中考数学几何图形旋转试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学几何图形旋转试题

一、填空题

1。(日照市)如图1,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于.

2.(成都市)如图2,将一块斜边长为12cm,∠B=60°的直角三角板ABC,绕点C沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB向右平移,使点B′刚好落在斜边AB上,那么此三角板向右平移的距离是

cm.

3。(连云港市)正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R与点A重合,点P,Q分别在AC,AB上,将△RPQ沿着边AB,BC,CA顺时针连续翻转(如图3所示),直至点P第一次回到原来的位置,则点P运动路径的长为 cm.

4.(泰州市)如图4,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC

=3,∠BCD=45°,将腰CD以点D为中心逆时针旋转90°至ED,连结AE,C

E,则△ADE的面积是.

二、解答题

5.(资阳市)如图5—1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.

(1) 求证:BP=DP;

(2) 如图5-2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;

(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在四边形P ECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论。

6。(武汉市)如图6-1是一个美丽的风车图案,你知道它是怎样画出来的吗?按下列步骤可画出这个风车图案:在图6-2中,先画线段OA,将线段OA平移至CB处,得到风车的第一个叶片F1,然后将第一个叶片OABC绕点O逆时针旋转180°得到第二个叶片F2,再将F1、F2同时绕点O逆时针旋转90°得到第三、第四个叶片F3、F4。根据以上过程,解答下列问题:

(1)若点A的坐标为(4,0),点C的坐标为(2,1),写出此时点B的坐标;

(2)请你在图6-2中画出第二个叶片F2;

(3)在(1)的条件下,连接OB,由第一个叶片逆时针旋转180°得到

第二个叶片的过程中,线段OB扫过的图形面积是多少?

7.如图7,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OP n(n为正整数)。

(1)求点P6的坐标;

(2)求△P5OP6的面积;

(3)我们规定:把点Pn(xn,yn)(n=0,1,2,3,…)的横坐标x n、纵坐标yn都取绝对值后得到的新坐标(|x n|,|yn|)称之为点P n的“绝对坐标”.根据图中点Pn的分布规律,请你猜想点P n的“绝对坐标”,并写出来.

8.(台州市)把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图8).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.

9.(浙江省)如图9-1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图9-2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角形纸片摆成如图9-3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图9-3至图9-6中统一用F表示)

图9-1 图9-2 图9-3

小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决。

(1)将图9-3中的△ABF沿BD向右平移到图9-4的位置,使点B与点F 重合,请你求出平移的距离;

(2)将图9-3中的△ABF绕点F顺时针方向旋转30°到图9-5的位置,A1F交DE于点G,请你求出线段FG的长度;

(3)将图9-3中的△ABF沿直线AF翻折到图9-6的位置,AB1交DE于点H,请证明:AH﹦DH。

图9-4图9-5 图9-6

参考答案

一、1。2。6-23。2π 4.1

二、

5. 解:(1)解法一:在△ABP与△ADP中,利用全等可得BP=DP。

解法二:利用正方形的轴对称性,可得BP=DP。

(2)不是总成立。

当四边形PECF绕点C按逆时针方向旋转,点P旋转到BC边上时,DP〉DC〉BP,此时BP=DP不成立.

(3)连接BE、DF,则BE与DF始终相等.

在图1-1中,可证四边形PECF为正方形,

在△BEC与△DFC中,可证△BEC≌△DFC 。

从而有 BE=DF .

6. 解:(1)B(6,1)

(2)图略

(3)线段OB扫过的图形是一个半圆.过B作BD⊥x轴于D.由(1)知B点坐标为(6,1),∴OB2=OD2+BD2=62+12=37.∴线段OB扫过的图形面积是。

7。解:(1)根据旋转规律,点P6落在y轴的负半轴,而点Pn到坐标原点的距离始终等于前一个点到原点

距离的倍,故其坐标为P 6(0,26),即P6(0,64).

(2)由已知可得,

△P0OP1∽△P1OP2∽…∽△Pn—1OPn,

设P1(x1,y1),则y1=2sin

45°=,∴.

又∵,

∴.

(3)由题意知,OP0旋转8次之后回到x轴正半轴,在这8次中,点P n分别落在坐标象限的平分线上或x轴或y 轴上,但各点绝对坐标的横、纵坐标均为非负数,因此,点Pn的坐标可分三类情况:令旋转次数为n。

①当n=8k或n=8k+4时(其中k为自然数),点Pn落在x轴上,此时,点Pn的绝对坐标为(2n,0);

②当n=8k+1或n=8k+3或n=8k+5或n=8k+7时(其中k为自然数),点Pn落在各象限的平分线上,

此时,点P n的绝对坐标为,即.

③当n=8k+2或n=8k+6时(其中k为自然数),点Pn落在y轴上,此时,点P n的绝对坐标为(0,2n).

8。解:HG=HB.

证法1:连结AH(如图10)。

∵四边形ABCD,AEFG都是正方形,

∴∠B=∠G=90°.

由题意,知AG=AB,又AH=AH,

∴Rt△AGH≌Rt△ABH(HL)。

∴HG=HB.

证法2:连结GB(如图11).

∵四边形ABCD,AEFG都是正方形,

相关文档
最新文档