毕业设计论文-基于matlab的车牌识别系统的设计(附程序+详解注释)
(完整版)基于matlab的车牌识别(含子程序)

基于matlab的车牌识别系统一、对车辆图像进行预处理1.载入车牌图像:function [d]=main(jpg)[filename, pathname] = uigetfile({'*.jpg', 'JPEG 文件(*.jpg)'});if(filename == 0), return, endglobal FILENAME %定义全局变量FILENAME = [pathname filename];I=imread(FILENAME);figure(1),imshow(I);title('原图像');%将车牌的原图显示出来结果如下:2.将彩图转换为灰度图并绘制直方图:I1=rgb2gray(I);%将彩图转换为灰度图figure(2),subplot(1,2,1),imshow(I1);title('灰度图像');figure(2),subplot(1,2,2),imhist(I1);title('灰度图直方图');%绘制灰度图的直方图结果如下所示:3. 用roberts算子进行边缘检测:I2=edge(I1,'roberts',0.18,'both');%选择阈值0.18,用roberts算子进行边缘检测figure(3),imshow(I2);title('roberts 算子边缘检测图像');结果如下:4.图像实施腐蚀操作:se=[1;1;1];I3=imerode(I2,se);%对图像实施腐蚀操作,即膨胀的反操作figure(4),imshow(I3);title('腐蚀后图像');5.平滑图像se=strel('rectangle',[25,25]);%构造结构元素以正方形构造一个seI4=imclose(I3,se);% 图像聚类、填充图像figure(5),imshow(I4);title('平滑图像');结果如下所示:6. 删除二值图像的小对象I5=bwareaopen(I4,2000);% 去除聚团灰度值小于2000的部分figure(6),imshow(I5);title('从对象中移除小的对象');结果如下所示:二、车牌定位[y,x,z]=size(I5);%返回I5各维的尺寸,存储在x,y,z中myI=double(I5);%将I5转换成双精度tic %tic表示计时的开始,toc表示计时的结束Blue_y=zeros(y,1);%产生一个y*1的零阵for i=1:yfor j=1:xif(myI(i,j,1)==1)%如果myI(i,j,1)即myI的图像中坐标为(i,j)的点值为1,即该点为车牌背景颜色蓝色 %则Blue_y(i,1)的值加1Blue_y(i,1)= Blue_y(i,1)+1;%蓝色像素点统计endendend[temp MaxY]=max(Blue_y);%Y方向车牌区域确定%temp为向量white_y的元素中的最大值,MaxY为该值的索引PY1=MaxY;while ((Blue_y(PY1,1)>=5)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while ((Blue_y(PY2,1)>=5)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:);%x方向车牌区域确定%%%%%% X方向 %%%%%%%%%Blue_x=zeros(1,x);%进一步确定x方向的车牌区域for j=1:xfor i=PY1:PY2if(myI(i,j,1)==1)Blue_x(1,j)= Blue_x(1,j)+1; endendendPX1=1;while ((Blue_x(1,PX1)<3)&&(PX1<x))PX1=PX1+1;endPX2=x;while ((Blue_x(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX1=PX1-1;%对车牌区域的校正PX2=PX2+1;dw=I(PY1:PY2-8,PX1:PX2,:);t=toc;figure(7),subplot(1,2,1),imshow(IY),title('行方向合理区域');%行方向车牌区域确定figure(7),subplot(1,2,2),imshow(dw),title('定位裁剪后的车牌彩色图像');的车牌区域如下所示:三、字符分割及处理1.车牌的进一步处理对分割出的彩色车牌图像进行灰度转换、二值化、均值滤波、腐蚀膨胀以及字符分割以从车牌图像中分离出组成车牌号码的单个字符图像,对分割出来的字符进行预处理(二值化、归一化),然后分析提取,对分割出的字符图像进行识别给出文本形式的车牌号码。
《2024年基于MATLAB的车牌识别系统研究》范文

《基于MATLAB的车牌识别系统研究》篇一一、引言随着智能交通系统的快速发展,车牌识别技术已成为智能交通系统的重要组成部分。
车牌识别技术能够有效地对车辆进行身份识别、交通监控、违法查处等,对于提高交通管理效率和保障交通安全具有重要意义。
本文将基于MATLAB平台,对车牌识别系统进行深入研究。
二、车牌识别系统概述车牌识别系统主要由图像采集、预处理、特征提取和识别四个部分组成。
首先通过摄像头等设备采集包含车牌的图像,然后对图像进行预处理,包括去噪、二值化、边缘检测等操作,使车牌图像更加清晰。
接着,通过特征提取算法提取出车牌上的字符特征,最后通过识别算法对字符进行识别,实现车牌号码的识别。
三、MATLAB在车牌识别系统中的应用MATLAB是一种强大的数学计算软件,具有强大的图像处理和机器学习功能,非常适合用于车牌识别系统的研究和开发。
在车牌识别系统中,MATLAB可以用于图像预处理、特征提取和识别等各个环节。
1. 图像预处理在MATLAB中,可以使用图像处理工具箱中的各种函数对车牌图像进行预处理。
例如,可以使用imread函数读取图像,使用imnoise函数添加噪声模拟实际环境中的干扰,使用gray2ind 函数进行图像二值化等。
此外,MATLAB还提供了许多滤波器和边缘检测算法,如Sobel算子和Canny算子等,可以用于去除图像中的噪声和增强边缘信息。
2. 特征提取特征提取是车牌识别系统中的关键环节。
在MATLAB中,可以使用各种算法对车牌图像进行特征提取。
例如,可以使用投影法、连通域法等算法对车牌字符进行分割和定位,然后使用模板匹配、神经网络等算法对字符进行特征提取和分类。
此外,MATLAB还提供了许多机器学习算法,如支持向量机、决策树等,可以用于训练和优化车牌识别模型。
3. 识别算法在特征提取后,需要使用识别算法对字符进行识别。
在MATLAB中,可以使用各种分类器对字符进行识别。
例如,可以使用最近邻分类器、贝叶斯分类器等基于统计的分类器,也可以使用神经网络、支持向量机等基于机器学习的分类器。
《2024年基于MATLAB的车牌识别系统研究》范文

《基于MATLAB的车牌识别系统研究》篇一一、引言随着智能化交通系统的不断发展,车牌识别技术在现代交通管理中发挥着越来越重要的作用。
基于MATLAB的车牌识别系统研究,能够为智能交通系统提供准确、高效的车牌信息处理手段。
本文旨在介绍基于MATLAB的车牌识别系统的基本原理、方法以及实际应用。
二、车牌识别系统基本原理车牌识别系统主要包括图像预处理、车牌定位、字符分割和字符识别四个基本环节。
基于MATLAB的车牌识别系统采用数字图像处理技术,对采集到的车牌图像进行处理,以实现车牌的准确识别。
1. 图像预处理图像预处理是车牌识别系统的第一步,主要目的是去除图像中的噪声、增强图像的对比度,以便于后续的车牌定位和字符分割。
MATLAB提供了丰富的图像处理函数,如滤波、二值化、边缘检测等,可以有效地实现图像预处理。
2. 车牌定位车牌定位是车牌识别系统的关键环节,主要采用颜色分割、形态学方法、投影分析等方法。
在MATLAB中,可以通过颜色空间转换、阈值分割等手段,提取出车牌区域,为后续的字符分割和识别提供基础。
3. 字符分割字符分割是将车牌图像中的每个字符进行分离的过程。
在MATLAB中,可以采用投影法、连通域法等方法进行字符分割。
首先对车牌区域进行垂直投影,根据投影峰值的分布情况,确定每个字符的位置,然后进行水平投影,进一步确定每个字符的宽度,从而实现字符的精确分割。
4. 字符识别字符识别是车牌识别系统的最后一步,主要是对分割后的字符进行识别。
在MATLAB中,可以采用模板匹配、神经网络等方法进行字符识别。
模板匹配法是通过将待识别的字符与标准字符模板进行比对,找出最相似的字符作为识别结果。
神经网络法则是通过训练大量的样本数据,建立字符识别的模型,从而实现高精度的字符识别。
三、MATLAB在车牌识别系统中的应用MATLAB作为一种强大的数学计算软件,在车牌识别系统中发挥着重要作用。
首先,MATLAB提供了丰富的图像处理函数和算法库,可以方便地实现图像的预处理、车牌定位、字符分割和字符识别等过程。
基于matlab图像处理的车牌识别系统_毕业设计论文

基于matlab图像处理的车牌识别系统目录摘要 (1)第一章绪论 (3)1.1研究背景及意义 (3)1.2车牌系统简介 (4)1.2.1国内外现状 (5)1.2.2车牌识别难点 (6)1.3 MATLAB的简介 (7)1.3 MATLAB语言特点 (8)第二章图像预处理 (8)2.1 图像采集 (8)2.2 图像预处理 (9)2.2.1 图像灰度化 (9)2.2.2 图像增强 (11)第三章车牌定位与分割 (12)3.1 车牌定位 (13)3.2 车牌分割 (17)3.3 车牌进一步处理 (17)第四章字符分割和归一化 (18)4.1 字符分割 (19)4.2 字符归一化 (19)4.3 字符识别 (20)第五章汽车号牌识别系统实现与分析 (22)5.1 系统实现 (22)5.2 系统分析 (25)总结 (28)参考文献 (29)致谢 (30)摘要随着二十一世纪到来,经济快速发展和人们生活水平显著提高,汽车逐渐成为家庭的主要交通工具。
汽车的产量快速增多,车辆流动也变得越来越频繁,因此给交通带来了严重问题,如交通堵塞、交通事故等,智能交通系统(Intelligent Transportation System)的产生就是为了从根本上解决交通问题。
在智能交通系统中车牌识别技术占有重要位置,车牌识别技术的推广普及必将对加强道路管理、城市交通事故、违章停车、处理车辆被盗案件、保障社会稳定等方面产生重大而深远的影响。
该设计主要研究基于MATLAB软件的汽车号牌设别系统设计,系统主要包括图像采集、图像预处理、车牌定位、字符分割、字符识别五大核心部分。
系统的图像预处理模块是将图像经过图像灰度化、图像增强、边缘提取、二值化等操作,转换成便于车牌定位的二值化图像;利用车牌的边缘、形状等特征,再结合Roberts 算子边缘检测、数字图像、形态学等技术对车牌进行定位;字符的分割采用的方法是将二值化后的车牌部分进行寻找连续有文字的块,若长度大于设定的阈值则切割,从而完成字符的分割;字符识别运用模板匹配算法完成。
基于MATLAB的车牌智能识别设计

基于MATLAB的车牌智能识别设计摘要:车牌智能识别技术是智能交通系统中的重要组成部分,能够提高交通管理效率和安全性。
本文基于MATLAB平台,设计了一种车牌智能识别系统,通过图像处理和模式识别技术实现车牌号码的准确识别。
该系统能够实现对车辆行驶过程中的车牌信息进行实时提取和识别,具有较高的准确性和稳定性,可以有效应用于停车场管理、交通违法抓拍等领域。
关键词:车牌智能识别;MATLAB;图像处理;模式识别一、引言随着汽车数量的快速增长,交通拥堵和交通管理成为社会发展中的一大难题。
为了提高交通管理效率和安全性,智能交通系统得到了广泛的关注和应用。
车牌智能识别技术作为智能交通系统中的重要组成部分,能够实现对车辆行驶过程中的车牌信息进行实时提取和识别,为交通管理和监控提供了重要的支持。
二、相关技术及方法1. 图像处理技术图像处理技术是车牌智能识别系统中的核心技术之一,主要包括灰度化、二值化、边缘检测、形态学处理等操作。
灰度化是将彩色图像转换为灰度图像,简化了图像信息的处理;二值化将灰度图像转换为二值图像,方便进行特征提取和分割操作;边缘检测可以准确提取车牌的轮廓信息;形态学处理可以用于去除图像中的噪声点和填充孔洞,提高字符的连通性。
2. 字符分割与特征提取字符分割是指将车牌图像中的字符分离出来,是车牌识别的关键步骤之一。
在字符分割后,需要进行字符的特征提取,包括字符的大小、形状、像素点分布等特征。
这些特征可以用于字符的识别和分类,提高识别的准确性和鲁棒性。
3. 模式识别算法模式识别算法是车牌智能识别系统中的另一个核心技术,主要包括基于模板匹配的模式识别、基于统计学习的模式识别、基于深度学习的模式识别等方法。
这些算法能够对字符进行准确的识别和分类,为车牌智能识别系统提供了强大的分析和识别能力。
三、车牌智能识别系统设计基于MATLAB平台,设计的车牌智能识别系统主要包括图像预处理、字符分割与特征提取、模式识别和结果输出四个主要模块。
基于MATLAB的车牌识别研究_毕业设计论文

车牌识别技术研究摘要:车牌识别是现代智能交通系统中的重要组成部分之一,应用十分的广泛。
它以数字图像处理、模式识别、计算机视觉等技术基础,对摄像机所拍摄的车辆图像进行分析,得到每一辆汽车唯一的车牌号码,从而完成识别过程,它对汽车防盗、缓解交通紧张等起到了积极的作用。
本文主要介绍了有关于车牌识别技术的原理,以及基于MA TLAB的车牌识别的设计,对一张车辆图片进行一系列的预处理(灰度化、边缘检测、腐蚀、填充、形态滤波)之后,将车牌中的字符分割出来,最后将分割出的字符与数据库中存储的字符进行模板匹配。
通过以上的步骤的实现,该系统便能完成牌照图像的定位分割和牌照字符的自动识别。
关键词:MA TLAB;图像预处理;车牌定位;字符分割;字符识别License plate recognition technology research Abstract:License plate recognition is one of the modern intelligenttransportation system is an important part of a wide range of applications. It is technology-based digital image processing, pattern recognition, computer vision, vehicle camera captured images were analyzed, only every car license plate number, thus completing the identification process, its car security, relieve stress and other traffic from to a positive role. This paper introduces the principle of license plate recognition technology and design based on MATLAB license plate recognition, for a series of vehicle image preprocessing (gray, edge detection, corrosion, fill, morphological filtering) after the license plate characters split up, and finally split the data stored in the character and the character template matching. By implementing the above steps, the system will be able to complete the positioning of the vehicle license plate image segmentation and automatic license plate character recognition.Key words:MA TLAB;image preprocessing; license plate location; character segmentation; character recognition目录1 绪论 (1)1.1研究目的和意义 (1)1.2国内外研究现状 (2)1.3我国车牌分析 (3)1.4本文章节安排 (3)2 数字图像处理概述 (5)2.1图像及其组成要素 (5)2.2数字图像及其表示 (5)2.3数字图像处理基础 (6)2.4MATLAB在数字图像处理中的应用 (6)3 车牌识别系统的原理及方法 (8)3.1车牌识别系统简述 (8)3.2车牌图像预处理 (9)3.2.1 图像灰度化 (9)3.2.2 边缘检测 (9)3.2.3 形态学图像处理 (10)3.3车牌定位原理 (11)3.4车牌字符分割 (13)3.4.1 字符分割 (13)3.4.2 字符归一化处理 (13)3.5字符识别 (13)3.5.1 字符识别简述 (13)3.5.2 字符识别分类 (14)3.5.3 基于模板匹配的字符识别 (14)4 运用MATLAB实现车牌识别 (17)4.1车牌图像灰度化 (17)4.1.1 程序分析 (17)4.1.2 结果分析 (18)4.2车牌图像预处理 (19)4.2.1 程序分析 (19)4.2.2 结果分析 (20)4.3牌照定位 (22)4.3.1 程序分析 (22)4.3.2 结果分析 (23)4.4字符分割 (24)4.4.1 程序分析 (24)4.4.2 结果分析 (25)4.5字符识别 (25)4.5.1 程序分析 (26)4.5.2 结果分析 (27)5 总结 (29)附录 (30)参考文献 (34)致谢 (35)1 绪论1.1 研究目的和意义随着计算机、通信技术、计算机网络技术在人们日常生活中的不断发展和应用,带来了经济的快速发展,社会已经进入了信息化时代,自动处理信息的能力不断提高并在人们生活的各个领域中得到广泛的应用。
基于matlab车牌识别毕业论文

摘要伴随着时代的发展,车辆的逐渐走进千家万户,车辆的管理日益困难,于是车牌识别系统的应用得到了广泛发展。
车牌识别系统主要包括了图像采集、图像预处理、车牌定位、字符分割、字符识别五个核心部分。
本文侧重于介绍图像预处理、车牌定位、字符分割三个模块的实现。
车牌识别系统使车辆管理更智能化,数字化,有效的提升了交通管理的方便性和有效性。
本文的图像预处理环节则采用图像灰度化和用Roberts算子对车牌进行边缘检测。
车牌定位和分割采用的是利用数学形态法来确定车牌位置,然后利用车牌彩色信息的彩色分割法来完成车牌部位分割。
分割后的字符先进行二值化处理,再对垂直投影进行扫描后完成对字符的分割。
本课题是基于Matlab下的环境下对其进行仿真。
关键词:图像预处理图像定位图像分割ABSTRACTWith the development of era, the car gradually into the homes, vehicles management is becoming more and more difficult, so the application of license plate recognition system has been widely developed. License plate recognition system mainly includes image acquisition, image preprocessing, license plate location, character segmentation, character recognition five core part. This paper focuses on the image preprocessing, license plate location, character segmentation, the realization of the three modules. The vehicle license plate recognition system management more intelligent, digital, can effectively enhance the convenience and effectiveness of traffic management. The image grayscale image preprocessing step, the use and license plate with Roberts operator edge detection. License plate location and segmentation is using mathematical morphology method is used to determine the license plate location, license plate color information of color segmentation method is then used to complete the license plate segmentation. After the character segmentation binarization processing first, and then to complete vertical projection after scanning to the segmentation of the characters. This topic is based on carry on the simulation under Matlab environment.Key Words:image preprocessing, license plate localization, character segmentation .目录第1章绪论 (1)1.1本课题的研究背景 (2)1.2本课题研究的意义和目 (2)1.3本课题研究的内容 (2)第2章本课题程序设计 (3)2.1 开发环境............................................................................ . (3)2.1.1设计方案 (3)2.2 图像预处理 (3)2.2.1 图像灰度化 (3)2.2.2 图像边缘检测 (5)2.3 图像的定位和分割 (6)2.3.1车牌定位 (6)2.3.2车牌分割 (9)2.4 对定位后的车牌再处理 (10)2.5 字符的分割与归一化 (11)2.5.1 字符的分割 (12)2.5.2 字符的归一化 (13)3 实验结果与分析 (14)总结 (15)致谢 (16)参考文献 (17)附录................................................................................ .. (18)绪论1.1本课题的研究背景伴随着我国现代化事业的高速发展,人民的生活水平也正逐步提高,车辆的数量也日益增加,给人们的出行带来了便捷的同时,也对公路车辆的管理带来了巨大的压力,人工管理的方式也不能满足实际的需要。
车牌识别的matlab程序-(详细注释,并有使用注意点)

附录车牌识别程序clear ;close all;%Step1 获取图像装入待处理彩色图像并显示原始图像Scolor = imread('3.jpg');%imread函数读取图像文件%将彩色图像转换为黑白并显示Sgray = rgb2gray(Scolor);%rgb2gray转换成灰度图figure,imshow(Scolor),title('原始彩色图像');%figure命令同时显示两幅图figure,imshow(Sgray),title('原始黑白图像');%Step2 图像预处理对Sgray 原始黑白图像进行开操作得到图像背景s=strel('disk',13);%strel函数Bgray=imopen(Sgray,s);%打开sgray s图像figure,imshow(Bgray);title('背景图像');%输出背景图像%用原始图像与背景图像作减法,增强图像Egray=imsubtract(Sgray,Bgray);%两幅图相减figure,imshow(Egray);title('增强黑白图像');%输出黑白图像%Step3 取得最佳阈值,将图像二值化fmax1=double(max(max(Egray)));%egray的最大值并输出双精度型fmin1=double(min(min(Egray)));%egray的最小值并输出双精度型level=(fmax1-(fmax1-fmin1)/3)/255;%获得最佳阈值bw22=im2bw(Egray,level);%转换图像为二进制图像bw2=double(bw22);%Step4 对得到二值图像作开闭操作进行滤波figure,imshow(bw2);title('图像二值化');%得到二值图像grd=edge(bw2,'canny')%用canny算子识别强度图像中的边界figure,imshow(grd);title('图像边缘提取');%输出图像边缘bg1=imclose(grd,strel('rectangle',[5,19]));%取矩形框的闭运算figure,imshow(bg1);title('图像闭运算[5,19]');%输出闭运算的图像bg3=imopen(bg1,strel('rectangle',[5,19]));%取矩形框的开运算figure,imshow(bg3);title('图像开运算[5,19]');%输出开运算的图像bg2=imopen(bg3,strel('rectangle',[19,1]));%取矩形框的开运算figure,imshow(bg2);title('图像开运算[19,1]');%输出开运算的图像%Step5 对二值图像进行区域提取,并计算区域特征参数。
《2024年基于MATLAB的车牌识别系统研究》范文

《基于MATLAB的车牌识别系统研究》篇一一、引言随着科技的发展和智能化水平的提升,车牌识别系统在智能交通系统中扮演着越来越重要的角色。
车牌识别技术作为计算机视觉和人工智能领域的一个重要应用,在交通安全、车辆管理、车辆监控等方面有着广泛的应用。
本文将介绍一种基于MATLAB 的车牌识别系统研究,该系统旨在通过图像处理和机器学习算法实现高效、准确的车牌识别。
二、车牌识别系统的原理与架构基于MATLAB的车牌识别系统主要包括以下几个步骤:图像预处理、车牌定位、字符分割和字符识别。
首先,系统将获取的图像进行预处理,包括灰度化、二值化等操作,以提高图像的对比度和清晰度。
然后,通过边缘检测和形态学操作等方法,定位出图像中的车牌区域。
接着,对车牌区域进行字符分割,将每个字符分割出来。
最后,利用机器学习算法对每个字符进行识别,得到车牌号码。
三、图像预处理图像预处理是车牌识别系统的重要步骤之一。
在MATLAB 中,我们首先对获取的图像进行灰度化和二值化处理。
灰度化操作可以将彩色图像转换为灰度图像,减少计算量。
二值化操作可以将灰度图像转换为二值图像,提高图像的对比度和清晰度。
此外,还可以通过滤波、去噪等操作进一步优化图像质量。
四、车牌定位车牌定位是车牌识别系统的关键步骤之一。
在MATLAB中,我们可以通过边缘检测和形态学操作等方法实现车牌定位。
具体而言,我们首先对预处理后的图像进行边缘检测,提取出图像中的边缘信息。
然后,利用形态学操作对边缘信息进行填充、腐蚀等处理,得到车牌区域的轮廓信息。
最后,通过轮廓检测和面积筛选等方法,定位出图像中的车牌区域。
五、字符分割与识别字符分割与识别是车牌识别系统的核心步骤。
在MATLAB 中,我们可以通过投影法或连通域法等方法实现字符分割。
具体而言,我们首先对车牌区域进行投影分析,根据字符在投影图上的特点进行分割。
然后,对每个字符进行归一化处理,使其大小和位置一致。
最后,利用机器学习算法对每个字符进行识别。
《2024年基于MATLAB的车牌识别系统研究》范文

《基于MATLAB的车牌识别系统研究》篇一一、引言车牌识别系统是现代智能交通系统的重要组成部分,具有广泛的应用前景。
本文将详细探讨基于MATLAB的车牌识别系统的研究,从算法设计到实验结果,全方位地分析系统的性能与特点。
二、车牌识别系统概述车牌识别系统主要通过图像处理和计算机视觉技术,对道路上的车牌进行自动识别。
系统主要包括图像预处理、车牌定位、字符分割和字符识别等几个关键步骤。
基于MATLAB的车牌识别系统,利用其强大的图像处理和矩阵运算能力,为车牌识别提供了有效的技术支持。
三、系统设计1. 图像预处理图像预处理是车牌识别系统的第一步,主要目的是消除图像中的噪声、增强车牌信息、改善图像质量等。
在MATLAB中,可以通过灰度化、滤波、二值化等操作,对图像进行预处理。
2. 车牌定位车牌定位是车牌识别系统的关键步骤之一,主要利用图像处理技术,从整个图像中提取出车牌区域。
常用的车牌定位方法包括投影法、边缘检测法、模板匹配法等。
在MATLAB中,可以通过这些方法实现车牌的快速定位。
3. 字符分割与识别字符分割与识别是车牌识别的核心步骤,主要将定位后的车牌图像中的字符进行分割,并识别出每个字符的具体内容。
在MATLAB中,可以通过连通域分析、投影分析等方法实现字符的分割与识别。
四、实验结果与分析为了验证基于MATLAB的车牌识别系统的性能,我们进行了大量的实验。
实验结果表明,该系统在各种光照条件、不同角度、不同颜色的车牌下均能实现较高的识别率。
同时,该系统还具有实时性高、鲁棒性强等优点。
在实验过程中,我们还对系统的各个步骤进行了详细的分析。
通过调整图像预处理的参数、优化车牌定位算法、改进字符分割与识别的方法等手段,不断提高系统的性能。
最终,我们得到了一个具有较高识别率的车牌识别系统。
五、结论本文研究了基于MATLAB的车牌识别系统,从算法设计到实验结果进行了全面的分析。
实验结果表明,该系统具有较高的识别率、实时性和鲁棒性等优点,能够满足实际需求。
《2024年基于MATLAB的车牌识别系统研究》范文

《基于MATLAB的车牌识别系统研究》篇一一、引言随着科技的发展,车牌识别系统在交通管理、安全监控、车辆定位等领域的应用越来越广泛。
MATLAB作为一种强大的编程语言和数据处理工具,被广泛应用于图像处理和机器视觉等领域。
本文旨在研究基于MATLAB的车牌识别系统,包括系统的基本原理、实现方法、实验结果和结论。
二、车牌识别系统的基本原理车牌识别系统是一种基于图像处理和机器视觉技术的自动识别系统。
其主要原理包括图像预处理、车牌定位、字符分割和字符识别四个部分。
在MATLAB中,这些过程通过数字图像处理算法、计算机视觉算法以及机器学习算法实现。
(一)图像预处理图像预处理是车牌识别系统的第一步,主要目的是消除图像中的噪声和干扰信息,提高图像的清晰度和对比度,以便后续的图像处理和分析。
常用的预处理方法包括灰度化、二值化、滤波等。
(二)车牌定位车牌定位是车牌识别系统的关键步骤,其主要目的是从图像中准确地检测出车牌的位置。
常用的车牌定位方法包括基于颜色特征的方法、基于形状特征的方法和基于模板匹配的方法等。
在MATLAB中,可以通过边缘检测、Hough变换等方法实现车牌的定位。
(三)字符分割字符分割是将车牌图像中的每个字符分割出来的过程。
常用的字符分割方法包括投影法、连通域法等。
在MATLAB中,可以通过图像形态学操作、阈值分割等方法实现字符的分割。
(四)字符识别字符识别是将分割后的字符进行分类和识别的过程。
常用的字符识别方法包括模板匹配法、神经网络法等。
在MATLAB中,可以通过训练分类器、使用机器学习算法等方法实现字符的识别。
三、车牌识别系统的实现方法在MATLAB中,我们可以通过编写程序实现车牌识别系统的各个步骤。
具体实现方法如下:(一)图像预处理首先,对输入的图像进行灰度化和二值化处理,消除噪声和干扰信息。
然后,通过滤波等操作提高图像的清晰度和对比度。
(二)车牌定位通过边缘检测和Hough变换等方法检测出车牌的轮廓,并确定车牌的位置。
基于Matlab的车牌识别系统设计课程设计论文

课程设计(数字信号处理)题目:基于matlab的车牌识别系统设计目录1 绪论 (2)1.1 车牌号识别研究背景 (2)1.2 车牌号识别技术研究现状和趋势 (3)1.3 车牌识别研究内容 (4)2 车牌识别系统设计原理概述 (5)3 车牌识别系统程序设计 (7)3.1 图像读取及车牌区域提取 (7)3.2 字符切割 (14)3.3字符识别 (17)4 仿真结果及分析 (19)4.1 车牌定位及图像读取及其图像处理 (19)4.2 车牌字符分割及其图像处理 (20)4.3 车牌字符识别及其图像处理 (21)5 结论 (21)6 个人心得 (25)附录:程序清单 (25)1 绪论1.1 车牌号识别研究背景随着我国公路交通事业的发展,车辆的数量正在迅速增长,在给出行提供方便的同时,车辆管理上存在的问题日益突出,人工管理的方式已经不能满足实际的需要。
微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。
作为信息来源的自动检测、图像识别技术越来越受到人们的重视。
近年来计算机的飞速发展和数字图像技术的日趋成熟,为传统的交通管理带来巨大转变,先进的计算机处理技术,不但可以将人力从繁琐的人工观察、监测中解放出来,而且能够大大提高其精确度,汽车牌照自动识别系统就是在这样的背景与目的下进行开发的。
汽车牌照等相关信息的自动采集和管理对于交通车辆管理、园区车辆管理、停车场管理、交警稽查等方面有着十分重要的意义,成为信息处理技术的一项重要研究课题。
车牌识别的难点:1)由于车牌图像多在室外采集,会受到光照条件、天气条件的影响,会出现图像模糊,对比度低,目标区域过小,色彩失真等影响,并且会伴随复杂的背景图像,这些都会影响车牌定位及识别。
2)每次采集时目标所处位置不会一样,采集视角会有很大变化,并且由于车牌挂的不正,都将导致车牌出现扭曲。
3)牌照多样性。
其他国家的汽车牌照格式,如尺寸大小,牌照上字符的排列等,通常只有一种。
基于Matlab的车牌识别系统毕设论文

车牌定位、车牌字符切分及车牌字符识别三个模块。车牌定位模块中提出了基于小波变 换的车牌边缘提取的算法,以及车牌二次定位的算法,提高了系统在光照条件较差的情 况下的定位准确率,该算法对于各种底色的车牌具有良好的适应性;车牌的二值化采用 了改进的 Otus 算法,重新划分了其两维直方图的区域,改进后的算法大大减少了运
关键词:车牌识别;车牌定位;倾斜矫正;字符分割;字符识别
Design of license plate recognition system based on Matlab
ABSTRACT
As an important direction of intelligent traffic management, PRL (Plate Recognition of License System)has been more and more attention. PRL can be applied to the parking management system, the intelligent traffic management system, the vehicle management system and the other areas,.And plays an important role in public security management of transportation management. Although there are some vehicle plate recognition system related products to appear at present, their algorithm's research and development have never stopped. This paper firstly make a deep research on the existing technologies of PRL. And develop a PRL-system with the software of Matlab. The design just Matlab software .The PRL-system take the existing-picture as the target without the collecting program.The software of PRL-system consist of three modules:The license area locating,license plate character segment,and the recognition of every character.The modules of license area locating use edge detection algorithm based on wavelet transform,which has good adaptability for more quantity of background or license are.The program of take the RGB-picture to binary-picture by Otus,divide the two dimensional histogram of area.Character-cut cutting to the trough for
基于matlab的车牌识别系统的设计

基于matlab的车牌识别系统的设计1.摘要:汽车牌照自动识别系统是制约道路交通智能化的重要因素,包括车牌定位、字符分割和字符识别三个主要部分。
本文首先确定车辆牌照在原始图像中的水平位置和垂直位置,从而定位车辆牌照,然后采用局部投影进行字符分割。
在字符识别部分,提出了在无特征提取情况下基于支持向量机的车牌字符识别方法。
实验结果表明,本文提出的方法具有良好的识别性能。
随着公路逐渐普及,我国的公路交通事业发展迅速,所以人工管理方式已经不能满着实际的需要,微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。
汽车牌照的自动识别技术已经得到了广泛应用。
2.设计目的:1、使学生在巩固理论课上知识的同时,加强实践能力的提高,理论联系实践。
2、激发学生的研究潜能,提高学生的协作精神,锻炼学生的动手能力。
3.设计原理由于车辆牌照是机动车唯一的管理标识符号,在交通管理中具有不可替代的作用,因此车辆牌照识别系统应具有很高的识别正确率,对环境光照条件、拍摄位置和车辆行驶速度等因素的影响应有较大的容阈,并且要求满足实时性要求。
图1 牌照识别系统原理图该系统是计算机图像处理与字符识别技术在智能化交通管理系统中的应用,它主要由图像的采集和预处理、牌照区域的定位和提取、牌照字符的分割和识别等几个部分组成,如图1 所示。
其基本工作过程如下:(1)当行驶的车辆经过时,触发埋设在固定位置的传感器,系统被唤醒处于工作状态;一旦连接摄像头光快门的光电传感器被触发,设置在车辆前方、后方和侧面的相机同时拍摄下车辆图像;(2)由摄像机或CCD 摄像头拍摄的含有车辆牌照的图像通视频卡输入计算机进行预处理,图像预处理包括图像转换、图像增强、滤波和水平较正等;(3)由检索模块进行牌照搜索与检测,定位并分割出包含牌照字符号码的矩形区域;(4)对牌照字符进行二值化并分割出单个字符,经归一化后输入字符识别系统进行识别。
4.详细设计步骤4.1 提出总体设计方案。
毕业设计论文基于matlab的车牌识别系统的设计(附程序+详解注释)

车牌号识别系统是基于图像处理技术的基础进行研究的。本课题图像处理分为以下几方面:
1.图像数字化
其目的是将模拟形式的图像通过数字化设备变为数字计算机可用的离散的图像数据。
2.图像变换
为了达到某种目的而对图像使用一种数学技巧,经过变换后的图像更为方便、容易地处理和操作。
3.图像增强
图像增强的主要目标是改善图像的质量。采用某些处理技术来突出图像中的某些信息,削弱或消除某些无关信息,从而有目的地强调图像的整体或局部特征,让观察者能看到更加直接、清晰的分析和处理图像。直方图修正、灰度变换、强化图像轮廓等都是常用的手段。
车牌识别系统是一项科技含量很高的多种技术结合的产品,主要有计算机视觉、数字图像处理、数字视频处理、模式识别等技术组成。也是智能交通系统的核心技术,产生于60年代。在80年代,由于城市交通问题日益严重,美国和欧洲许多国家投入了大量的人力和物力,建立了自动化高速公路网,安装了摄像、雷达探测系统和光纤网络,简历智能交通系统。在美国、欧洲、日本等发达国家的带动下,世界各国也开始简历智能交通系统。由于公路车流量日益增大、道路交通日益拥挤,车辆管理相对越来越困难,因此各个发达国家和发展中国家都在积极建设适应未来交通运输需求的智能交通系统。
焦作大学
毕业设计(论文)说明书
作者:学号:
学院(系):信息工程学院
《2024年基于MATLAB的车牌识别系统研究》范文

《基于MATLAB的车牌识别系统研究》篇一一、引言车牌识别系统是一种在计算机视觉领域应用广泛的图像处理技术,它在道路交通管理、智能停车和安全监控等领域有着重要的应用价值。
近年来,随着人工智能技术的飞速发展,车牌识别技术也在不断提高,尤其是基于MATLAB平台的车牌识别系统研究,更是受到了广泛关注。
本文将介绍基于MATLAB的车牌识别系统的研究背景、目的和意义,并详细阐述其基本原理和实现方法。
二、车牌识别系统概述车牌识别系统是一种通过图像处理和计算机视觉技术对车辆车牌进行自动识别、定位、分割和字符识别的系统。
基于MATLAB的车牌识别系统主要由图像预处理、车牌定位、字符分割和字符识别等四个主要模块组成。
通过这四个模块的协同作用,可以实现对车牌信息的准确识别。
三、基于MATLAB的图像预处理技术图像预处理是车牌识别系统的第一步,其目的是提高图像的信噪比,减少噪声对后续处理的干扰。
基于MATLAB的图像预处理技术主要包括灰度化、二值化、去噪、滤波等步骤。
首先,通过灰度化处理将彩色图像转换为灰度图像;其次,二值化处理可以将灰度图像转换为二值图像,提高后续处理的准确性;接着,利用MATLAB中的去噪和滤波函数对图像进行进一步优化;最后,将处理后的图像进行归一化处理,以便于后续的定位和分割。
四、车牌定位技术研究车牌定位是车牌识别系统的关键环节之一,其目的是在图像中准确地定位出车牌的位置。
基于MATLAB的车牌定位技术主要包括边缘检测、区域生长、投影分析等方法。
首先,通过边缘检测算法检测出图像中的边缘信息;其次,利用区域生长算法对边缘信息进行扩展,得到包含车牌的候选区域;然后,通过投影分析等方法对候选区域进行进一步筛选和优化;最后,将车牌位置信息输出。
五、字符分割与识别技术研究字符分割与识别是车牌识别系统的核心环节之一。
基于MATLAB的字符分割与识别技术主要包括分割算法、特征提取和分类器设计等步骤。
首先,通过一定的分割算法将车牌中的字符进行分割;其次,提取每个字符的特征信息;然后,设计分类器对特征信息进行分类和识别;最后,将识别的字符信息输出。
基于MATLAB的汽车牌照自动识别系统设计

1引言随着我国交通迅速发展,人工管理方式已经逐渐不能满足实际的需要,微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。
汽车牌照的自动识别技术已经得到了广泛应用。
通过对车辆牌照的正确认识,不仅可以实现交通流量的统计和查询,道路负荷的测定和管理,而且可以对肇事车辆、走私车辆、丢失车辆进行辨识和追查。
传统的方法是在设定的路口派专人进行观察和笔录,因此工作强度大、统计繁杂、效率低、准确性差。
因而对车辆牌照自动识别技术的研究和应用系统开始具有重要的意义。
汽车牌照自动识别整个处理过程分为预处理、边缘提取、车牌定位、字符分割、字符识别五大模块,其中字符识别过程主要由以下3个部分组成:①正确地分割文字图像区域;②正确的分离单个文字;③正确识别单个字符。
MATLAB是一种强大的数值计算功能的编程工具,在图像处理、信号处理、神经网络中都有着广泛的应用。
其数据类型最大的特点是每一种类型都以数组为基础,从数组中派生出来。
其所提供的强大的矩阵运算功能。
如特征值和特征向量的计算、矩阵求逆灯都可以直接通过MATLAB提供的函数求出。
MATLAB还提供了小波分析、图像处理、信号处理、虚拟现实、神经网络等的工具包。
其中,图像处理工具包提供了许多可用于图像处理的相关函数。
按功能可以分为图像显示;图像文件输入与输出;几何操作;像素值和统计;图像分析与增强;图像铝箔;线性二维滤波器设计;图像变换;领域和块操作;二值图像操作;颜色映射和颜色空间转换;图像类型和类型转换;工具包参数获取和设置等。
基于此,用MATLAB软件编程来实现每一个部分,最后识别出汽车牌照,有很大的优势。
在研究的同时对其中出现的问题进行了具体分析,处理。
2车牌定位2.1预处理及边缘提取图2 预处理及边缘提取流程图2.1.1图象的采集与转换考虑到现有牌照的字符与背景的颜色搭配一般有蓝底白字、黄底黑字、白底红字、绿底白字和黑底白字等几种,利用不同的色彩通道就可以将区域与背景明显地区分出来,例如,对蓝底白字这种最常见的牌照,采用蓝色 B 通道时牌照区域为一亮的矩形,而牌照字符在区域中并不呈现。
基于MATLAB的车牌识别系统设计

基于MATLAB的车牌识别系统设计基于MATLAB的车牌识别系统设计在现代社会,车辆的数量迅速增加,因此车牌识别系统的需求也日益增加。
车牌识别技术可以应用于交通管理、停车场管理、盗抢车辆追踪等领域。
为了满足这一需求,本文将介绍基于MATLAB的车牌识别系统的设计。
一、系统架构基于MATLAB的车牌识别系统的架构主要分为图像获取、图像预处理、字符分割和字符识别四个模块。
1. 图像获取模块:这一模块通过摄像头或者图像输入设备获取车牌图像,并将获取到的图像进行读取。
2. 图像预处理模块:该模块对获取到的车牌图像进行预处理,包括图像灰度化、图像二值化、图像增强等。
3. 字符分割模块:该模块将预处理后的车牌图像按照字符进行分割,形成独立的字符图像。
4. 字符识别模块:该模块使用字符识别算法对分割出的字符图像进行识别,并输出识别结果。
二、图像获取模块在实际应用中,车牌图像的获取方式多种多样。
本文以摄像头获取车牌图像为例进行介绍。
在MATLAB中,使用VideoInput对象可以获取摄像头的实时图像,并将获取到的图像存储为矩阵。
三、图像预处理模块图像预处理模块的目的是对获取到的车牌图像进行一系列操作,使得后续的字符分割和字符识别模块能够更好地处理图像。
常见的预处理操作包括图像灰度化、图像二值化和图像增强。
1. 图像灰度化:将彩色图像转化为灰度图像。
在MATLAB 中,可以使用rgb2gray函数完成灰度化操作。
2. 图像二值化:将灰度图像转化为二值图像,使得车牌字符与背景能够更好地区分开来。
常见的二值化方法有阈值法、自适应阈值法等。
这里选择阈值法,通过设定一个合适的阈值,将灰度值大于阈值的像素置为1,小于阈值的像素置为0。
3. 图像增强:对二值图像进行增强处理,使得字符边界更加清晰。
常见的增强方法有直方图均衡化、中值滤波等。
这里选择直方图均衡化,通过对图像的像素值进行重新分布,使得图像整体对比度增强。
四、字符分割模块在图像预处理模块完成后,得到的车牌图像已经是经过处理的二值图像。
《2024年基于MATLAB的车牌识别系统研究》范文

《基于MATLAB的车牌识别系统研究》篇一一、引言车牌识别(License Plate Recognition,简称LPR)系统是一种集成了计算机视觉和数字图像处理技术的高级应用。
随着智能交通系统的快速发展,车牌识别技术已成为交通管理、车辆监控和安全防范等领域的重要技术手段。
本文将详细介绍基于MATLAB的车牌识别系统的研究,包括系统设计、算法实现以及实验结果分析等方面。
二、系统设计2.1 系统架构基于MATLAB的车牌识别系统主要包括预处理、车牌定位、字符分割和字符识别四个模块。
首先,通过预处理模块对图像进行去噪、二值化等操作;然后,车牌定位模块利用颜色空间转换和形态学方法定位车牌区域;接着,字符分割模块将车牌区域分割成单个字符;最后,字符识别模块对分割后的字符进行识别,输出车牌号码。
2.2 图像预处理图像预处理是车牌识别的基础,主要包括灰度化、去噪、二值化等操作。
灰度化将彩色图像转换为灰度图像,便于后续处理;去噪则采用滤波等方法消除图像中的噪声;二值化将灰度图像转换为二值图像,便于后续的特征提取和识别。
三、车牌定位3.1 颜色空间转换车牌定位的关键在于准确提取出车牌区域。
通过将图像从RGB颜色空间转换到HSV或YCbCr颜色空间,可以更好地提取出车牌的颜色特征。
在转换后的颜色空间中,车牌区域通常具有较为明显的颜色特征,便于后续的定位和分割。
3.2 形态学方法形态学方法是一种常用的图像处理方法,包括腐蚀、膨胀、开运算和闭运算等操作。
通过形态学方法可以对车牌区域进行精确的定位和分割,提取出完整的车牌区域。
四、字符分割与识别4.1 字符分割字符分割是将车牌区域分割成单个字符的过程。
通常采用的方法包括投影分析、连通域分析和模板匹配等。
投影分析通过计算车牌区域的投影特征,将车牌区域分割成多个字符;连通域分析则通过检测图像中的连通区域,将每个字符单独提取出来;模板匹配则利用预先定义的字符模板,对车牌区域进行匹配和分割。
基于MATLAB平台下的车牌识别系统设计

3、实验改进
3、实验改进
根据实验结果,我们发现车牌定位和字符分割模块是影响系统性能的关键因 素。因此,我们计划从以下两个方面进行改进:
3、实验改进
1、针对车牌定位模块,尝试引入更多的特征提取方法,以便更准确地定位车 牌区域;
2、针对字符分割模块,研究更为稳健的连通域分析方法,减少误分割和漏分 割。
三、实验结果与分析
1、实验设置
1、实验设置
为了评估车牌识别系统的性能,我们构建了一个包含200张车牌图像的数据集, 其中包含了不同的光照条件、车牌位置和尺寸。评估指标主要包括准确率、召回 率和运行时间。
2、实验结果分析
2、实验结果分析
经过大量实验,我们得到了以下结果: 1、车牌定位模块的准确率为95%,召回率为90%;
1、需求分析
3、适应性:系统应能适应不同的环境条件,包括不同的光照条件、车牌位置 和车牌尺寸等;
1、需求分析
4、可靠性:系统应具备一定的可靠性,能够稳定运行,保证识别结果的准确 性。
2、总体设计
2、总体设计
在总体设计阶段,我们将车牌识别系统分解为以下几个模块: 1、车牌定位模块:该模块主要负责寻找并定位车牌区域,排除其他干扰因素;
基于MATLAB平台下的车牌识别 系统设计
01 一、引言
目录
02
二、车牌识别系统设 计
03 三、实验结果与分析
04 四、结论与展望
05 参考内容
一、引言
一、引言
随着社会的快速发展和科技的不断进步,智能化交通管理成为了研究的热点。 车牌识别系统作为智能化交通管理的重要组成部分,能够自动识别车辆身份,提 高交通监管能力和服务质量。本次演示将基于MATLAB平台,设计一套车牌识别系 统,旨在提高车牌识别的准确性和效率,为智能交通管理提供有力支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.图像数字化
其目的是将模拟形式的图像通过数字化设备变为数字计算机可用的离散的图像数据。
2.图像变换
为了达到某种目的而对图像使用一种数学技巧,经过变换后的图像更为方便、容易地处理和操作。
3.图像增强
图像增强的主要目标是改善图像的质量。采用某些处理技术来突出图像中的某些信息,削弱或消除某些无关信息,从而有目的地强调图像的整体或局部特征,让观察者能看到更加直接、清晰的分析和处理图像。直方图修正、灰度变换、强化图像轮廓等都是常用的手段。
在智能交通系统中,车牌自动识别系统是一个非常重要的发展方向。车牌自动识别系统简称ALPRS或LPRS,该系统可以对车辆进行自动登记、验证、监视、报警。系统应用场合包括:高速公路,桥梁,隧道等收费管理系统。城市交通车辆管理,智能小区、智能停车场管理,车牌验证,车流统计等。同时,汽车牌照自动识别的基本方法还可以应用到其他检测和识别领域,所以车牌自动识别问题已成为现代交通工程领域中研究的重点和热点问题之一。
车牌识别系统中的两个关键子系统是车牌定位系统和车牌字符识别系统。
关于车牌定位系统的研究,国内外学者已经作了大量的工作,但实际效果并不是很理想,比如车牌图像的倾斜、车牌表面的污秽和磨损、光线的干扰等都是影响定位准确度的潜在因素。为此,近年来不少学者针对车牌本身的特点,车辆拍摄的不良现象及背景的复杂状况,先后提出了许多有针对性的定位方法,使车牌定位在技术和方法上都有了很大的改善.然而现代化交通系统不断提高的快节奏,将对车牌定位的准确率和实时性提出更高的要求。因而进一步加深车牌定位的研究是非常必要的。
车牌字符识别是在车牌准确定位的基础上,对车牌上的汉字、字母、数字进行有效确认的过程,其中汉字识别是一个难点,许多国外的LPR系统也往往是因为汉字难以识别而无法打入中国市场,因而探寻好的方法解决字符的识别也是至关重要的。目前己有的方法很多,但其效果与实际的要求相差很远,难以适应现代化交通系统高速度、快节奏的要求。因而对字符识别的进一步研究也同样具有紧迫性和必要性。
4.3.2车牌的分割16
4.3.3对定位后的彩色车牌的进一步处理17
4.4字符的分割和归一化处理17
4.4.1字符的分割18
4.4.2字符的归一化处理19
4.5字符的识别19
5.实验结果和分析22
6.实验总结24
致谢25
参考文献26
程序附录27
第一章绪论
1.1本课题的研究背景
现代社会已进入信息时代,随着计算机技术、通信技术和计算机网络技术的发展,自动化信息处理能力和水平不断提高,作为现代社会主要交通工具之一的汽车在人们的生产生活的各个领域得到大量使用,对他的信息进行自动采集和管理具有十分重要的意义,成为信息处理技术的一项重要研究课题。
从实用产品来看,如以色列的Hi-Tech公司研制的多种See/Car system,适应于几个不同国家的车牌识别,就针对中国格式车牌的See/Car syste而言,它不能识别汉字,且识别率有待提高。新加坡Optasia公司的VLPRS产品,适合于新加坡的车牌,另外日本、加拿大、德国、意大利、英国等西方发达国家都有适合于本国车牌的识别系统。
焦作大学
毕业设计(论文)说明书
作者:学号:
学院(系):信息工程学院
专业:通信技术
题目:基于matlab的车牌识别系统的设计
主题:
指导教师:职称:讲师
2012年12月
摘要
汽车车牌的识别系统是现代智能交通管理的重要组成部分之一。车牌识别系统使车辆管理更智能化,数字化,有效的提升了交通管理的方便性和有效性。车牌识别系统主要包括了图像采集、图像预处理、车牌定位、字符分割、字符识别等五大核心部分。本文主要介绍图像预处理、车牌定位、字符分割三个模块的实现方法。本文的图像预处理模块是将图像灰度化和用Roberts算子进行边缘检测的步骤。车牌定位和分割采用的是利用数学形态法来确定车牌位置,再利用车牌彩色信息的彩色分割法来完成车牌部位分割。字符的分割采用的方法是以二值化后的车牌部分进行垂直投影,然后在对垂直投影进行扫描,从而完成字符的分割。本文即是针对其核心部分进行阐述并使用MATLAB软件环境中进行字符分割的仿真实验。
Keywords: MATLAB software, image preprocessing, license plate localization, character segmentation .
1.绪论1
1.1本课题的研究背景1
1.2本课题的研究目的及意义2
1.3国内外发展状况3
1.4主要应用领域5
1.3 国内外的发展状况
从20世纪90年代初,国外就已经开始了对汽车牌照自动识别的研究,其主要途径就是对车牌的图像进行分析,自动提取车牌信息,确定汽车牌号。在各种应用中,有使用模糊数学理论也有用神经元网络的算法来识别车牌中的字符,但由于外界环境光线变化、光路中有灰尘、季节环境变化及车牌本身比较模糊等条件的影响,给车牌的识别带来较大的困难。国外的相关研究有:(1)J Barroso提出的基于扫描行高频分析的方法; (2) I.T. Lancaster提出的类字符分析方法等。为了解决图像恶化的问题,目前国内外采用主动红外照明摄像或使用特殊的传感器来提高图像的质量,继而提高识别率,但系统的投资成本过大,不适合普遍的推广。
关键词:MATLAB、图像预处理、车牌定位、字符分割
ABSTRACT
Vehicle license plate recognition system is one important of the modern intelligent traffic management. License plate recognition system to make more intelligent vehicle management, digital, Effective traffic management to enhance the convenience and effectiveness. License plate recognition system includes image acquisition, image preprocessing, license plate localization, character segmentation, character recognition and other five core parts. In this paper, preprocessing, license plate localization, character segmentation method for the realization of three modules.This is the image preprocessing module and the use of the image grayscale Roberts edge detection operator steps. License plate location and segmentation using mathematical morphology method is used to determine the license plate location,Re-use license plate color segmentation method of color information to complete the license plate area segmentation. Character segmentation approach is based on the license plate after the binary part of the vertical projection, Then scan in the vertical projection, thus completing the character segmentation. This article is described for the core part and use the MATLAB software environment, the simulation experiments for character segmentation.
4.图像分割
在图像研究和应用中,人们往往仅对图像的某些部分感兴趣。它们一般对应图像中待定的、具有独特性质的区域。图像分割就是把图像中需要的那一个部分分割出来。
5.图像分析
图像分析的内容分为特征提取、图像分割、符号描述、和图像的检测与匹配。
1.2 本课题的研究目的及意义
车牌识别系统的主要任务是分析和处理摄取到的复杂背景下的车辆图像,定位分割牌照,最后自动识别汽车牌照上的字符,车牌识别是利用车辆牌照的唯一性来识别和统计车辆,它是以数字图像处理、模式识别、计算机视觉等技术为基础的智能识别系统。在现代化交通发展中车牌识别系统是制约交通系统智能化、现代化的重要因素,车牌识别系统应该能够从一幅图像中自动提取车辆图像,自动分割牌照图像,对字符进行正确识别,从而降低交通管理工作的复杂度。车牌识别系统将获取的车辆图像进行一系列的处理后,以字符串的形式输出结果,这样不但数据量小,便于存储,操作起来也更容易,因此车牌识别系统的便捷性是人工车牌识别所不能比拟的,它蕴藏着很大的经济价值和发展空间,对车牌识别技术的研究是非常有的意义的。在车牌识别系统中最为重要的两个技术是车牌定位和车牌字符识别,这两个技术的好坏直接影响到整个车牌识别系统的实时性和准确性。国内外己有不少学者对车牌定位技术做了大量的研究,但在实际的应用中还没有一个有效可行的方法,如由于车辆抖动造成车牌图像的歪斜、由于污迹和磨损造成车牌字符的模糊、由于光照不均造成车牌图像的模糊等都会或多或少影响到车牌定位的准确度。针对以上实际情况,很多学者开始在鉴于车牌图像本身特征的基础上研究车牌定位技术,并先后提出了一些有效的定位方法,以减小种种主、客观因素对车牌定位准确度的影响。然而智能交通的不断发展使得对车牌定位系统有了更高的要求,主要表现在系统的实时性和准确性。