跨阻抗放大器

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Transimpedance amplifier

From Wikipedia, the free encyclopedia

Fig. 1. Simplified transimpedance amplifier

In electronics, a transimpedance amplifier (TIA) is a current-to-voltage converter, most often implemented using an operational amplifier. The TIA can be used to amplify[1] the current output of Geiger–Müller tubes, photo multiplier tubes, accelerometers, photo detectors and other types of sensors to a usable voltage. Current-to-voltage converters are used with sensors that have a current response that is more linear than the voltage response. This is the case with photodiodes where it is not uncommon for the current response to have better than 1% linearity over a wide range of light input. The transimpedance amplifier presents a low impedance to the photodiode and isolates it from the output voltage of the operational amplifier. In its simplest form a transimpedance amplifier has just a large valued feedback resistor, R f. The gain of the amplifer is set by this resistor and because the amplifier is in an inverting configuration, has a value of −R f. There are several different configurations of transimpedance amplifiers, each suited to a particular application. The one factor they all have in common is the requirement to convert the low-level current of a sensor to a voltage. The gain, bandwidth, as well as current and voltage offsets change with different types of sensors, requiring different configurations of transimpedance amplifiers.

In the circuit shown in Fig. 1 the photodiode is connected between ground and the inverting input of the op-amp. The other input of the op-amp is also connected to ground. This provides a low impedance load for the photodiode, which keeps the photodiode voltage low. The photodiode is operating in photovoltaic mode with no external bias. The high gain of the opamp keeps the photodiode current equal to the feedback current through Rf. The input offset voltage due to the photodiode is very low in this self-biased photovoltaic mode. This permits a large gain without any large output offset voltage. This

configuration is used with photodiodes that are illuminated with low light levels and require a lot of gain.

Fig. 2. Transimpedance amplifier with a reverse biased photodiode

The above equation is the DC and low frequency gain of a transimpedance amplifier. If the gain is large any input offset voltage at the non-inverting input of the opamp will result in an output DC offset. An input bias current on the inverting terminal of the opamp will similarly result in an output offset. To minimize these effects transimpedance amplifiers are usually designed with FET input op-amps that have very low input offset voltages.[3] Fig. 2 shows a inverting TIA with the photodiode driven by a laser diode and operating in the photoconductive mode. A positive voltage at the cathode of the photodiode applies a reverse bias. This reverse bias increases the width of the depletion region and lowers the junction capacitance, improving the high frequency performance. The photoconductive configuration of a transimpedance photodiode amplifier is used where fast switching speed is required but high gain is not. The feedback capacitor, Cf is usually required to improve stability.

Bandwidth and stability

相关文档
最新文档