电力系统发生不对称短路故障分析

合集下载

不对称故障的分析与计算

不对称故障的分析与计算

《电力系统分析》
不对称故障的分析与计算
水利与建筑工程学院
电气与动力实验室
1、不对称短路分析与计算
一、实验目的
1、掌握运用Matlab进行电力系统仿真实验的方法;
2、理解导纳矩阵、阻抗矩阵及其求解方法;
3、掌握不对称短路的分析和计算方法;
4、学会编写程序分析不对称故障。

二、预习与思考
1、用Matlab对基本的矩阵进行运算。

2、导纳矩阵、阻抗矩阵有何关系,如何求取阻抗矩阵?
3、不对称短路有哪些,它们的边界条件分别是什么,如何形成它们的复合序网络图?
4、如何用程序实现不对称短路的计算?
三、系统网络及参数
图1 系统网络图
表1 元件参数及阻抗
四、实验步骤和要求
1、根据以上网络和参数,编写程序进行下列故障情况下的故障电流、节点电压和线路电流的计算。

(1)通过故障阻抗Z f=j0.1p.u., 节点3发生三相短路;
(2)通过故障阻抗Z f=j0.1p.u.,节点3发生单相接地短路;
(3)通过故障阻抗Z f=j0.1p.u.,节点3发生相间短路;
(4)通过故障阻抗Z f=j0.1p.u.,节点3发生两相接地短路。

五、实验报告
1、完成下表2-表9。

表2 节点3发生三相对称短路时的故障电流
表3 节点3发生三相对称短路时各节点电压
表4 节点3发生单相短路时的故障电流
表5 节点3发生单相短路时各节点电压
表6 节点3发生相间短路时的故障电流
表7 节点3发生相间短路时各节点电压
表8 节点3发生两相接地短路时的故障电流
表9 节点3发生两相接地短路时各节点电压
2、书面解答本实验的思考题。

5(C-8)不对称故障分析 - 电力系统 湖南大学

5(C-8)不对称故障分析 - 电力系统 湖南大学



(b) 短路电压:短路两相V相等,为非短路相的1/2 且相位相反。 特别:
Zff(2) =Zff(1) then Vfa =Vf[0] & Vfb =Vfc = 1 Vf[0] 2
9
8-1 简单不对称短路的分析
三、两相接地短路: (1) 边界条件:
Vfa Vfb
Vfb Vfc I fa=0 Ifb I fc
I fa (1) I fa (2) I fa (0) 1 I fa 3
I fa(2)
I fa(0)
Zff(1) + V f [0 ]
V f a (1 )
Zff(2)
V fa (2 )
Zff(0)
Vfa(0)
-
I fa(1) I fa(2) I fa(0)
= Zff(1) + (Zff(2) + Zff(0) ) Zff(1) + Z(1) Δ 4
3 Vf[0]
3 Vf[0]
8-1 简单不对称短路的分析
一、单相接地短路: (5) 故障(短路)口的各相电压
Vfb = a 2Vfa(1) + aVfa(2) + Vfa(0) = -j 23 2Z ff(2) + Z ff(0) - j 3Z ff(0) I fa(1) 2 3 Vfc = aVfa(1) + a Vfa(2) + Vfa(0) = -j 2 - 2Z ff(2) + Z ff(0) - j 3Z ff(0) I fa(1) Vfa = 0
Ifc = aIfa(1) + a 2Ifa(2) + Ifa(0) = a Zff(2) + a 2Zff(0)

!16-17-18电力系统短路分析-正序负序零序

!16-17-18电力系统短路分析-正序负序零序

1 a1
a1
jX I V
2 a2
a2
jX I V
0 a0
a0
Ia1
E j( X1 X 2 X 0 )
Ia2 Va1
Ia0 E
Ia1 jX 1 Ia1
j(X 2
X
0
)Ia1
Va2 jX 2 Ia1
Va0 jX 0 Ia1
➢ 所谓复合序网,是指根据边界条件所确定的短路点各
2022/3/24
8
二、不对称短路电流计算
序阻抗:元件三相参数对称时,元件两端某一序的电压降 与通过该元件的同一序电流的比值。
正序阻抗 负序阻抗 零序阻抗
Z Z
(1) (2)
Va1/ Ia1 Va2/ Ia2
Z(0)
Va 0 /
Ia0
v 对于三相对称的元件中的不对称电流、电压的计算问题, 可以分解成三相对称的分量,分别进行计算。
1 3
1 1 1
a a2 1
a a
2
FFVU
1
FW
(5-35)
(5-38)
(5-39)
5
根据式(5-38),可以把三组三相对称相量合成为三个 不对称相量;
根据式(5-39),可以把三个不对称相量分解成三组三 相对称相量。
由式(5-39)可知,若 FU FV FW 0,则对称分量 中不包含零序分量。在三相系统中三相线电压之和恒等于 零,故线电压中没有零序分量。
量表示的边界条件为
UU1 UU 2 UU 0 0 IU1 IU 2 IU 0
(5-43)
➢ 将基本序网方程式(5-41)和边界条件方程式(5-43)联
立求解,可得短路点的正序分量电流为

电力系统不对称故障的分析计算

电力系统不对称故障的分析计算

电力系统不对称故障的分析计算1. 引言电力系统是现代社会中不可或缺的根底设施之一。

然而,由于各种原因,电力系统可能会发生不对称故障,导致电力系统的正常运行受到严重影响甚至导致短路事故。

因此,对电力系统不对称故障进行分析和计算是非常重要的。

本文将分析电力系统不对称故障的原因、特点以及进行相应计算的方法,并使用Markdown文本格式进行输出。

2. 不对称故障的原因和特点不对称故障是指电力系统中出现相序不对称的故障。

其主要原因包括:单相接地故障、双相接地故障以及两相短路故障等。

不对称故障的特点如下:1.电流和电压的相位不同:在不对称故障中,电流和电压的相位不同,通常表现为电流和电压波形的不对称。

2.非对称系统功率:由于不对称故障,电力系统中的功率将变得非对称。

正常情况下,三相电流和电压的功率应该平衡,但在不对称故障中,这种平衡被破坏。

3.对称分量的存在:在不对称故障中,由于相序的不同,电流和电压中会存在对称正序分量、对称负序分量和零序分量。

3. 不对称故障的分析计算方法对于不对称故障的分析计算,一般可以采用以下步骤:3.1 系统参数获取首先,需要获取电力系统的各项参数,包括发电机、变压器、线路和负载的参数等。

这些参数将用于后续的计算。

3.2 故障状态建模根据故障的类型和位置,对故障状态进行建模。

常见的故障状态包括单相接地故障、双相接地故障和两相短路故障等。

3.3 网络方程建立基于故障状态的建模,可以建立电力系统的节点方程或潮流方程。

通过求解节点方程或潮流方程,可以得到电流和电压的分布情况。

3.4 不对称故障计算根据网络方程的求解结果,可以计算不对称故障中电流、电压和功率的各项指标,包括正序分量电流、负序分量电流、零序电流等。

3.5 故障保护和控制根据不对称故障的计算结果,可以对故障保护和控制系统进行设计和优化。

通过故障保护和控制系统的响应,可以及时检测和隔离故障,保证电力系统的平安运行。

4. 结论电力系统不对称故障的分析计算是确保电力系统平安运行的重要步骤。

不对称短路故障分析与计算(电力系统课程设计)

不对称短路故障分析与计算(电力系统课程设计)

不对称短路故障分析
02
不对称短路故障类型
单相接地短路
其中一相电流通过接地电阻,其余两 相保持正常。
两相短路
两相接地短路
两相电流通过接地电阻,另一相保持 正常。
两相之间没有通过任何元件直接短路。
不对称短路故障产生的原因
01
02
03
设备故障
设备老化、绝缘损坏等原 因导致短路。
外部因素
如雷击、鸟类或其他异物 接触线路导致短路。
操作错误
如误操作或维护不当导致 短路。
不对称短路故障的危害
设备损坏
短路可能导致设备过热、烧毁或损坏。
安全隐患
短路可能引发火灾、爆炸等安全事故。
停电
短路可能导致电力系统的局部或全面停电。
经济损失
停电和设备损坏可能导致重大的经济损失。
不对称短路故障计算
03
方法
短路电流的计算
短路电流的计算是电力系统故障分析中的重要步骤,它涉及到电力系统的 运行状态和设备参数。
不对称短路故障分析与 计算(电力系统课程设计)
contents
目录
• 引言 • 不对称短路故障分析 • 不对称短路故障计算方法 • 不对称短路故障的预防与处理 • 电力系统不对称短路故障案例分析 • 结论与展望
引言
01
课程设计的目的和意义
掌握电力系统不对称短路故障的基本原理和计算 方法
培养解决实际问题的能力,提高电力系统安全稳 定运行的水平
故障描述
某高校电力系统在宿舍用电高峰期发生不对称短路故障,导致部 分宿舍楼停电。
故障原因
经调查发现,故障原因为学生私拉乱接电线,导致插座短路。
解决方案
加强学生用电安全教育,规范用电行为;加强宿舍用电管理,定 期检查和维护电路。

电力系统不对称故障

电力系统不对称故障

对称分量中分解和合成的相量关系
Fa2 Fa1
Fc1
Fb1
(a)
Fb2
(b)
Fa0
Fa2
Fa
Fa1
Fc2
Fa0 Fb0 Fc0
(c)
Fc1
Fc2
Fc
Fb1 Fc0
Fb2
Fb
(d)
Fb0
注意:
➢ a b c T 1 2 0 是一对一的线性变换。独立总变 量数不变。
➢ 这样的转换并非纯数学的,各序电流、电压 是客观存在的,可以测出。
U a
a
Zs
Ia
U b
Zm
b
Zm
Zs
U c
Ib
Zm
c
Zs
Ic
从变换上来看:
U UbaZZm a
Zm Zb
Uc Zm
Zm
U a b c Z a b c Ia b c
Zm Zm
IIba
Zc Ic
将三相电压降和三相电流变换成对称分量 :
U 1 2 0 T 1 U a b c T 1 Z a b c T I 1 2 0 Z 1 2 0 I 1 2 0
Y0 /Y/ 开 开 Y0/Y0/ 开 合
x(0) xI xII//xIII
xI xIII xIxII/I/x(II )
3、自耦变压器
自耦变压器的中性点一般都直接接地,或者 经过阻抗接地。如果有第三个绕组,则通常
都采用 接线。
(1)中性点直接接地的 Y0 / Y0 和 Y0 / Y0 / 自耦变压器
Y0 / Y0 接线
1
R1jX1

U0
R2jX2 RmojXmo
两侧绕组中都可以有零序电流流过。即等值 电路中的两个端点都可以与外电路相连。

不对称短路的分析和计算

不对称短路的分析和计算

不对称短路的分析和计算Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】目录摘要电力系统的安全、稳定、经济运行无疑是历代电力工作者所致力追求的,但是从电力系统建立之初至今电力系统就一直伴随着故障的发生而且电力系统的故障类型多样。

在电力系统运行过程中,时常会发生故障,且大多是短路故障。

短路通常分为三相短路、单相接地短路、两相短路和两相接地短路。

其中三相短路为对称短路,后三者为不对称短路。

电力运行经验指出单相接地短路占大多数,因此分析与计算不对称短路具有非常重要意义。

求解不对称短路,首先应该计算各原件的序参数和画出等值电路。

然后制定各序网络。

根据不同的故障类型,确定出以相分量表示的边界条件,进而列出以序分量表示的边界条件,按边界条件将三个序网联合成复合网,由复合网求出故障处各序电流和电压,进而合成三相电流电压。

关键词: 不对称短路计算、对称分量法、节点导纳矩阵1电力系统短路故障的基本概念短路故障的概述在电力系统运行过程中,时常发生故障,其中大多数是短路故障。

所谓短路:是指电力系统正常运行情况以外的相与相之间或相与地(或中性线)之间的连接。

除中性点外,相与相或相与地之间都是绝缘的。

电力系统短路可分为三相短路,单相接地短路。

两相短路和两相接地短路等。

三相短路的三相回路依旧是对称的,故称为不对称短路。

其他的几种短路的三相回路均不对称,故称为不对称短路。

电力系统运行经念表明,单相短路占大多数,上述短路均是指在同一地点短路,实际上也可能在不同地点同时发生短路,例如两相在不同地点接地短路。

依照短路发生的地点和持续时间不同,它的后果可能使用户的供电情况部分地或全部地发生故障。

当在有由多发电厂组成的电力系统发生端来了时,其后果更为严重,由于短路造成电网电压的大幅度下降,可能导致并行运行的发电机失去同步,或者导致电网枢纽点电压崩溃,所有这些可能引起电力系统瓦解而造成大面积的停电事故,这是最危险的后果。

第八章电力系统不对称故障的分析

第八章电力系统不对称故障的分析


U
fc (1)

U
fc ( 2 )

U
fc ( 0 )
1

U
fc
3
同一类型短路故障发生在不同相上时,基准相的序分量 故障边界条件的形式不会改变,于是复合序网的形式不 会改变,计算公式、结论均不会改变,只是表达式中下 脚符号改变而已。
j a2 a X ff (2) a2 1 X ff (0) I&fa(1)
U&fc aU&fa(1) a2U&fa(2) U&fa(0)
j a a2 X ff (2) a 1 X ff (0) I&fa(1)
(四)向量图:
Ifc(2) Ifb(1)
Ifc(1) Ifb(2)

I fa(2)
X ff (0)

I fa(1)
X ff (2) X ff (0)

I fa(2)
X ff (2)

I fa(1)
X ff (2) X ff (0)
U&fa(1) U&fa(1) U&fa(1)
j
X X ff (2) ff (0)

I fa(1)
X ff (2) X ff (0)
(2)两故障相中的短路电流的绝对值相等,方向相反, 数值上为正序电流的 3 倍;
(3)当在远离发电机的地方发生两相短路时,可通过对序网 进行三相短路计算来近似求两相短路的电流;
(4)两相短路时的正序电流在数值上与在短路点加一个附加阻

Z (2)
构成一个增广正序网而发生三相短路时的电流相等。即


不对称短路的分析和计算

不对称短路的分析和计算

武汉理工大学《电力系统分析》课程设计说明书目录摘要 (3)1 电力系统短路故障的基本概念 (4)1.1短路故障的概述 (4)1.2 三序网络原理 (5)1.2.1 同步发电机的三序电抗 (5)1.2.2 变压器的三序电抗 (5)1.2.3 架空输电线的三序电抗 (6)1.3 标幺制 (6)1.3.1 标幺制概念 (6)1.2.2标幺值的计算 (7)1.4 短路次暂态电流标幺值和短路次暂态电流 (8)2 简单不对称短路的分析与计算 (9)2.1单相(a相)接地短路 (9)2.2 两相(b,c相)短路 (10)2.3两相(b相和c相)短路接地 (12)2.4 正序等效定则 (14)3 不对称短路的计算的实际应用 (14)3.1 设计任务及要求 (14)3.2 等值电路及参数标幺值的计算 (15)3.3 各序网络的化简和计算 (17)3.3.1 正序网络 (17)3.3.2 负序网络 (19)3.3.3 零序网络 (20)3.4 短路点处短路电流、冲击电流的计算 (20)4 实验结果分析 (21)5 心得体会 (22)6 参考文献 (23)2摘要电力系统的安全、稳定、经济运行无疑是历代电力工作者所致力追求的,但是从电力系统建立之初至今电力系统就一直伴随着故障的发生而且电力系统的故障类型多样。

在电力系统运行过程中,时常会发生故障,且大多是短路故障。

短路通常分为三相短路、单相接地短路、两相短路和两相接地短路。

其中三相短路为对称短路,后三者为不对称短路。

电力运行经验指出单相接地短路占大多数,因此分析与计算不对称短路具有非常重要意义。

求解不对称短路,首先应该计算各原件的序参数和画出等值电路。

然后制定各序网络。

根据不同的故障类型,确定出以相分量表示的边界条件,进而列出以序分量表示的边界条件,按边界条件将三个序网联合成复合网,由复合网求出故障处各序电流和电压,进而合成三相电流电压。

关键词: 不对称短路计算、对称分量法、节点导纳矩阵31电力系统短路故障的基本概念1.1短路故障的概述在电力系统运行过程中,时常发生故障,其中大多数是短路故障。

电力系统发生不对称短路故障分析

电力系统发生不对称短路故障分析

摘要电力系统发生不对称短路故障的可能性是最大的,本课题要求通过对电力系统分析不对称短路故障进行分析与计算,为电力系统的规划设计、安全运行、设备选择和继电保护等提供重要的依据。

关键字:标么值;等值电路;不对称故障目录一、基础资料 (3)二、设计内容 (3)1.选择110kV为电压基本级,画出用标幺值表示的各序等值电路。

并求出各序元件的参数。

(3)2.化简各序等值电路并求出各序总等值电抗。

(6)3.K处发生单相直接接地短路,列出边界条件并画出复合相序图。

求出短路电流。

(7)4.设在K处发生两相直接接地短路,列出边界条件并画出复合相序图。

求出短路电流。

(9)5.讨论正序定则及其应用。

并用正序定则直接求在K处发生两相直接短路时的短路电流。

(11)三、设计小结 (12)四、参考文献 (12)附录 (12)一、基础资料1. 电力系统简单结构图如图1所示。

图1 电力系统结构图在K 点发生不对称短路,系统各元件标幺值参数如下:(为简洁,不加下标*) 发电机G1和G2:S n =120MV A ,U n =10.5kV ,次暂态电动势标幺值1.67,次暂态电抗标幺值0.9,负序电抗标幺值0.45;变压器T1:S n =60MV A ,U K %=10.5 变压器T2:S n =60MV A ,U K %=10.5线路L=105km ,单位长度电抗x 1= 0.4Ω/km ,x 0=3 x 1, 负荷L1:S n =60MV A ,X 1=1.2,X 2=0.35 负荷L2:S n =40MV A ,X 1=1.2,X 2=0.35 取S B =120MV A 和U B 为所在级平均额定电压。

二、设计内容1.选择110kV 为电压基本级,画出用标幺值表示的各序等值电路。

并求出各序元件的参数(要求列出基本公式,并加说明)在产品样本中,电力系统中各电器设备如发电机、变压器、电抗器等所给出的都是标么值,即以本身额定值为基准的标么值或百分值。

电力系统不对称故障的分析计算

电力系统不对称故障的分析计算

第八章 电力系统不对称故障的分析计算主要内容提示:电力系统中发生的故障分为两类:短路和断路故障。

短路故障包括:单相接地短路、两相短路、三相短路和两相接地短路;断路故障包括:一相断线和两相断线。

除三相短路外,均属于不对称故障,系统中发生不对称故障时,网络中将出现三相不对称的电压和电流,三相电路变成不对称电路。

直接解这种不对称电路相当复杂,这里引用120对称分量法,把不对称的三相电路转换成对称的电路,使解决电力系统中各种不对称故障的计算问题较为方便。

本章主要内容包括:对称分量法,电力系统中主要元件的各序参数及各种不对称故障的分析与计算。

§8—1 对称分量法及其应用利用120对称分量法可将一组不对称的三相量分解为三组对称的三序分量(正序分量、负序分量、零序分量)之和。

设c b a F F F ∙∙∙为三相系统中任意一组不对称的三相量、可分解为三组对称的三序分量如下:()()()()()()()()()021021021c c c c b b b b a a a a F F F F F F F F F F F F ∙∙∙∙∙∙∙∙∙∙∙∙++=++=++= 三组序分量如图8-1所示。

正序分量: ()1a F ∙、()1b F ∙、()1c F ∙三相的正序分量大小相等,彼此相位互差120°,与系统正常对称运行方式下的相序相同,达到最大值的顺序a →b →c ,在电机内部产生正转磁场,这就是正序分量。

此正序分量为一平衡的三相系统,因此有:()()()111c b a F F F ∙∙∙++=0。

负序分量:()2a F ∙、()2b F ∙、()2c F ∙三相的负序分量大小相等,彼此相位互差120°,与系图 8-1 三序分量Fc(0) ·零序F b(0) ·F a(0) ·120°120° 120° 正序F b(1)·F a(1)·F c(1) ·ω120°120°120°负序 F a(2)·F c(2)·F b(2)·ω统正常对称运行方式下的相序相反,达到最大值的顺序a →c →b ,在电机内部产生反转磁场,这就是负序分量。

影响电力系统安全稳定运行的“元凶”——不对称短路故障分析

影响电力系统安全稳定运行的“元凶”——不对称短路故障分析

1.问题:如何理解电网中的短路概念及出现的各类故障?回答:所谓短路是指电力系统在运行中,相与相之间或相与地(或中性线)之间发生非正常连接时而流过非常大的电流。

其电流值远大于额定电流,并取决于短路点距电源的电气距离。

短路就是不同电位的导电部分之间的低阻性短接,相当于电源未经过负载而直接由导线接通成闭合回路。

通常这是一种严重而应该尽可能避免电路的故障,会导致电路因电流过大而烧毁并发生火灾。

值得注意的是,除中性点外,相与相或相与地之间都是绝缘的。

图2 电力系统短路的分类电力系统短路可以分为三相短路、单相接地短路、两相短路和两相接地短路等。

三相短路的三相回路依旧是对称的,故称为对称短路。

其他的几种短路的三相回路均不对称,故称为不对称短路。

根据电力系统运行经验表明,单相短路占大多数,上述短路均是指在同一地点短路,实际上也可能在不同地点同时发生短路,例如两相在不同地点接地短路。

图3 故障的分类电网中的故障可以分成两大类:简单故障和复杂故障。

复杂故障一般是指由两种或者两种以上的简单故障组合而成,简单故障又分为对称故障和不对称故障;而不对称故障又可以分为短路故障(横向故障)和断路故障(纵向故障)。

在电力系统运行过程中,时常发生故障,其中大多数是短路故障。

2.问题:产生短路的原因有哪些?回答:产生短路的原因有很多,主要有如下几个方面:(1)元件损坏。

例如绝缘材料的自然老化,设计、安装及维护不良所带来的设备缺陷发展成短路。

(2)气象条件恶化。

例如雷电造成的闪络放电或者避雷针动作,架空线路由于大风或者导线覆冰引起电杆倒塌等。

(3)违规操作。

例如运行人员带负荷拉刀闸。

(4)其他原因。

例如挖沟损伤电缆。

3.问题:短路可能造成的危害有哪些?回答:短路电流所产生的电动力能形成很大的破坏力,如果导体和它的支架不够坚固,可能遭到难以修复的破坏,短路时由于很大的短路电流流经网络阻抗,必将使网络产生很大的电压损失。

另外,短路类型如果是金属性短路,短路点电压为零,短路点以上各处的电压也要相应降低很多,一旦电压低于额定电压太多的时候就会使供电受到严重影响或者被迫中断,若在发电厂附近发生短路,还可能使全电力系统运行解列,引起严重后果。

7.4 简单不对称短路故障分析

7.4 简单不对称短路故障分析

7.4 简单不对称短路故障分析在中性点接地的电力系统中,简单不对称短路故障有单相接地短路、两相短路以及两相接地短路。

无论是哪一种短路,利用对称分量法分析时,都可以制订出正、负、零序网络,并经化简后从简化序网列写出各序网络故障点的电压平衡方程式,如式(7-11)。

如果略去正常分量只计故障分量,并忽略各元件电阻,可将式(7-11)改写为(7-45)式中,即是短路发生前故障点的电压。

要求解出上式中的三个电流序分量和三个电压序分量,应根据不对称短路的边界条件补充三个方程式。

由于短路类型不同,短路点的边界条件不同,补充的方程亦不同。

下面对三种不对称短路分别进行讨论。

7.4.1 单相接地短路设在中性点接地的电力系统中相接地短路,如图7-29,由图可列出短路点的边界条件图7-29 单相接地短路示意图(7-46)将上述边界条件转化为正、负、零序分量表示由有即(7-47)由有联立求解式(7-45)和式(7-47),即可解出、、和、、,但这种解析法较繁,工程中不适用。

若按照边界条件,将正、负、零序网串联,如图7-30所示,也可求出单相接地短路时短路点电流和电压的各序分量。

这种由三个序网按不同的边界条件组合成的网络称复合序网。

在复合序网中,同时满足了序网方程和边界条件,因此复合序网中的电流和电压各序分量就是要求解的未知量。

图7-30 单相接地短路复合序网从复合序网中直接可得(7-48)则短路点的故障相电流为(7-49)在近似计算中,一般有,从式(4-129)看出,当,则单相接地短路电流大于同一地点的三相短路电流,反之则单相接地短路电流小于三相短路电流。

从序网方程式(7-45)可求出短路点电压的各序分量、、,然后利用对称分量法的合成算式即可求得短路点非故障相电压代入和,则(7-50)同理可得(7-51)从式(7-50)和式(7-51)看出:当,非故障相电压较正常运行时低,极限情况时,当,则、,故障后非故障相电压不变。

当,非故障相电压较正常运行时高,极限情况时,,相当于中性点不接地系统发生单相接地短路时,中性点电位升高至相电压,而非故障相电压升高为线电压的情况。

电力系统不对称故障的分析-PPT

电力系统不对称故障的分析-PPT
I
a1
.
Uc
.
.
aU a1 a 2 U a2
.
U a1
jX 2
. I a1
短路点得电流、电压相量图
Ua
IC
Ia2 Ia1 0
Ub Uc Ua
电压向量图
Ib
电流向量图
三、两相短路接地
Ua Ub Uc
a b c
Ia
Ib
Ic
jX f
➢短路点得边界条件为
U
b U c
Ia 0 j(Ib
.
Ib
.
I a0 a2
.
I a1 a
.
I a2
(a2
X 2 aX 0 X2 X0
)
.
I
a1
.
Ic.Leabharlann I a0.a I a1
a2
.
I a2
(a
X 2
a2 X0
. ) I a1
X2 X0
.
.
.
.
.
U a U a0 U a1 U a2 3U a1 j3
X 2 X 0
.
I a1
X 2 X 0
X 0 X1
E1
1.5
X 0 X1
2
X 0 X1
j
3 2
E1
Uc
j [(a
a2 ) X1
(a 1) X 0 ]
E12 j (2 X1
X0 )
(a
a2) 2
(a 1)
X 0 X1
X 0 X1
E1
1.5
X 0 X1
2 X0 X1
j
3 2
E1
➢非故障相电压得绝对值为

电力系统不对称故障的分析

电力系统不对称故障的分析

电力系统不对称故障的分析电力系统不对称故障是指在三相电力系统中,其中一相发生了损坏或故障,导致系统中三相电压、电流、功率等参数不再保持对称。

不对称故障会导致电力系统运行不稳定,甚至造成设备损坏和系统瘫痪。

因此,对电力系统不对称故障的分析非常重要。

首先,对电力系统不对称故障进行分析需要进行故障现象的测量和记录。

可以通过测量故障相电压和电流、功率因素等参数来了解故障的具体情况。

同时,还可以记录故障发生时的系统状态和操作情况,为后续的故障分析提供依据。

其次,根据故障现象的测量和记录,初步判断故障的类型。

电力系统不对称故障可以分为单相短路故障、单相接地故障和线路不平衡故障等。

通过分析故障相电压和电流的变化规律,可以初步判断故障的类型。

然后,根据故障类型,进行故障点的定位。

故障点的定位可以通过测量故障传播速度和故障电流的方向来实现。

根据故障点位置的确定,可以进行局部化抢修和恢复供电,减少故障对系统的影响。

最后,进行故障原因分析。

故障原因分析是解决电力系统不对称故障的关键步骤,可以通过多种方法来实现。

例如,可以通过现场勘查、设备检测和故障模拟等方法来找出故障的具体原因。

同时,还可以利用故障记录仪、故障模拟软件等辅助工具,对故障进行仿真和分析。

在进行故障原因分析时,还需要考虑故障的影响范围、时间和条件等因素。

通过对故障原因的准确分析,可以采取相应的措施来防止和排除类似故障的再次发生。

综上所述,电力系统不对称故障的分析是一个复杂而重要的过程,需要对故障现象进行测量和记录,初步判断故障类型,进行故障点的定位,并最终进行故障原因分析。

通过准确的故障分析,可以及时恢复系统运行,确保电力系统的稳定和安全。

不对称短路特点总结

不对称短路特点总结

不对称短路特点总结不对称短路是电力系统中的一种常见故障,其特点与对称短路有所不同。

本文将总结不对称短路的特点,包括故障类型、故障电流、电压变化以及保护装置动作等方面。

一、故障类型不对称短路通常包括单相接地短路、两相短路和两相接地短路。

其中,单相接地短路是最常见的类型,其特点是只有一相线路对地绝缘被破坏,导致电流通过接地体形成回路。

两相短路和两相接地短路则分别指两相线路之间或两相线路对地绝缘被破坏,导致电流通过线路形成回路。

二、故障电流不对称短路时,由于三相电压不平衡,故障电流的大小和方向也不对称。

对于单相接地短路,故障电流为接地相电流;对于两相短路和两相接地短路,故障电流为两相电流之和。

此外,由于不对称短路时电流大小和方向的不对称性,故障点附近的电压分布也会受到影响。

三、电压变化不对称短路时,三相电压会出现不平衡现象。

对于单相接地短路,接地相电压为零,其他两相电压升高;对于两相短路和两相接地短路,故障相电压降低,其他两相电压升高。

此外,由于不对称短路时电流大小和方向的不对称性,故障点附近的电压分布也会受到影响。

四、保护装置动作在不对称短路时,保护装置会根据不同的故障类型和电压变化情况做出相应的动作。

例如,在单相接地短路时,零序保护装置会动作切除故障线路;在两相短路和两相接地短路时,负序保护装置会动作切除故障线路。

此外,为了确保系统的稳定运行,保护装置还会根据实际情况进行相应的调整和优化。

不对称短路是电力系统中的一种常见故障,其特点与对称短路有所不同。

为了确保系统的稳定运行和设备的安全运行,需要加强对不对称短路的监测和分析工作,及时发现和处理故障。

同时,还需要加强对保护装置的维护和调试工作,确保其正常工作和动作的准确性。

电力系统简单不对称故障的分析计算

电力系统简单不对称故障的分析计算

Ia1 Va1
Ia2 Va2
Ia0 Va0
0
E
jX 1 Ia1 jX 2 Ia2
Va1 Va
2
jX 0 Ia0
Va
0
两相短路接地故障相电流
Ib
a 2 Ia1
aIa2
Ia0
a 2
X 2 aX 0 X 2 X 0
Ia1
3X
2 j 3(X 2 2( X 2 X 0 )
3Ia1
I
(2) f
Ib
Ic
3I a1
Ia1
E j( X 1 X 2 )
Ia2 Va1
Ia1 Va2 jX 2 Ia2
jX
2
Ia1
两相短路的电压
Va Vb
Va1 Va2 Va0 2Va1 j2 X 2 Ia1
a 2Va1
aVa2
Va0
Va1
1 2
Va
Vc
Vb
开关位置 1
绕组端点与外电路的连接 与外电路断开
2
与外电路接通
3
与外电路断开,但与励磁支路并联
变压器零序等值电路与外电路的联接
4.自耦变压器的零序阻抗及其等值电路
• 中性点直接接地的自耦变压器
中性点经电抗接地的自耦变压器
X X
I II
X I 3X n X II 3X
(1 n k12
k12 ) (k12
X2
1 2
( X d
X q)
无阻尼绕组 X 2 X d X q
• 发电机负序电抗近似估算值
有阻尼绕组 X 2 1.22 X d 无阻尼绕组 X2 1.45Xd
• 无确切数值,可取典型值
电机类型 电抗
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要电力系统发生不对称短路故障的可能性是最大的,本课题要求通过对电力系统分析不对称短路故障进行分析与计算,为电力系统的规划设计、安全运行、设备选择和继电保护等提供重要的依据。

关键字:标么值;等值电路;不对称故障目录一、基础资料 (3)二、设计内容 (3)1.选择110kV为电压基本级,画出用标幺值表示的各序等值电路。

并求出各序元件的参数。

(3)2.化简各序等值电路并求出各序总等值电抗。

(6)3.K处发生单相直接接地短路,列出边界条件并画出复合相序图。

求出短路电流。

(7)4.设在K处发生两相直接接地短路,列出边界条件并画出复合相序图。

求出短路电流。

(9)5.讨论正序定则及其应用。

并用正序定则直接求在K处发生两相直接短路时的短路电流。

(11)三、设计小结 (12)四、参考文献 (12)附录 (12)一、基础资料1. 电力系统简单结构图如图1所示。

图1 电力系统结构图在K 点发生不对称短路,系统各元件标幺值参数如下:(为简洁,不加下标*) 发电机G1和G2:S n =120MV A ,U n =10.5kV ,次暂态电动势标幺值1.67,次暂态电抗标幺值0.9,负序电抗标幺值0.45;变压器T1:S n =60MV A ,U K %=10.5 变压器T2:S n =60MV A ,U K %=10.5线路L=105km ,单位长度电抗x 1= 0.4Ω/km ,x 0=3 x 1, 负荷L1:S n =60MV A ,X 1=1.2,X 2=0.35 负荷L2:S n =40MV A ,X 1=1.2,X 2=0.35 取S B =120MV A 和U B 为所在级平均额定电压。

二、设计内容1.选择110kV 为电压基本级,画出用标幺值表示的各序等值电路。

并求出各序元件的参数(要求列出基本公式,并加说明)在产品样本中,电力系统中各电器设备如发电机、变压器、电抗器等所给出的都是标么值,即以本身额定值为基准的标么值或百分值。

计算系统各元件表么值(取基准容量:120B S MVA =;基准电压:B av U U =(kv ))变压器 1T :11%10.51200.2110010060K B T T N U S X X S +-==•=⨯= 1(0)0.21T X =变压器 2T :%22110.51200.40.21100210060K B T T N U S X X S +-==•=⨯⨯⨯= 2(0)0.21T X =发电机G :*0.9B G i N S X X S +=•=,*20.45B G NSX X S -=•= 双回线 L :212111200.41050.1922115B L L B S X X X U +-==•=⨯⨯⨯= (0)30.57L L X X +==负荷 1L :1201.2 2.460L X +=⨯=,1200.350.760L X -=⨯= 负荷 2L :11201.2 3.640B L N S X X S +*=•=⨯= *21200.35 1.0540B L N S X X S -=•=⨯=电力系统中发生不对称短路时,无论是发生单相接地短路、两相接地短路还是两相短路,只是在短路点出现系统结构的不对称,而其他部分三相仍是对称的。

根据对称分量法的理论,将这一样的不对称系统分解为正、负、零序系统时,各序系统各自单独存在。

将短路点的不对称三相电压和不对称三相电流分别用它们的三序分量代替,从而相应地行成正、负、零序三个等值网络,如下图所示。

正序:负序:零序:2.化简各序等值电路并求出各序总等值电抗。

化简后如图所示:正序:负序:零序:其中:112(0.21 3.60.190.21)//0.24(0.21 3.6)0.950.9(0.21 3.60.190.21)//0.24(0.21 3.60.190.21)0.9//2.4)(0.210.19)]//(0.21 3.6)0.820.45//0.7)(0.210.19)]//(0.211a j j j E E j j j j X j j j j j X j j j j ∑∑∑++++=••=+++++++=[(+++==[(+++0.05)0.44(0.210.57)0.78j X j j ∑==+= 正序 负序 零序 等效阻抗 j0.82j0.44j0.783.K 处发生单相直接接地短路,列出边界条件并画出复合相序图。

求出短路电流。

单相接地短路时故障处得三相边界条件:⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭a b U =0I =Ic=0 将单相接地短路的边界条件转化为对称分量表示的边界条件。

先将短路点三相电流转化为三序电流2221222231111111101133311111101111a a a a a b a c I I a a a a I a a I I a a I a a a a I I ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤⎢⎥⎢⎥ ⎪ ⎪ ⎪⎢⎥⎢⎥===⎢⎥⎢⎥ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦ 可见单相接地短路时,短路故障电流的各序分量都相等,都等于故障电流的1/3,即13a I a1a2a0I =I =I =又 1200a a a a U U U U =++=由此可以作单相接地短路的复合相序图,如图所示:由此复合网序图可直接求得各序电流1120120130.950.47(0.820.440.78)3 1.40=0aa a a a a abc I E I I I j X X X j I I j I I ∑∑∑∑→=====-++++==-=a b a1a2a0,a1a2a0边界条件:U =0,I =Ic=0U =-(U +U )I =I =I = 故障点故障相的电流等于正序电流的3倍,由于它们的相位相同,它们之间绝对值大小也是三倍关系,即13a a I I ==-j1.40而非故障相电流为零,即=0b c I I = 三相短路电流的值如下表所示4.设在K 处发生两相直接接地短路,列出边界条件并画出复合相序图。

求出短路电流。

假设在短路点k ,b 、c 两相短接,a 相未发生故障。

两相接地短路的边界条件为00b c a U U I ⎧⎫==⎪⎪⎨⎬=⎪⎪⎩⎭将其转化为用对称量表示的边界条件:++a a0a1a2I =I I I =0,11203a a a a U U UU ===由此可以作两相接地短路的复合相序图,如图所示:1120,2031120020()0.950.860.820.44//0.780.780.860.55(0.780.44)a a a a a a a a U U U U I I I E j Z Z Z j j j j Z j j Z Z j ===∑∑∑//∑∑•=∑+∑→=-+==-++=+b c,a a1a2a1边界条件:(假设bc 俩相短路接地)U =U I =0由复合网求序分量得:I =I =-I +a0a1a2I =-(I I )=j0.31故障点故障相的电流为:22a a a ⎧⎫++⎪⎪+⎨⎬⎪⎪+⎩⎭a a0a1a2b a1a2a0c a1a2a0I =I I I =0I =I I +I =-1.22+j0.465I =aI I +I =1.22+j0.465列表如下:A 相B 相C 相故障电流(A )-1.22+j0.465 1.22+j0.4655.讨论正序定则及其应用。

并用正序定则直接求在K 处发生两相直接短路时的短路电流。

以上所得的两种简单不对称短路时短路电流正序分量的通式为:式中,()n su Z 称附加阻抗。

上式表明了一个很重要的概念:在简单不对称短路的情况下,短路电流的正序分量,与在短路点后每一相中加入附加阻抗()n su Z 而发生三相短路的电流相等。

这个概念称为正序等效定正序等效定则不仅适用于计算稳态短路电流,而且也适用于计算短路暂态过程任一时刻的短路电流周期分量有效值。

正序等效定则:在简单不对称短路的情况下,短路点电流的正序分量与在短路点后每一相中加入附加阻抗而发生三相短路的电流相等。

故障相短路点短路电流的绝对值与它的正序分量的绝对值成正比,即各种类型短路时附加阻抗()n su Z 值各种类型短路的()n m 值)(1)0()(1n su kk a n a Z Z U I +=三、设计小结本设计通过对不对称故障分析,提出了用三序等值电路对不对称故障系统参数进行计算的设计方案,首先要计算出变压器,发电机,负载,导线等各参数的标幺值。

然后对电路进行简化分析,算出总的等值电抗,然后对K处分别进行单相直接接地短路和两相直接接地短路的分析计算,得出短路电流。

最后对正序等效定则及其应用进行总结分析。

通过本次课程设计使我更加的了解了不对称故障系统,知道选取合适的方法对参数的设计计算会起到很大的便利条件。

在本次设计中,公式的选择,各参数的含义通过查书得以解决。

其中在进行标幺值归算方面以及故障电流的计算方面遇到了一些问题,最后在老师和自己参阅大量资料后得以解决。

由于对系统中个参数的不熟悉,从而使开始的切入比较困难,感觉平时学习的不牢固,对之后的设计带来很大的麻烦。

通过这次设计不但让我对电力系统的分析这么课程进行了更深的了解,也让我对以前的专业画图工具进行了复习,真正的能体现出学以致用这个理念。

课程设计是我学会了许多以前不会的东西,让我收获了许多。

四、参考文献1.孙丽华,电力工程基础,北京:机械工业出版社,20062.李光琦,电力系统暂态分析(第二版),北京:中国电力出版社,19953.《电气工程师手册》第二版编辑委员会,电气工程师手册,北京:机械工业出版社,20004.杨淑英邹永海,电力系统分析复习指导,北京:中国电力出版社5.于永源杨绮雯,电力系统分析(第三版),北京:中国电力出版社,20076.《工厂常用电气设备手册》编写组,工厂常用电气设备手册(上),北京:中国电力出版社,1999附录:1、完整各序等值电路图正序:负序:零序:2、程序。

相关文档
最新文档