2014初中数学基础知识讲义—相似三角形

合集下载

初中数学知识归纳相似三角形的判定方法

初中数学知识归纳相似三角形的判定方法

初中数学知识归纳相似三角形的判定方法相似三角形是数学中重要的概念之一,它们具有相同的形状但是尺寸不同。

在初中数学中,我们经常需要判断两个三角形是否相似。

本文将归纳总结相似三角形的判定方法,以帮助初中生更好地理解和应用这一知识。

(正文部分)相似三角形的判定方法有以下几种:1. AAA相似判定法首先,AAA相似判定法是最基本的判定方法之一。

如果两个三角形的对应角度相等,那么它们就是相似三角形。

例如,若∠A₁=∠A₂,∠B₁=∠B₂,∠C₁=∠C₂,那么三角形ABC与三角形A₂B₂C₂相似。

2. AA相似判定法在某些情况下,我们只能通过两个角的对应关系来判定三角形的相似性。

如果两个三角形中有两个对应角度相等,那么它们就是相似三角形。

例如,若∠A₁=∠A₂,∠B₁=∠B₂,那么三角形ABC与三角形A₂B₂C₂相似。

3. 比例判定法有时候我们需要借助于三角形的边长来判定它们的相似性。

如果两个三角形的对应边长成比例,那么它们就是相似三角形。

例如,若AB/A₂B₂=BC/B₂C₂=CA/C₂A₂,那么三角形ABC与三角形A₂B₂C₂相似。

4. 弦割定理判定法在某些情况下,我们需要利用弦割定理来判定三角形的相似性。

该定理规定,如果两个三角形的两边分别平行,那么它们就是相似三角形。

例如,若AB平行于A₂B₂,并且BC平行于B₂C₂,那么三角形ABC与三角形A₂B₂C₂相似。

5. 斜线判定法最后,斜线判定法是一种特殊的相似三角形判定方法。

该方法适用于当两个三角形有公共一个顶点,并且它们的底边平行时。

例如,若顶点A₂与顶点A重合,并且线段BC平行于线段B₂C₂,那么三角形ABC与三角形A₂B₂C₂相似。

总结:相似三角形的判定方法有AAA相似判定法、AA相似判定法、比例判定法、弦割定理判定法和斜线判定法。

通过掌握这些方法,我们可以准确地判断两个三角形是否相似,从而在解题过程中灵活应用相似三角形的性质和定理。

(文章以以上方式展开,总字数超过1500字)。

《相似三角形》最全讲义(完整版)

《相似三角形》最全讲义(完整版)

相似三角形基本知识知识点一:放缩与相似形1. 图形的放大或缩小,称为图形的放缩运动。

2. 把形状相同的两个图形说成是相似的图形,或者就说是相似性注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。

⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。

⑶我们可以这样理解相似两个图形相似,其中一个图形可以看作是由另一个图形放大或缩到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.3. 相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是 1.知识点二:比例线段有关概念及性质(1)有关概念1、比:选用同一长度单位量得两条线段。

a、 b 的长度分别是m、n,那么就说这两条线段am 的比是a:b=m:n(或 b n )2、比的前项,比的后项:两条线段的比a:b中。

a叫做比的前项,b叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

ac3、比例:两个比相等的式子叫做比例,如 b dac4、比例外项:在比例 b d(或a:b=c:d)中a、d叫做比例外项。

ac5、比例内项:在比例 b d(或a:b=c:d)中b、c 叫做比例内项。

ac6、第四比例项:在比例 b d(或a:b=c:d)中, d 叫a、b、 c 的第四比例项。

ab7、比例中项:如果比例中两个比例内项相等,即比例为 b a(或a:b =b:c 时,我们把b叫做 a 和 d 的比例中项。

8. 比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 a c(或a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线bd 段。

(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)2)比例性质acad bc1. 基本性质 :bd(两外项的积等于两内项积)a cb d2. 反比性b d a c ( 把比的前项、后项交换 )3.更比性质 (交换比例的内项或外项 ) :a b,(交换内项 ) cdcd c,(交换外项 ) db a d b.(同时交换内外项 ) ca4.合比性质 :a c abc d(分子加(减)分母 ,分母不变) b d b d注意 :实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间注意:(1) 此性质的证明运用了“设 k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2) 应用等比性质时,要考虑到分母是否为零.(3) 可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成 立.AC1)定义:在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和BC (AC>BC ),如果AB2)黄金分割的几何作图 :已知:线段 AB.求作:点 C 使 C 是线段 AB 的黄金分割点发生同样和差变化比例仍成立.如:acbd5. 等比性质: 如果badc a ab c cd abcd分子分母分别相加,比值不变.)e m(b d f fnn 0) ,那么知识点三: 黄金分割BC ,AC,AB 被点 C 黄金分割,点 C 叫做线段 AB 的黄金分割2即 AC 2=AB ×BC ,那么称线段点,AC 与 AB 的比叫做黄金比。

数学相似三角形课件

数学相似三角形课件
求解过程
一旦构造了相似三角形并确定了其面积比,就可以利用这个比例关系来求解未知的三角形面积。这通常 涉及到比例运算和代数方程的解法。
03
相似三角形在代数中的应用
比例性质及运算规则
80%
比例的基本性质
在两个比例中,如果两组数的比 值相等,则这两个比例是相等的 。
100%
比例的运算规则
包括合比性质、等比性质、分比 性质以及复合比性质,这些规则 在解决相似三角形问题时经常用 到。
其他领域应用举例
地理学
在地理学中,相似三角形可以用 于计算地球上两点之间的距离和 方位角,以及绘制地图和导航。
艺术和动画
艺术家和动画师可以利用相似三角 形来创建透视效果和比例准确的图 像,使作品更加逼真和生动。
经济学和金融
在经济学和金融领域,相似三角形 可以用于分析市场趋势、预测股票 价格等,通过历史数据的相似模式 来预测未来走向。
通过正弦、余弦定理可以推导 出三角形的面积公式 S=1/2bc×sinA,以及判断三角 形形状的条件等。
解直角三角形问题
已知两边求第三边
利用勾股定理或正弦、余弦定理求解。
已知两边及夹角求其他元素
通过正弦、余弦定理或三角函数关系式求解。
实际应用问题
如测量、航海、地理等问题中,常需解直角三角形,通过选择合适 的三角函数关系式进行求解。
06
总结回顾与拓展延伸
重点知识点总结回顾
01
02
03
相似三角形的定义
两个三角形如果它们的对 应角相等,则称这两个三 角形相似。
相似三角形的性质
相似三角形的对应边成比 例,对应角相等,面积比 等于相似比的平方。
相似三角形的判定
通过角角角(AAA)、边 角边(BAB)、角边角 (ABA)等判定方法确定 两个三角形是否相似。

相似三角形知识点归纳(全)精选全文完整版

相似三角形知识点归纳(全)精选全文完整版

可编辑修改精选全文完整版《相似三角形》—中考考点归纳与典型例题知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念、比例的性质(1)定义:在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. ②()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 核心内容:bc ad = (2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即AC BC AB AC ==简记为:12长短==全长 注:①黄金三角形:顶角是360的等腰三角形②黄金矩形:宽与长的比等于黄金数的矩形 (3)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a ccd a a b d c b a 等等.(4)等比性质:如果)0(≠++++====n f d b nmf e d c b a那么ban f d b m e c a =++++++++ .知识点3 比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE =====或或或或等. 特别在三角形中: 由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或知识点4 相似三角形的概念(1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注:①对应性:即把表示对应顶点的字母写在对应位置上 ②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样. ④全等三角形是相似比为1的相似三角形.(2)三角形相似的判定方法1、平行法:(图上)平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2、判定定理1:简述为:两角对应相等,两三角形相似.AA3、判定定理2:简述为:两边对应成比例且夹角相等,两三角形相似.SAS4、判定定理3:简述为:三边对应成比例,两三角形相似.SSS5、判定定理4:直角三角形中,“HL ” 全等与相似的比较:三角形全等三角形相似两角夹一边对应相等(ASA) 两角一对边对应相等(AAS) 两边及夹角对应相等(SAS) 三边对应相等(SSS)、(HL )两角对应相等两边对应成比例,且夹角相等三边对应成比例“HL ”如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则∽==>AD 2=BD ·DC ,∽==>AB 2=BD ·BC ,∽==>AC 2=CD ·BC .知识点5 相似三角形的性质E BD DB C(1)相似三角形对应角相等,对应边成比例. (2)相似三角形周长的比等于相似比.(3)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (4)相似三角形面积的比等于相似比的平方.知识点6 相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。

相似三角形ppt课件免费

相似三角形ppt课件免费

构造相似三角形解决函数图像问题
在某些情况下,可以通过构造相似三角形来解决与函数图像相关的问题,如求函数的值域、判断函数的单调性等 。
2024/1/27
18
05
相似三角形在生活中的实际应用
2024/1/27
19
建筑设计中视觉效果优化
利用相似三角形原理,建筑师 可以在设计过程中调整建筑物 的比例和角度,使其在视觉上 更加和谐、美观。
的对应边之间的比值相等。
这一性质可以用来解决一些与比 例有关的问题,例如通过已知的 两边长度来求解第三边的长度。
在实际应用中,相似三角形的对 应边成比例这一性质也经常被用
来进行长度或距离的测量。
2024/1/27
9
面积比与相似比关系
相似三角形的面积比等于相似比的平 方,即如果两个三角形相似且相似比 为k,那么它们的面积之比为k^2。

14
04
相似三角形在代数中的应用
2024/1/27
15
方程求解问题
2024/1/27
利用相似三角形性质建立方程
通过相似三角形的边长比例关系,可以建立与未知数相关的 方程,进而求解未知数。
构造相似三角形解方程
在某些情况下,可以通过构造相似三角形来简化方程求解过 程,使问题更加直观易懂。
16
不等式证明问题
相似三角形还可以用于解决测量中的视线问题。当测量点与目标点之间 存在障碍物时,可以通过相似三角形原理确定视线与障碍物的交点,进 而计算出目标点的位置。
2024/1/27
在地形测量中,相似三角形可以帮助测量人员根据地形起伏调整测量方 案,提高测量精度。
21
艺术创作中透视原理应用
艺术家在创作过程中经常运用相似三角 形原理来实现透视效果。通过绘制不同 比例的相似三角形,可以在平面上呈现

《相似三角形》 讲义

《相似三角形》 讲义

《相似三角形》讲义一、相似三角形的定义如果两个三角形的对应角相等,对应边成比例,那么这两个三角形就叫做相似三角形。

相似三角形是初中数学中非常重要的一个概念,它在几何证明、计算以及实际生活中都有着广泛的应用。

二、相似三角形的判定1、两角分别相等的两个三角形相似如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

这是因为三角形的内角和为 180 度,当两个角相等时,第三个角也必然相等。

例如,在三角形ABC 和三角形A'B'C'中,如果∠A =∠A',∠B =∠B',那么三角形 ABC 相似于三角形 A'B'C'。

2、两边成比例且夹角相等的两个三角形相似如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

例如,在三角形 ABC 和三角形 A'B'C'中,如果AB/A'B' = AC/A'C',且∠A =∠A',那么三角形 ABC 相似于三角形A'B'C'。

3、三边成比例的两个三角形相似如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

例如,在三角形 ABC 和三角形 A'B'C'中,如果 AB/A'B' = BC/B'C' =AC/A'C',那么三角形 ABC 相似于三角形 A'B'C'。

三、相似三角形的性质1、相似三角形的对应角相等这是相似三角形的基本性质之一。

因为相似三角形是通过对应角相等来定义的,所以相似三角形的对应角必然相等。

2、相似三角形的对应边成比例相似三角形的对应边的比值是相等的,这个比值称为相似比。

例如,如果三角形 ABC 相似于三角形 A'B'C',相似比为 k,那么 AB/A'B' =BC/B'C' = AC/A'C' = k。

初中数学相似三角形定理知识点总结精选全文完整版

初中数学相似三角形定理知识点总结精选全文完整版

可编辑修改精选全文完整版初中数学相似三角形定理知识点总结相似三角形是几何中重要的证明模型之一,是全等三角形的推广。

全等三角形可以被理解为相似比为1的相似三角形。

相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几何中两个三角形中,边、角的关系。

下面是小编为大家带来的初中数学相似三角形定理知识点总结,欢迎阅读。

相似三角形定理1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号"∽"表示,读作"相似于"。

3.相似三角形的相似比:相似三角形的对应边的比叫做相似比。

4.相似三角形的`预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

从表中可以看出只要将全等三角形判定定理中的"对应边相等"的条件改为"对应边成比例"就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

7.相似三角形的性质定理:(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

8. 相似三角形的传递性如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2。

初中相似三角形知识点

初中相似三角形知识点

初中相似三角形知识点一、相似三角形的定义相似三角形是指两个三角形的对应角相等,且对应边长成比例的三角形。

也就是说,如果三角形ABC与三角形DEF相似,那么角A等于角D,角B等于角E,角C等于角F,并且边AB与边DE、边BC与边EF、边CA与边DF之间的长度成同一比例。

二、相似三角形的标记在标记相似三角形时,我们通常使用一个字母来表示一个三角形,例如三角形ABC。

如果两个三角形相似,我们可以用一个比例系数(通常用字母k表示)来标记它们的对应边。

例如,如果AB/DE = BC/EF = AC/DF = k,那么我们说三角形ABC与三角形DEF相似,并且边长比例为k。

三、相似三角形的性质1. 角的对应性:相似三角形的对应角相等。

2. 边的成比例性:相似三角形的对应边成比例。

3. 面积的比例:相似三角形的面积比等于边长比的平方。

即,如果三角形ABC与三角形DEF相似,且边长比为k,则三角形ABC的面积与三角形DEF的面积之比为k^2。

4. 周长的比例:相似三角形的周长比也等于它们边长的比例。

四、相似三角形的判定1. 三角形相似判定定理:如果两个三角形的两组对应角分别相等,那么这两个三角形相似。

2. 边角边(SAS)判定定理:如果两个三角形有两边及其夹角分别相等,那么这两个三角形相似。

3. 边边边(SSS)判定定理:如果两个三角形的所有对应边分别成比例,那么这两个三角形相似。

五、相似三角形的应用相似三角形的概念在解决实际问题中非常有用,例如在测量、建筑、设计和其他领域。

通过使用相似三角形的性质,我们可以解决涉及长度、面积和角度的问题,尤其是在没有直接测量工具的情况下。

六、练习题1. 已知三角形ABC与三角形DEF相似,且AB = 6cm, BC = 8cm, AC = 10cm,DE = 3cm,求EF的长度。

2. 如果三角形PQR的面积是24平方厘米,并且与三角形ABC相似,且三角形ABC的面积是144平方厘米,求三角形PQR的边长。

初二数学《相似三角形》知识点解读

初二数学《相似三角形》知识点解读

初二数学《相似三角形》知识点解读相似三角形是初中数学中的重要概念之一,它在数学几何中有着广泛的应用。

本文将对相似三角形的定义、性质以及解题方法进行详细解读,帮助初二学生更好地掌握这一知识点。

一、相似三角形的定义相似三角形指的是具有以下两个条件的两个三角形:它们的对应角相等,对应边的比值相等。

简单来说,就是两个三角形的形状相似,只是大小不同。

二、相似三角形的性质1. 角对应相等性质:如果两个三角形相似,它们对应的角一一对应相等。

2. 边对应比例性质:如果两个三角形相似,它们对应边的比值相等。

即两个相似三角形中,任意两条对应边的长度比等于其他两条对应边的长度比。

3. 周长比例性质:如果两个三角形相似,它们的周长之比等于对应边之比。

4. 面积比例性质:如果两个三角形相似,它们的面积之比等于对应边长度之比的平方。

三、相似三角形的解题方法1. 定理证明法:利用已知条件和相似三角形的性质进行推理与证明。

例如,已知两个角分别相等,就可以推导出这两个三角形相似。

2. 比值关系法:利用相似三角形中对应边的比值等于其他对应边的比值的性质,求解未知长度。

可以通过设置变量,建立方程来解决问题。

3. 辅助线法:根据问题的需要,引入辅助线,将问题转化为已知得相似三角形的求解问题。

通过绘制辅助线,可以更好地理解和解决问题。

四、相似三角形的应用相似三角形广泛应用于测量和工程实践中。

以下是几个常见的应用场景:1. 测量高度:利用相似三角形的性质,可以通过测量已知长度的阴影与未知长度的物体的阴影的长度比来计算物体的高度。

2. 制图和测量距离:在制图和地理测量中,可以利用相似三角形的性质,通过测量已知长度和对应边比值,计算未知距离和角度。

3. 相似比例模型:在建筑和工程设计中,可以使用相似比例模型,根据已知尺寸比例计算未知部分的尺寸。

总结:相似三角形是初中数学中的重要知识点,掌握了相似三角形的定义、性质以及解题方法,可以更好地解决实际问题。

初中数学知识归纳相似三角形的性质

初中数学知识归纳相似三角形的性质

初中数学知识归纳相似三角形的性质相似三角形是初中数学中重要的概念之一,它在几何学和应用数学中都具有广泛的应用。

相似三角形是指具有相同形状但大小不同的两个三角形。

在本文中,我们将归纳相似三角形的性质,全面了解相似三角形的特点和应用。

一、相似三角形的定义相似三角形的定义是指两个三角形的对应角相等,对应边成比例。

具体表达为:若ΔABC∽ΔA'B'C',则有∠A=∠A',∠B=∠B',∠C=∠C',且AB/A'B' = BC/B'C' = AC/A'C'。

二、相似三角形的性质1. 对应角相等性质:相似三角形的对应角相等,即∠A=∠A',∠B=∠B',∠C=∠C'。

2. 对应边成比例性质:相似三角形的对应边成比例,即AB/A'B' = BC/B'C' = AC/A'C'。

3. 相似三角形的边比例性质:在相似三角形中,各边之间的比值相等。

例如,若ΔABC∽ΔA'B'C',则有AB/BC = A'B'/B'C' = AC/BC =A'C'/B'C'。

三、相似三角形的判定1. AA判定法:若两个三角形的两个角分别相等,则这两个三角形相似。

即若∠A=∠A',∠B=∠B',则ΔABC∽ΔA'B'C'。

2. SAS判定法:若两个三角形的一个角相等,且两个角的对边成比例,则这两个三角形相似。

即若∠A=∠A',AB/A'B' = AC/A'C',则ΔABC∽ΔA'B'C'。

3. SSS判定法:若两个三角形的三边成比例,则这两个三角形相似。

即若AB/A'B' = BC/B'C' = AC/A'C',则ΔABC∽ΔA'B'C'。

相似三角形完整版PPT课件

相似三角形完整版PPT课件
通过已知条件推导出新的相似关系,逐步 构建完整的相似三角形体系。
强调逻辑推理的严密性和条理性,培养学 生分析问题和解决问题的能力。
分析法证明
从结论出发,逆向分析, 寻找使结论成立的条件。
通过分析已知条件和结论 之间的关系,找到证明相 似三角形的关键步骤。
培养学生的逆向思维能力 和分析问题的能力。
构造法证明
相似三角形在几何变换中的应用
在平移、旋转、轴对称等几何变换中,相似三角形可以保持其形状不变,因此具有一些重要的应用。例 如,在建筑设计、地图制作等领域中,常常需要利用相似三角形进行比例缩放和形状保持。
谢谢您的聆听
THANKS
04
相似三角形在代数中的应用
比例性质在方程求解中应用
利用相似三角形的比例性质,可以建立方 程求解未知数。
通过已知两边比例关系,可以推导出第三 边的长度,进而求解方程。
在复杂几何图形中,利用相似三角形的比 例关系可以简化计算过程。
比例中项在数列求和中应用
比例中项的概念可以 应用于等比数列的求 和问题。
性质
相似三角形的对应边成比例,对 应角相等。
判定方法
预备定理
SSS相似
平行于三角形的一边,并且和其他两边相 交的直线,所截得的三角形的三边与原三 角形三边对应成比例。
如果两个三角形的三组对应边的比相等, 那么这两个三角形相似。
SAS相似
AA相似
如果两个三角形的两组对应边的比相等, 并且夹角相等,那么这两个三角形相似。
在证明两个三角形相似时,要严 格按照相似三角形的判定定理进
行推导,避免出现逻辑错误。
拓展延伸:更高阶相似性质探讨
相似多边形
对应角相等,对应边成比例的两个多边形相似。相似多边形具有与相似三角形类似的性质。

初中数学相似三角形知识点、常见结论、解题技巧

初中数学相似三角形知识点、常见结论、解题技巧

初中数学相似三角形知识点、常见结论、解题技巧一、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。

相似用符号“∽”来表示,读作“相似于”。

相似三角形对应边的比叫做相似比(或相似系数)。

二、相似三角形的基本定理平行于三角形一边的直线与其他两边(或两边的延长线)相交,形成一个类似于原三角形的三角形。

三、三角形相似的判定1、三角形相似的判定方法①、定义法:对应角相等,对应边成比例的两个三角形相似②、平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

④、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

⑤、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似2、直角三角形相似的判定方法①、以上各种判定方法均适用②、定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似③、垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

相似常见类型二、相似常见结论1若DE//AB,则DG/AF=GE/BF2若AD平分∠BAC,则AB/AC=BD/CD3若四边形ABCD是平行四边形,则AE⊃2;=EF·FG4若∠DAC=∠DBC,则△ADE~△BCE ,可推导出△AEB~△DEC即上下相似可得左右相似同理,左右相似可得上下相似相似三角形常见解题技巧1、三角形叉叉图这类题目经常考察寻找线段的比例或长度。

图中四对线段比AE/ED、AF/BF、CD/BD、CE/EF,知二求二。

常用辅助线做法:过点作三角形边的平行线遵循原则:所做辅助线不能破坏原有线段比例2、三角形的可解性一个三角形,必然有三角形、三边、三高、周长、面积等十一个量。

相似三角形ppt初中数学PPT课件

相似三角形ppt初中数学PPT课件
在建筑设计中,利用相似三角形原理,根据已知 条件设计出符合要求的建筑物形状和大小。
利用相似三角形进行建筑测量
在建筑测量中,利用相似三角形原理,通过测量 建筑物的角度和距离,计算出建筑物的高度、宽 度等参数。
利用相似三角形进行建筑施工
在建筑施工中,利用相似三角形原理,根据设计 图纸和比例关系,进行施工和安装。
分析法证明思路及步骤
明确目标
明确需要证明的结论,即两个三角形相似 。
逆向思维
从结论出发,逆向思考如何证明两个三角 形相似,即需要找到两个三角形对应的角
相等或对应边成比例。
寻找突破口
分析题目中的已知条件,寻找与相似三角 形相关的突破口。
验证结论
根据逆向思维找到的证明方法,验证结论 是否正确。
不同方法比较与选择
相似三角形ppt初中数学PPT 课件

CONTENCT

• 相似三角形基本概念与性质 • 相似三角形在几何图形中应用 • 相似三角形在解决实际问题中应用 • 相似三角形证明方法探讨 • 典型例题解析与练习 • 课堂小结与拓展延伸
01
相似三角形基本概念与性质
定义及判定方法
01
02
03
04
定义
两个三角形如果它们的对应角 相等,则称这两个三角形相似 。
相似三角形的判定方法
详细讲解相似三角形的四种判定方法,包括两角对应相等 、两边对应成比例且夹角相等、三边对应成比例以及通过 中间比转化等,并通过实例加以验证。
相似三角形的应用
通过举例和解析,展示相似三角形在解决实际问题中的应 用,如测量高度、计算面积等。
拓展延伸引导学生思考更深层次问题
相似多边形的研究
解析
根据相似三角形的判定定理,结合直角三角形的 性质,当两个直角三角形的一直角边和斜边对应 成比例时,可以判定这两个直角三角形相似。

初中数学知识归纳相似三角形的判定和性质

初中数学知识归纳相似三角形的判定和性质

初中数学知识归纳相似三角形的判定和性质相似三角形是初中数学中的重要概念之一,它在解决几何问题中有着广泛的应用。

通过判定和理解相似三角形的性质,我们可以更好地应用它们来解决各种实际问题。

本文将对相似三角形的判定和性质进行归纳总结,并通过案例讲解来加深理解。

一、相似三角形的判定相似三角形的判定方法有多种,下面将介绍两种常用方法。

方法一:AAA相似判定法如果两个三角形对应角度相等,那么它们就是相似三角形。

即如果两个三角形的三个内角相对应相等,那么这两个三角形一定相似。

例如,在△ABC和△DEF中,∠A = ∠D,∠B = ∠E,∠C = ∠F,那么△ABC与△DEF就是相似三角形。

方法二:三边成比例判定法如果两个三角形的对应边成比例,那么它们是相似三角形。

例如,在△ABC和△DEF中,AB/DE = BC/EF = AC/DF,那么△ABC与△DEF就是相似三角形。

二、相似三角形的性质相似三角形有一些重要的性质,下面将逐一介绍。

性质一:对应角相等相似三角形的三个内角两两相等。

性质二:对应边成比例相似三角形的对应边之间成比例。

性质三:高度、中线、角平分线比例相等相似三角形的高度、中线、角平分线对应线段之间成比例。

性质四:面积比例的平方等于边长比例的平方相似三角形的两个相似部分的面积比例等于对应边长比例的平方。

性质五:周长比例等于边长比例相似三角形的周长比例等于对应边长比例。

三、相似三角形的应用举例相似三角形的应用非常广泛,在日常生活和工作中都能见到。

例一:海报设计小明要为学校一次活动设计海报,他发现海报上有两座塔楼,现场测量得到塔楼的高度和距离,希望通过相似三角形的原理计算出塔楼的实际高度。

他需要以此为基础来设计整个海报的比例。

解决方案:小明可以通过测量海报上塔楼的高度和距离,根据相似三角形的性质,计算出实际塔楼的高度。

然后,他可以按照比例来设计整个海报的各个元素,使其符合实际情况。

例二:估算高楼的阴影长度阳光直射下,高楼的阴影长度对人们的日常活动有一定的影响。

相似三角形PPT课件

相似三角形PPT课件

THANKS
感谢观看
利用相似三角形的性质,通过已知三 角形的面积和相似比求解未知三角形 的面积。
通过构造相似三角形,使得已知三角 形和未知三角形分别对应相似三角形 的对应边和对应高,从而求解未知三 角形的面积。
对于三维几何体,可以利用相似三角 形的性质求解其体积。例如,对于两 个相似的棱锥,其体积之比等于其对 应边长之比的立方。
1 2
练习1
已知△ABC和△A'B'C'中,AB=6cm,BC=8cm, AC=10cm,A'B'=12cm,B'C'=16cm, A'C'=20cm。求证:△ABC∽△A'B'C'。
练习2
已知△ABC中,∠C=90°,CD⊥AB于D, AC=6cm,BC=8cm,求CD的长。
3
练习3
已知△ABC和△DEF中,∠A=∠D=90°,AB=AC, DE=4cm,DF=6cm。求证:△ABC∽△DEF并求 出它们的相似比。
05
拓展:全等三角形与相似 三角形关系
全等三角形定义及性质回顾
01
全等三角形的定义:两个三角形如果三边及三角分别对应相 等,则称这两个三角形为全等三角形。
02
全等三角形的性质
03
对应边相等;
04
对应角相等;
05
面积相等;
06
周长相等。
全等三角形与相似三角形联系和区别
联系
全等三角形是相似三角形的特例,即 相似比为1:1的情况;
项。
定理证明
通过构造相似三角形,利用相似 三角形的性质证明。
应用举例
求解直角三角形中的边长、角度 等问题。

《相似三角形》完整版教学课件

《相似三角形》完整版教学课件

易错点及注意事项
易错点
在判定两个三角形是否相似时,容易 忽略对应角和对应边的关系,导致判 断错误。
注意事项
在解答相似三角形问题时,要注意单 位统一和比例关系的正确应用,避免 计算错误。
拓展知识点介绍
射影定理
在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,每一条直角边又是这条直角边在斜边上的射 影和斜边的比例中项。
、建筑物等的高度。
又如,利用相似三角形的性质, 可以测量河流的宽度或海峡的宽
度等。
求解比例尺问题
比例尺是一种表示实际距离与地图上 距离之间比例关系的工具。
例如,已知比例尺和地图上的距离, 可以计算出实际的距离;反之,已知 实际距离和比例尺,也可以计算出地 图上的距离。
利用相似三角形的性质,可以通过比 例尺求解实际距离或地图上距离。
相似比概念
相似比
相似三角形对应边的比值叫做相似比 。
性质
相似三角形的周长之比等于相似比, 面积之比等于相似比的平方。
应用举例
利用相似三角形测量高度
01
通过构造相似三角形,可以测量出建筑物、山峰等高大物体的
高度。
利用相似三角形证明几何题
02
在几何证明题中,经常需要利用相似三角形的性质来证明线段
或角的相等或比例关系。
对应边与相似比关系
在相似三角形中,对应边的长度之比等于相似比。通过已知 的两边长度,可以计算出相似比,进而求出第三边的长度。
面积比与相似比关系
面积比等于相似比的平方
相似三角形的面积之比等于相似比的平方。这是因为在相似三角形中,面积与对应边长度的平方成正 比。
利用面积过开方运算求出它们的相似比。
性质应用举例

相似三角形的概念课件

相似三角形的概念课件
在物理问题中,可以利用相似三 角形解决力学、光学、声学等方
面的问题。
解决工程问题
在工程问题中,可以利用相似三角 形解决建筑、机械、水利等方面的 问题。
解决数学问题
在数学问题中,可以利用相似三角 形解决代数、几何、概率等方面的 问题。
05
相似三角形的扩展知识
相似多边形的概念
相似多边形
如果两个多边形的对应角相等, 并且对应边的长度成比例,则这 两个多边形被称为相似多边形。
证明过程
设两个三角形为$triangle ABC$和$triangle ABD$,其中$AB parallel CD$。由于平行 线性质,我们知道$angle BAC = angle DCA$,同时$angle ABC = angle ADC$。根据 三角形的相似性质,如果两个角相等,则两个三角形相似。
在测量中的应用
测量长度
利用相似三角形的性质, 可以测量难以直接测量的 长度,如建筑物的高度、 河道的宽度等。
确定角度
通过相似三角形的应用, 可以确定角度的大小,如 测量角度、确定方位角等。
解决实际问题
在测量中,可以利用相似 三角形解决实际问题,如 土地测量、工程测量等。
在解决实际问题中的应用
解决物理问题
相似三角形的判定条件
角角判定
如果两个三角形有两个对应的角 分别相等,则这两个三角形相似。
边边判定
如果两个三角形有三组对应的边 分别成比例,则这两个三角形相
似。
角边判定
如果一个三角形的两个角与另一 个三角形的一对对应的角相等, 并且这两个三角形的一组对应的 边成比例,则这两个三角形相似。
02
相似三角形的性质
角-角-边判定法
总结词

相似三角形ppt教学课件完整版

相似三角形ppt教学课件完整版
在摄影测量学中,通过拍摄地面的照片,并利用射影几何的原理进行解析,可以精确地测量 出地面点的三维坐标,为地图制作和地形分析提供重要数据。
计算机视觉中的应用
在计算机视觉领域,射影几何被广泛应用于图像匹配、三维重建、摄像机标定等方面。通过 对图像进行射影变换和处理,可以实现图像的自动识别和场景的三维重建。
典型例题解析
解析
根据全等三角形的定义,两个三 角形如果三边分别相等,则这两 个三角形全等。因此,可以直接
得出△ABC≌△DEF。
2. 例2
已知两个相似三角形ABC和DEF, 其中
AB/DE=BC/EF=CA/FD=2/3, 求∠A和∠D的度数关系。
解析
根据相似三角形的性质,对应角 相等。因此,∠A=∠D。同时, 由于对应边成比例,可以得出两 个三角形的形状相同但大小不同。
对应角相等 面积相等
周长相等
相似与全等关系辨析
相似之处
都有对应边的关系
相似与全等关系辨析
不同之处
全等三角形可以完全重合,而相似三角形 不一定能完全重合
全等要求三边三角完全相等,相似只要求 对应边成比例、对应角相等
相似三角形可以有不同的形状和大小,只 要满足相似条件即可
水利工程中的水流分析
利用相似三角形的原理,可以模拟和分析水流在不同条件下的流速、 流量和水压等参数,为水利工程的设计和施工提供重要依据。
相似三角形与全等三角形关
04
系探讨
全等三角形定义及性质回顾
全等三角形的定义:两个三角形如果 三边及三角分别相等,则称这两个三
角形全等。
全等三角形的性质
对应边相等
相似三角形ppt教学 课件完整版
目录
• 相似三角形基本概念与性质 • 相似三角形在几何证明中的应用 • 相似三角形在解决实际问题中的应
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

:比例线段 平行线分线段成比例一、成比例线段(1)比例线段的相关概念:第四比例项、比例中项、比例线段;①如果选用同一长度单位量得两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段的比是nmb a =,或写成a :b=m :n 。

在两条线段的比a :b 中,a 叫做比的前项,b 叫做比的后项。

②在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段。

③若四条a ,b ,c ,d 满足或a :b=c :d ,那么a ,b ,c ,d 叫做组成比例的项,线段a ,d 叫做比例外项,线段b ,c 叫做比例内项。

④如果作为比例内项的是两条相同的线段,即cbb a =或a :b=b :c ,那么线段b 叫做线段a ,c 的比例中项。

(2)比例性质 ①基本性质:①a cb d =⇔ad=bc ②cbb a =ac b =⇔2 ②交换比例的内项或外项 a bc da c dc bd b ad bc a⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩(交换内项)(交换外项)(同时交换内项和外项) ③交换比的前项、后项:c d a b d c b a =⇒= ④合比性质:dd c b b a d c b a ±=±⇒= ⑤等比性质:=k (0)=k a ce m a c e m ab d f n b d f n b d f n b++++====++++≠⇒=++++ 1、如果cm a 4=,cm b 6=,c 3cm =,则a ,b ,c 的第四比例项是 ,如果cm a 4=,cm b 6=,c 3cm =,则a ,b ,c 的第四比例项是 2、如果32=b a ,则b b a +等于 3、若()0753≠==a c b a ,则a c b a ++=_________1、若5,3x x yy y+==则 2、已知,542c b a ==,则=-+-+b c a b c a 22 3、(2013北京)已知023a b =≠,求代数式52+2ba ba -=初中数学基础知识讲义—相似三角形(一)图 2图 1(第20题图)DCBA(3)黄金分割:如图,若AB PB PA ⋅=2,则点P 为线段AB 的黄金分割点.结论:PA= AB .(4)平行线分线段成比例定理: 已知:a ∥b ∥c结论:AB DEBC EF= (5)三角形一边的平行线的判定定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

1、(2012福州) 如图,已知△ABC ,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是2、(2012广东肇庆)如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF =()A . 7B . 7.5C . 8D . 8.53、(2013巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h 为 .1、(2013浙江温州市)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC .已知AE =6,34AD DB =,则EC 的长是( ) A.4.5 B.8C.10.5D.14 2、(2012孝感)如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D,若AC=2,则AD 的长是( ) A B C 1 D 1 3、(2013莆田)定义:如图1,点C 在线段AB 上,若满足AB BC AC ⋅=2,则称点C 为线段AB的黄金分割点.如图2,ABC ∆中,1==AC AB ,036=∠A ,BD平分ABC ∠交AC 于点D .(1)求证:点D 是线段AC 的黄金分割点; (2)求出线段AD 的长.FA B CD E a b cB:相似三角形1、相似三角形:(1)定义:对应角相等,对应边成比例的两个三角形.(2)判定方法. ①基本定理:平行于三角形一边的直线和其它两边或两线相交,三角形与原三角形相似 ②三组对应边的比 的两三角形相似(SSS )③两组对应边的比 且夹角 的两三角形相似(SAS ) ④两角 的两三角形相似(AA )(3)直角三角形判定方法:.直角三角形中斜边、直角边对应比相等(类似于直角三角形全等判定“HL ”) 2.相似三角形性质.(1)对应角相等,对应边成比例; (2)对应线段之比等于 ; (3)周长之比等于 ; (4)面积之比等于 . 3.相似三角形中的基本图形.1、(2013山东省聊城)如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,下列结论不正确的是( )A.BC=2DEB. △ADE ∽△ABCC.ACABAE AD = D. AD E ABC S S ∆∆=3 2、(2013湖北随州)如图,点D,E 分别在AB 、AC 上,且∠ABC=∠AED 。

若DE=4,AE=5,BC=8,则AB 的长为____________初中数学基础知识讲义—相似三角形(二)3、(2013哈尔滨) 如图,在△ABC 中,M 、N 分别是边AB 、AC 的中点,则△AMN 的面积与四边形MBCN 的面积比为( ). (A)12 (B) 13 (C) 14 (D) 234、(2013黔东南州)如图,⊙O 是△ABC 的外接圆,圆心O 在AB 上,过点B 作⊙O 的切线交AC 的延长线于点D 。

(1)求证:△ABC ∽△BDC 。

(2)若AC=8,BC=6,求△BDC 的面积。

1、(2013新疆)如图,△ABC 中,DE∥BC,DE=1,AD=2,DB=3,则BC 的长是( ) (A)12 (B)(C)(D) 2、(2013四川内江)如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC=( ) A.2:5 B. 2:3 C. 3:5 D. 3:23、(2013浙江台州)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,且21==AC AD AB AE ,则ADE S △:BCED S 四边形的值为( )A .1:3B .1:2C .1:3D .1:44、(2013泰安)如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点, (1)求证:AC 2=AB •AD ; (2)求证:CE ∥AD ; (3)若AD =4,AB =6,求的值.:相似多边形 位似1、相似多边形:(1)定义:各角对应 各边对应 的两个多边形叫做相似多边形 (2)性质:⑴相似多边形对应角 对应边⑵相似多边形周长的比等于 面积的比等于【名师提醒:相似多边形没有专门的判定方法,判定两多边形相似多用在矩形中,一般用定义进行判定】 2、 位似:(1)、定义:如果两个图形不仅是 而且每组对应点所在直线都经过 那么这样的两个图形叫做位似图形,这个点叫做 这时相似比又称为2、性质:位似图形上任意一点到位似中心的距离之比都等于【名师提醒:1、位似图形一定是 图形,但反之不成立,利用位似变换可以将一个图形放大或2、在平面直角坐标系中,如果位似是以原点为位似中心,相似比是r ,那么位似图形对应点的坐标的比等于 或 】1、(2013白银)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为 米.2、(2013济宁)如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm ,到屏幕的距离为60cm ,且幻灯片中的图形的高度为6cm ,则屏幕上图形的高度为 cm .3、(2013贵州铜仁)如图,六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1,则下列结论正确的是( )A .∠E=2∠K B. BC=2HIC. 六边形ABCDEF 的周长=六边形GHIJKL 的周长D. S 六边形ABCDEF=2S 六边形GHIJK4、(2013湖北咸宁)如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,点A 的坐标为(1,0),则E 点的坐标为( ). A .(2,0)B .(23,23) C .(2,2) D .(2,2)初中数学基础知识讲义—相似三角形(三)1、(2013湖北孝感)在平面直角坐标系中,已知点E (-4,2),F (-2,-2),以原点O 为位似中心,相似比为12,把△EFO 缩小,则点E 的对应点E ′的坐标是( )A 、(-2,1)B 、(-8,4)C 、(-8,4)或(8,-4)D 、(-2,1)或(2,-1) 2、(2013四川资阳市)如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC=MABN 的面积是( )A.B..D.3、(2013湖北宜昌)如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( ) A.(6,0) B.(6,3) C.(6,6) D.(4,2)4、(2011山东潍坊市)已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=( ) A .215- B .215+ C . 3 D .25、(湖南株洲市)如图,在矩形ABCD 中,AB=6,BC=8,沿直线MN 对折,使A 、C 重合,直线MN 交AC 于O. (1)、求证:△COM ∽△CBA ; (2)、求线段OM 的长度.。

相关文档
最新文档