概述
离散时间域的方程求解
连续时间域 时间函数 微分方程 卷积积分 离散时间域 离散序列 差分方程 卷积求和
求解方法
迭代法 经典法 卷积法
连续时间信号、连续时间系统
连续时间信号
f(t)是连续变化的t的函数,除若干不连续点之外 对于任意时间值都可以给出确定的函数值。函数 的波形一般具有平滑曲线的形状,一般也称模拟 信号
f (n) .... f (1) (n 1) f (0) (n) f (1) (n 1) ...
i
f (i) (n i)
f(k ) f(2) f(-1) f(1) f(0) … 1 2 i f(i) … k
可推出:离散系统的零状态响应
y zs (n)
m
f (m) (n m)
单位阶跃序列
与阶跃函数的不同?
延时的单位阶跃序列
用单位样值序列来表示
u( n) ( n) ( n 1) ( n 2) ( n 3) (n k )
k 0
( n) u(n) u( n 1)
题目中 y0 y1 0 ,是激励加上以后的,不是初始状 态,需迭代求出 y 1, y 2 。
n 1 y1 3 y0 2 y 1 2u 1 2 u 0
0
0 0 2 y1 2 1 1
1 y 1 2
n0
y0 3 y 1 2 y 2 2 u 0 2 u 1
0 1
0 3 y 1 2 y 2 1
y 2 5 4
将初始状态代入方程求系数
信号课件第三章傅里叶变换
• 任何周期函数在满足狄义赫利的条件下,可以展成正交函 数线性组合的无穷级数。如果正交函数集是三角函数集或 指数函数集,此时周期函数所展成的级数就是“傅里叶级 数”。
T1 T1 T1 2
f (t) sin n1tdt 0
2 T1
a0 T1
2
an T1
2 T1
T21
2 T1
2
f (t)dt
f (t) c
2f T1 0
osn1tdt
(t)dt
4 T1
T1 2
0
f (t) cosn1tdt
所以,在偶函数的傅里叶级数中不会有正弦项,只可能 含有(直流)和余弦分量。
α>0
F (w) f (t)e jwt dt ete jwt dt 1
0
jw
f (t) 1
t
F(w) 1
2 w2
1/ F( j)
(
)
arctan(
)
( )
/2
/2
2、双边指数信号
f (t)
f (t) e t α>0
1
2/ F()
F (w) f (t)e jwt dt
dt
E
e jnw1t
/2
E
e jnw1 / 2 e jnw1 / 2
T / 2
T
jnw1
T
/ 2
jnw1
Ts
t
2E T
e jnw1 / 2 e jnw1 / 2 2 jnw1
信号与系统课件-第三章33频率抽样理论
抽样频率的选择
理想抽样频率
根据抽样定理,选择抽样频率为原始信号最高频率 的两倍以上,以确保不发生混叠效应。
采样定理的限制
抽样频率过高会造成存储和计算开销增加,同时增 加了噪声和功耗。
理想低通滤波器
理想低通滤波器是用于去除抽样过程中产生的混叠效应的滤波器,它可以尽 可能减少高频成分的混叠。
混叠效应
混叠效应是导致原始信号频谱复制和幅度损失的现 象样频率足够高时,采样 点之间不会产生重叠。
频域解释
抽样定理的几何解释是,抽样频率足够高时,抽样 后的频谱多个副本不会重叠。
理想低通滤波器的时域和频域表示
时域表示
理想低通滤波器在时域上的响应是一个无限长的矩 形脉冲。
频域表示
理想低通滤波器在频域上的响应是一个频率为截止 频率的矩形函数。
抽样过程中的混叠效应
抽样过程中的混叠效应是指高频信号在抽样过程中被混叠到产生的低频信号 中,使得信号失真。
抽样后的频谱
频谱形状
抽样后的信号频谱包含了原始信号频谱的多个副本, 每个副本都有一定的幅度衰减。
信号与系统课件-第三章 33频率抽样理论
本章介绍信号抽样理论,包括抽样定理的定义与应用、抽样频率的选择、理 想低通滤波器,以及抽样过程中的混叠效应和频谱。
抽样定理的定义
1 什么是抽样定理?
抽样定理是指对一个连续时间信号进行抽样时,需满足抽样频率大于等于两倍信号最高 频率。
2 为什么抽样频率要满足抽样定理?
信号与系统课件-第三章离散傅立叶变换DFT
拓展延伸:其他相关变换方法简介
要点一
拉普拉斯变换
要点二
Z变换
用于分析线性时不变系统的稳定性及频率响应特性。
用于分析离散时间线性时不变系统的稳定性及频率响应特 性。
THANKS
感谢观看
高频谱利用率
OFDM技术通过采用正交子载 波的方式,实现了频谱资源的 有效利用,提高了系统的频谱 利用率。
03
抗多径干扰能力强 04
由于OFDM系统采用了多载波调 制方式,每个子载波上的符号周 期相对较长,因此具有一定的抗 多径干扰能力。
适用于高速数据传 输
OFDM技术通过将高速数据流分 解成多个低速子数据流进行传输 ,降低了对单个载波的传输速率 要求从而适用于高速数据传输 场景。
共轭对称性
若x[n]为实序列,则其DFT满足 X[k]=X*[N-k],其中*表示共轭。
周期性与非周期性信号处理方法
周期性信号处理方法
对于周期性信号,可以通过截取一个周期的信号进行DFT分析,得到该信号的频谱特性。由于DFT具有周期性, 因此可以通过对截取信号的DFT结果进行周期延拓得到整个周期信号的频谱。
06
总结回顾与拓展延伸
关键知识点总结回顾
01
离散傅立叶变换(DFT)定义及性质
02
DFT是将连续时间信号在时域和频域上都进行离散化处理的一 种变换方法。
03
DFT具有线性性、时移性、频移性、共轭对称性等基本性质。
关键知识点总结回顾
直接计算法
根据DFT定义直接进行计算,但计算量大,不实用。
快速傅立叶变换(FFT)
仿真实验:不同窗函数对信号重构影响
实验目的
说明本实验的目的在于研究不同 窗函数对信号重构的影响,以便 在实际应用中选择合适的窗函数。
信号与系统-吴大正PPT课件
§1.2 信号的描述和分类
信号的描述 信号的分类 几种典型确定性信号
■ 第 18 页
一、信号的描述
信号是信息的一种物理体现。它一般是随时间或 位置变化的物理量。
信号按物理属性分:电信号和非电信号。它们 可以相互转换。
电信号容易产生,便于控制,易于处理。本课 程讨论电信号——简称“信号”。
▲
■
第1页
信号与系统
是电子技术、信息工程、通信工程 等专业重要的学科基础课
课程介绍
Signals and Systems
电子技术、 信息工程、 通信工程 等专业的 考研课程
■
第3页
课程位置
先修课
后续课程
《高等数学》 《通信原理》
《线性代数》 《数字信号处理》
《复变函数》 《自动控制原理》
《电路分析基础》 《数字图像处理》
▲
■
第7页
参考书目
(1)郑君里等. 信号与系统(第二版) . 北京:高等教育出 版社, 2000 (2) 管致中等 . 信号与线性系统 (第四版) . 北京:高等 教育出版 社, 2004 (3)A.V.OPPENHEIM. 信号与系统 (第二版) .北京 :电 子工业出版 社, 2002 (4)王松林、张永瑞、郭宝龙、李小平.信号与线性系统 分析 (第4版) 教学指导书. 北京:高等教育出版 社, 2006
▲
■
第8页
信号与系统
第一章 信号与系统
第二章 连续系统的时域分析
第三章 离散系统的时域分析
第四章 傅里叶变换和系统的频域分析
第五章 连续系统的s域分析
第六章 离散系统的z域分析
第七章 系统函数
第八章 系统的状态变量分析
信号与系统第3章 傅里叶变换
P
f
2 (t) 1 T1
t0 T1 t0
f
2 (t)d t
a0 2
1 2
n1
(an
2
bn 2 )
2
Fn _____ 帕塞瓦尔定理
n
结论:周期信号的平均功率等于傅里叶级数展开 式中基波分量及各谐波分量有效值的平方 和,即时域和频域的能量守恒。
五. 周期信f号(t)的频c0 谱 (c三n c角os函(n数1t形 式n )) n1
(1) 偶函数 f (t) f (t)
4
an T1
T1
2 0
f (t) cos(n1t)dt
Fn
Fn
an 2
bn 0
傅里叶级数中不会含有正弦项, 只可能含有直流项和余弦项。
(2) 奇函数 f (t) f (t)
a0 0 , an 0
bn
4 T1
T1
2 0
f (t) sin(n1t)d t
e j n1t
T1 n 2
画频谱图:
c0
a0
E
T1
an
2E
T1
Sa
n1
2
, n
1,2,
cn an
1)令 m
2
得
2
m
即在
2
m,m为整数处有零点。
2)
2
2
T1
T1
零点间谱线个数
3) c n值为正,相位为0,值为负,相位为π
4)谱线间隔为 1 带宽
2
T1
,第一个过零点带宽定义为信号的
1 3
s in31t
1 4
sin41t
E
1 n1
信号与系统第三章(2)
F n ⋅ 2 πδ (ω − n ω
) )
= 2π
n = −∞
∑
∞
F n ⋅ δ (ω − n ω
0
即周期信号的傅里叶变换为
F (ω ) = 2π ∑ Fn ⋅ δ (ω − nω 0 )
−∞
∞
上式表明:周期信号的频谱函数,是由无限多个冲激组 上式表明:周期信号的频谱函数, 成,这些冲激位于基频整数倍的频率 nω0处,每一冲激的 强度即为 2π Fn 。
3.5.1 单位冲激 δ (t )
由根据傅里叶变换的定义式, 由根据傅里叶变换的定义式,并且考虑到冲激函 数的抽(取)样性质,得 数的抽( 样性质,
F (ω ) = ∫ δ (t )e
−∞
∞
− jωt
dt = ∫ δ (t )dt = 1
−∞
∞
结论:
1、单位冲激信号在整个频率范围内具有恒定的频 、单位冲激信号在整个频率范围内具有恒定的频 恒定的 谱函数,为常数1,即冲激信号包含相对幅度相等的所 谱函数 为常数 即冲激信号包含相对幅度相等的所 有频率分量,相位都为 相位都为0. 有频率分量 相位都为 2、信号的持续时间与其频带宽度成反比。 反比。 、信号的持续时间与其频带宽度成反比
−∞ ∞ − jωt
dt = ∫ τ e
2 − 2
− jωt
dt =
e
−e − jω
j
ωτ
2
3.5.7 虚指数函数
利用傅里叶反变换定义和冲激函数的抽样性质, 利用傅里叶反变换定义和冲激函数的抽样性质,可得
1 F [δ (ω − ω 0 )] = 2π
−1
∫ δ (ω − ω )e
−∞ 0
∞
信号与系统第三章
内,对于有限带宽信号类来说是一个完备的正交 函数集。这里
sin x S a ( x) x
称为抽样函数。
15
诸燕平
2015年春
X
信号与系统—signals and systems
3.2 周期信号的傅里叶级数分析
三角函数的傅里叶级数 指数形式的傅里叶级数 函数的对称性与傅里叶系数的关系
设f1(t)和f2(t)是定义在(t1, t2)区间上的两个实变函数
(信号),若在(t1, t2)区间上有
t2
t1
f1 (t ) f 2 (t )dt 0
则称 f1(t)和f2(t) 在(t1, t2)内正交。
8
诸燕平
2015年春
X
信号与系统—signals and systems
若f1(t),f2(t), …, fn(t)定义在(t1, t2)区间上,并且在 (t1, t2) 内有
这两组条件并不完全等价。它们都是傅里叶级 数收敛的充分条件。相当广泛的信号都能满足这 两组条件中的一组,因而用傅里叶级数表示周期 信号具有相当的普遍适用性。
Signals that violate the Dirichlet conditions
(b) the periodic signal of eq. x(t)=sin(2π/t) which violates the second Dirichlet condition
(1)在一周期内,如果有间断点存在,则间 断点的数目应该是有限个; (2)在一周期内,极大值和极小值的数目应 是有限个; (3)在一周期内,信号是绝对可积的,即 t T t f (t ) dt 等于有限值(T1为周期)
《信号与系统教案》课件
《信号与系统教案》PPT课件第一章:信号与系统导论1.1 信号的定义与分类定义:信号是自变量为时间(或空间)的函数。
分类:连续信号、离散信号、模拟信号、数字信号等。
1.2 系统的定义与分类定义:系统是一个输入与输出之间的映射关系。
分类:线性系统、非线性系统、时不变系统、时变系统等。
1.3 信号与系统的研究方法数学方法:微分方程、差分方程、矩阵分析等。
图形方法:波形图、频谱图、相位图等。
第二章:连续信号与系统2.1 连续信号的性质连续时间:自变量为连续的实数。
有限能量:能量信号的能量有限。
有限带宽:带宽有限的信号。
2.2 连续系统的特性线性特性:叠加原理、齐次性原理。
时不变特性:输入信号的延迟不会影响输出信号。
2.3 连续信号的运算叠加运算:两个连续信号的叠加仍然是连续信号。
齐次运算:连续信号的常数倍仍然是连续信号。
第三章:离散信号与系统3.1 离散信号的性质离散时间:自变量为离散的整数。
有限能量:能量信号的能量有限。
有限带宽:带宽有限的信号。
3.2 离散系统的特性线性特性:叠加原理、齐次性原理。
时不变特性:输入信号的延迟不会影响输出信号。
3.3 离散信号的运算叠加运算:两个离散信号的叠加仍然是离散信号。
齐次运算:离散信号的常数倍仍然是离散信号。
第四章:模拟信号与系统4.1 模拟信号的定义与特点定义:模拟信号是连续时间、连续幅度、连续频率的信号。
特点:连续性、模拟性、无限可再生性。
4.2 模拟系统的特性线性特性:叠加原理、齐次性原理。
时不变特性:输入信号的延迟不会影响输出信号。
4.3 模拟信号的处理方法模拟滤波器:根据频率特性对模拟信号进行滤波。
模拟调制:将信息信号与载波信号进行合成。
第五章:数字信号与系统5.1 数字信号的定义与特点定义:数字信号是离散时间、离散幅度、离散频率的信号。
特点:离散性、数字化、抗干扰性强。
5.2 数字系统的特性线性特性:叠加原理、齐次性原理。
时不变特性:输入信号的延迟不会影响输出信号。
信号与系统课件(郑君里版)第3章
1,带宽与脉宽成反比。
3.系统的通频带>信号的带宽,才能不失真
语音信号 频率大约为 300~3400Hz,
音乐信号
50~15,000Hz,
扩音器与扬声器 有效带宽约为 15~20,000Hz。
29
第三章 傅里叶变换
§3.4 傅里叶变换
•傅里叶变换 •傅里叶变换的表示 •傅里叶变换的物理意义 •傅里叶变换存在的条件
26
第三章 傅里叶变换
4.总结
T1
谱
线
幅度
间隔
1
2π T1
当T1
,时,1
0,E
T1
为无限小,
f t 由周期信号 非周期信号。
矩形脉冲的频谱说明了周期信号频谱的特点: 离散性、谐波性、收敛性。
27
第三章 傅里叶变换
二.频带宽度 1.问题提出
E F (n1 )
18
第三章 傅里叶变换
五.周期信号的功率
P 1 T
T 0
f
2(t)d t
a02
1 2
n1
an2
bn2
a02
1 2
cn2
n1
Fn
n
2
这是帕塞瓦尔定理在傅里叶级数情况下的具体体现;
表明:
周期信号平均功率=直流、基波及各次谐波分量
有效值的平方和;
周期信号频谱具有离散性、谐波性、收敛性 。
12
第三章 傅里叶变换
频谱图
幅度频谱
cn
c1
cn ~
或
c0
c3
信号与系统教学课件 第三章 周期信号的傅立叶级数表示
a
a 1
0
a1
gggg a
a
3
2
a 2 a 3 gggg
2019/10/22
0 0
这样绘出的图 称为频谱图
15
频谱图其实就是将 随a k 频率的分布表示出来,
即 ak ~的关系。由于信号的频谱完全代表了信号,
研究它的频谱就等于研究信号本身。因此,这种表
示信号的方法称为频域表示法。
三.傅里叶级数的其它形式
若 x 是( t )实信号,则有 x(t)x(t),于是
x ( t) k a k e jk 0 t * k a k e jk 0 t k a k e jk 0 t k a k e jk 0 t
考查LTI系统对复指数信号 e s t 和 z n 的响应
e st
h (t)
y (t) z n
h (n )
y (n )
由时域分析方法有,
y ( t) e s ( t ) h () d e s t h () e s d H ( s ) e s t
y (n ) z(n k )h (k ) zn h (k )z k H (z)zn
2019/10/22
k
k
7
可见LTI系统对复指数信号的响应是很容易求得的。
这说明 和 e 符s t 合对z n单元信号的第一项要求。
特征函数 (Eigenfunction)
9
利用系统的齐次性与叠加性
由于 es1t H(s1)es1t
es2t H(s2)es2t
《信号与系统》第3章
信号与系统讲稿
• 这部经典著作将欧拉、伯努利等人在一 些特殊情形下应用的三角级数方法发展 成内容丰富的一般理论,三角级数后来 就以傅里叶的名字命名。 • 《热的解析理论》影响了整个19世纪分 析严格化的进程。
信号与系统讲稿
3.1
周期性信号的频域分析
教学目标:掌握周期性信号频谱的概念, 会用傅里叶级数表示周期信号。
或 E 2 E f (t ) T1 T1 n1 Sa 2 n 1
Cos( n1t )
若将展开指数形式的傅里叶级数,由式(8)可得:
1 Fn T1
T1 2 T 1 2
Ee
ห้องสมุดไป่ตู้
jn1t
E n1 dt Sa T1 2
幅度谱cn和相位谱 见书P104页。
特别注意:书P103 1. 2. 3. P105 “对称方波信号有两个特点: (1)它是正负交替的信号,其直流分量(a0 等于零。 (2) 它的脉宽等于周期的一半,即 ”
信号与系统讲稿 第三章
)
信号与系统讲稿
二. 三. 四. 五.
周期锯齿脉冲信号(书P106,自学) 周期三角脉冲信号(书P106,自学) 周期半波余弦信号(书P108,自学) 周期全波余弦信号(书P108,自学)
n 1
a0 d0 2 dn
2 2 an bn 1
n tg
an bn
n次谐波的初相角
信号与系统讲稿
三. 频谱的概念
f ( t )为时间函数,而c0、cn、n为频率函数, 所以,信号从用时间函数来表达过渡到用频率函 数来表达。 1. 幅度频谱:cn 随频率变化的情况用图 来表示就叫幅度频谱。 2. 相位频谱:n随频率变化的情况用图 来表示就叫相位频谱。
信号与系统分析PPT全套课件 (3)可修改全文
f (2t)
倒相
f (t)
f (t)
1.3 信号时域变换
例1-8
1.4 信号时域运算
相加
f1(t)
f2 (t)
fn (t)
相乘 f1(t)
f2 (t)
y(t) f1(t) f2 (t) fn (t) y(t) f1(t) f2 (t)
1.4 信号时域运算
数乘
f (t)
a
y(t) af (t)
y
(
k
)
(0
)
y (k) (0 )
y y
(0
(k)
) (0
)
y zi
(0
y
(k zi
)
) (0
y )
zs (0
y
(k zs
) ) (0
)
在零输入条件下,且系统的内部结构和参数 不发生变化时,有:
y(0 y (k )
) (0
)
yzi (0
y
(k zi
)
) (0
)
3.初始状态和初始值的确定
A1 y1(t) A2 y2 (t)
y(t)
y(t t0 )
1.7 线性时不变系统的性质
微分性
f (t)
df (t) dt
积分性
f (t)
t
f ( )d
系统 系统
y(t)
dy(t) dt
y(t)
t
y( )d
1.8 信号与系统分析概述
1.8.1 基本内容与方法
确定信号和线性时不变系统
建立与求解系统的数学模型
2.2.2 零输入响应与零状态响应
1.零输入响应 2.零状态响应
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 连续时间傅里叶级数 回顾:连续复指数信号的周期
对一个复指数信号e jt ,要成为具有周期为T 0 的周
期信号的必要条件:
ejT0 1
定义 有
2k T0
0
2 T0
(k0,1,2)
k0 .
成谐波关系的复指数信号
基波频率
k(t)ejk0t , k0,1,2
成谐波关系的复指数信号集合
基波周期为
.
例2: x(t)co s 0 t2co s3 0 t
1[ej0tej0t]ej30tej30t 2
在该信号中,有四个谐波分量,即 k1,3,
.
1822年 傅立叶 “热的分析理论” 中提出并证明周期函数的正弦
级数展开原理,奠定了傅立叶级数的理论基础
1829年 P.L狄里赫利 周期信号傅立叶级数表示的若干精确条件
19-20世纪 两种傅立叶分析方法--连续与离散
1965年 Cooley & Tukey (IBM) 发明FFT 算法
.
x[k]h[nk]
x[k]h[n k]
k
.
对时域的任何一个信号 x ( t ) 或者 x ( n ) ,若能将其
表示为下列形式: x(t) a 1 es1 t a 2 es2 t a 3 es3 t
由于 es1t H(s1)es1t
es2t H(s2)es2t
es3t H(s3)es3t
利用齐次性与可加性,有
3.2 LTI系统对复指数信号的响应
❖ 考查LTI系统对复指数信号 e s t 和 z n 的响应
e st
h (t)
y (t) z n
h (n )
y (n )
由时域分析方法有,
y ( t) e s ( t ) h () d e s t h () e s d H ( s ) e s t
y (n ) zn kh (k ) zn h (k )z k H (z)zn
k
k
结论:复指数函数是一切LTI系统的特征函数 .
离散时间LTI系统的单位脉冲响应 时不变性
[n]
LTI
[n k]
齐次性
x[k][nk]
LTI
k
h[n ] h[n k]
k
例: y(t)x(t3) ❖ 系统输入为 x(t) ej2t
系统 H(s) ? y(t) ?
H(s) h(t)estdt
❖ 系统输入为 x(t)cos(4t)cos(7t)
系统 y(t) ?
.
*问题:究竟有多大范围的信号可以用复指数信号的 线性组合来表示?
.
3.3 连续时间周期信号的傅里叶级数表示
.
系统对某一输入信号的响应:一个常数×输入信号
y(t)H(s)est
系统的特征值
系统的特征函数
y(n)H(z)zn
.
❖ 系统的特征值
H(s) h(t)estdt
H(z) h(n)zn
k
y ( t) e s ( t ) h () d e s t h () e s d H ( s ) e s t
第3章 周期信号的傅里叶级数表示
Fourier Series Representation of Periodic Signals
Ⅰ. 周期信号的频域分析 Ⅱ. LTI系统的频域分析 Ⅲ. 傅立叶级数的性质
.
3.0 引言 Introduction
时域分析方法的基础: 信号在时域的分解;LTI系统:满足线性、时不变性
x ( t ) y ( t ) a 1 H ( s 1 ) e s 1 t a 2 H ( s 2 ) e s 2 t a 3 H ( s 3 ) e s 3 t
即: x(t) akeskt
k
同理: x(n) akZkn
k .
y(t) akH(sk)eskt
k
y(n) akH(Zk)Zkn
• “非周期信号都可以用正弦信号的加权积分来 表示”——傅里叶的第二个主要论点
.
傅立叶分析方法的历史
古巴比伦人 “三角函数和” 描述周期性过程、预测天体运
动
1748年 欧拉 振动弦的形状是振荡模的线性组合
1753年 D·伯努利 弦的实际运动可用标准振荡模的线性组合来表示
1759年 拉格朗日 不能用三角级数来表示具有间断点的函数
第k次谐波 e jk 0t 的周期为
.
T0
2 0
2 Tk k 0
成谐波关系的复指数信号之和
x(t) akejk0t k
傅里叶级数表示
信号周期为
T 2 0
傅里叶级数系数
.
例1:
x(t)cos0t
1ej0t 2
1ej0t 2
该信号中,有两个谐波分量,a 1 分量的加权因子。
1 2
为相应
.
傅立叶 1768-1830 (Fourier, Jean Baptiste Joseph) 法国数学家、物理学家
•最早使用定积分符号 •改进符号法则、根数判别方法 •傅立叶级数创始人
➢1807 《热的传播》 ➢1822 《热的分析理论》 ➢傅立叶级数、分析等理论
.
傅里叶的两个最重要的贡献——
• “周期信号都可以表示为成谐波关系的正弦信 号的加权和”——傅里叶的第一个主要论点
y (n ) zn kh (k ) zn h (k )z k H (z)zn
k
k
易求LTI系统对复指数信号的响应
这说明 e s t 和 z n 符合对单元信号的第一项要求 .
特征函数与特征值
❖ 如果系统对某一输入信号的响应只是该输入信号 乘以一个常数,则称该输入信号是这个系统的特征 函数,该常数称为与该信号有关(相对应)的特征值
从分解信号的角度出发,基本信号单元必须满足:
➢本身简单,且LTI系统对它的响应能简便得到。 ➢具有普遍性,能够用以构成相当广泛的信号。
傅立叶分析方法:
➢出发点:将信号表示成一组基本信号的线性组合; ➢基本信号为复指数信号; ➢信号表示为连续时间和离散时间的傅立叶级数与傅立叶变换。
.
3.1 历史的回顾 (A Historical Perspective)