应用时间序列分析习题答案解析

合集下载

第7章时间序列分析习题解答

第7章时间序列分析习题解答

第七章时间序列分析思考与练习一、选择题1.已知2000-2006年某银行的年末存款余额,要计算各年平均存款余额,该平均数是:( b )a. 几何序时平均数;b.“首末折半法”序时平均数;c. 时期数列的平均数;d.时点数列的平均数。

2.某地区粮食增长量1990—1995年为12万吨,1996—2000年也为12万吨。

那么,1990—2000年期间,该地区粮食环比增长速度( d )a.逐年上升b.逐年下降c.保持不变d.不能做结论上表资料中,是总量时期数列的有( d )a. 1、2、3b. 1、3、4c. 2、4d. 1、34.利用上题资料计算零售额移动平均数(简单,4项移动平均),2001年第二季度移动平均数为(a )a. 47.5b. 46.5c. 49.5d. 48.4二、判断题1.连续12个月逐期增长量之和等于年距增长量。

2.计算固定资产投资额的年平均发展速度应采用几何平均法。

3.用移动平均法分析企业季度销售额时间序列的长期趋势时,一般应取4项进行移动平均。

4.计算平均发展速度的水平法只适合时点指标时间序列。

5.某公司连续四个季度销售收入增长率分别为9%、12%、20%和18%,其125126环比增长速度为0.14%。

正确答案:(1)错;(2)错;(3)对;(4)错;(5)错。

三、计算题:1.某企业2000年8月几次员工数变动登记如下表:试计算该企业8月份平均员工数。

解:该题是现象发生变动时登记一次的时点序列求序时平均数,假设员工人数用y 来表示,则: 1122n 12y y ...y y=...nnf f f f f f ++++++121010124051300151270311260()⨯+⨯+⨯+=≈人 该企业8月份平均员工数为1260人。

2. 某地区“十五”期间年末居民存款余额如下表:试计算该地区“十五”期间居民年平均存款余额。

解:居民存款余额为时点序列,本题是间隔相等的时点序列,运用“首末折半法”计算序时平均数。

应用统计学时间序列习题及答案

应用统计学时间序列习题及答案

计算题:34323*22562584*22582603*22602502*2250254++++++++++=a = (人计算(1)第一季度该店平均每月商品销售额(2)第一季度平均销售员人数(3)第一季度平均每个销售员的销售额 (4)第一季度平均每月每个销售员的销售额 解:(1)商品销售额为时期总量指标时间序列,4月不属一季度,该数据无用3280350300++=a = (万元)(2) 销售员人数是时点总量指标时间序列,间断间隔相等,用首尾折半法,4月初人数相当于3月末人数,这个数据有用32424045240+++=b = (人) (3)32424045240280350300+++++==平均人数一季度销售额c = (万元/人) (4)3324240452403028350300c d =+++++==平均人数一季度月平均销售额 = (万元/人)要求:(1)根据表中资料 ,计算并填制表中空白栏指标(2)计算该地财政收入的这几年的年平均发展水平、年平均增长水平(水平法)和平均增长速度(几何平均法)(3)超过平均增长速度的年份有哪些年?解:注意平均时项数的确定,写计量单位,我以下省略了单位1430%02.193*430116430%02.193*4307%02.193*4304554301)26n 0010-=-=-='-=-=∆+++=+++=a a V V n a a n a a a a n n n ((3)填全表中各年的环比增长速度,和年平均增长速度进行比较即可4. 某地1980~1990年间(以1979年为基期:a0),地区生产总值以平均 每年25%的速度增长(平均增长速度),而1991~2000年间地区生产总值以平均每年30%的速度增长(平均增长速度),2001~2012年间地区生产总值以平均每年18%的速度增长,则1980~2012年间,该地区的生产总值平均每年的增长速度是多少?(重点:正确确定时间段长短)解:注意是以1979年为基期,经过33年发展到2012年,求这段时间的平均增长速度1%118*%130*%125133121011-=-='V V5. 某地1980年的人口是120万人,1981~2000年间人口平均增长率为1.2%,之后下降到1%,按此增长率到2008年人口会达到多少?如果要求到2012年人口控制在170万以内,则2008年以后人口的增长速度应控制在什么范围内? 解:1)2(%101*%2.101*)140812*******-='==V V V a a a a ((1)分别用最小平方法的普通法和简捷法配合直线方程,并预测2010年该企业产值 (2)比较两种方法得出的结果有无异同。

应用时间序列分析 第三版 王燕 课后答案

应用时间序列分析 第三版 王燕 课后答案

1 1.3738
2 -0.8736
(2) | 2 | 0.3 1 , 2 1 0.8 1 , 2 1 1.4 1,模型平稳。
1 0.6
2 0.5
(3) | 2 | 0.3 1 , 2 1 0.6 1 , 2 1 1.2 1 ,模型可逆。
2、解:对于 AR(2)模型:
22 0
1 1 0 2 1 1 2 1 0.5 2 1 1 2 0 1 1 2 0.3
解得:
1 7 / 15 2 1 / 15
3、解:根据该 AR(2)模型的形式,易得: E ( xt ) 0 原模型可变为: xt 0.8xt 1 0.15xt 2 t
j
eT (3) G0 t 3 G1 t 2 G2 t 1 t 3 1 t 2 12 t 1
第二章 P34 1、 (1)因为序列具有明显的趋势,所以序列非平稳。 (2)样本自相关系数:
(k ) ˆk (0)
(x
t 1
nk
t
x )( x t k x )
t
(x
t 1
n
x) 2
1 n 1 x xt (1 2 20) 10.5 n t 1 20
(4)=17.25
(5)=12.4167
(6)=7.25
1 =0.85(0.85)
2 =0.7405(0.702)
3 =0.6214(0.556)
4 =0.4929(0.415) 5 =0.3548(0.280)
注:括号内的结果为近似公式所计算。 (3)样本自相关图: Autocorrelation Partial Correlation . |*******| . |***** | . |**** . |*** . |**. . |* . . | . . *| . . *| . | | | | | | | . |*******| . *| . | . *| . . *| . . *| . . *| . . *| . . *| . . *| . | | | | | | |

时间序列分析与预测课后习题答案

时间序列分析与预测课后习题答案

22 7336 18 0766 20 2040
第八章 时间序列分析与预测
练习题第五题答案
2000
季度 销售量
长期趋势
一季度 13 1
9 3324
二季度 13 9
9 9722
三季度 79
10 6121
四季度 86
11 2519
2001
Y/T 销售量 长期趋势
1 4037 10 8
11 8918
1 3939 11 5
9
2 10
10
2 50
Y 1 1 = 0 . 3 6 5 3 3 3 + 0 . 1 9 2 6 4 8 1 1 = 2 . 4 8 6 6 6 7
2024/1/18
第八章 时间序列分析与预测
练习题第五题
某县2000—2003年各季度鲜蛋销售量如表所示单位:万公斤 1用移动平均法消除季节变动 2拟合线性模型测定长期趋势 3预测2004年各季度鲜蛋销售量
13 95 0 987174
2024/1/18
第八章 时间序列分析与预测
练习题第五题答案
2用线形趋势模型法测定时间序列的长期趋势
年份 2000 2001 2002 2003
季度 一 二 三 四 一 二 三 四 一 二 三 四 一 二 三 四
2024/1/18
销售量
13 1 13 9
t 1 3 6 , t= 8 .5 , t2 = 1 4 9 6
0 9177 17 5
15 0910 1 1596
20 0 17 6504 1 1331 1 1511 1 1472 20 2099
0 7364 16 0
15 7309 1 0171
16 9 18 2903 0 9240 0 8555 0 8526 20 8497

(完整word版)时间序列分析基于R__习题答案及解析

(完整word版)时间序列分析基于R__习题答案及解析

第一章习题答案略第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)白噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。

显著性水平=0.05不能视为纯随机序列。

2.5(1)时序图与样本自相关图如下(2) 非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 ()0t E x =,21() 1.9610.7t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115φ=3.3 ()0t E x =,10.15() 1.98(10.15)(10.80.15)(10.80.15)t Var x +==--+++10.80.7010.15ρ==+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-=1110.70φρ==,2220.15φφ==-,330φ=3.4 10c -<<, 1121,1,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩3.5 证明:该序列的特征方程为:32--c 0c λλλ+=,解该特征方程得三个特征根:11λ=,2c λ=3c λ=-无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。

应用时间序列分析习题答案解析

应用时间序列分析习题答案解析

第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)白噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。

显著性水平=0.05不能视为纯随机序列。

2.5(1)时序图与样本自相关图如下(2) 非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 解:1()0.7()()t t t E x E x E ε-=⋅+0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01(t t t B B B x εε)7.07.01()7.01(221 +++=-=-229608.149.011)(εεσσ=-=t x Var49.00212==ρφρ 022=φ3.2 解:对于AR (2)模型:⎩⎨⎧=+=+==+=+=-3.05.02110211212112011φρφρφρφρρφφρφρφρ 解得:⎩⎨⎧==15/115/721φφ3.3 解:根据该AR(2)0)(=t x E3.4 解:原模型可变形为:由此可知c即当-1<c<0时,该AR(2)模型平稳。

应用时间序列习题(含答案)

应用时间序列习题(含答案)

应用时间序列习题(含答案)一、单项选择题1.时间数列与变量数列( )A 都是根据时间顺序排列的B 都是根据变量值大小排列的C 前者是根据时间顺序排列的,后者是根据变量值大小排列的D 前者是根据变量值大小排列的,后者是根据时间顺序排列的 2.时间数列中,数值大小与时间长短有直接关系的是( )A 平均数时间数列B 时期数列C 时点数列D 相对数时间数列3.发展速度属于( )A 比例相对数B 比较相对数C 动态相对数D 强度相对数4.计算发展速度的分母是( )A 报告期水平B 基期水平C 实际水平D 计划水平5.某车间月初工人人数资料如下:则该车间上半年的平均人数约为( )A 296人B 292人C 295 人D 300人6.某地区某年9月末的人口数为150万人,10月末的人口数为150.2万人,该地区10月的人口平均数为( )A150万人 B150.2万人 C150.1万人 D 无法确定 7.由一个9项的时间数列可以计算的环比发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 8.采用几何平均法计算平均发展速度的依据是( )A 各年环比发展速度之积等于总速度B 各年环比发展速度之和等于总速度C 各年环比增长速度之积等于总速度D 各年环比增长速度之和等于总速度 9.某企业的产值2005年比2000年增长了58.6%,则该企业2001—2005年间产值的平均发展速度为( )A 5%6.58B 5%6.158C 6%6.58 D6%6.158 10.根据牧区每个月初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采用的公式是( )A 简单平均法B 几何平均法C 加权序时平均法D 首末折半法11、时间序列在一年内重复出现的周期性波动称为( )A 、长期趋势B 、季节变动C 、循环变动D 、随机变动1.C 2.B 3.C 4.B 5.C 6.C 7.A 8.A 9.B 10.D 11、B二、多项选择题1.对于时间数列,下列说法正确的有( )A 数列是按数值大小顺序排列的B 数列是按时间顺序排列的C 数列中的数值都有可加性D 数列是进行动态分析的基础E 编制时应注意数值间的可比性 2.时点数列的特点有( )A 数值大小与间隔长短有关B 数值大小与间隔长短无关C 数值相加有实际意义D 数值相加没有实际意义E 数值是连续登记得到的 3.下列说法正确的有( )A 平均增长速度大于平均发展速度B 平均增长速度小于平均发展速度C 平均增长速度=平均发展速度-1D 平均发展速度=平均增长速度-1E 平均发展速度×平均增长速度=14.下列计算增长速度的公式正确的有( )A%100⨯=基期水平增长量增长速度 B %100⨯=报告期水平增长量增长速度C 增长速度= 发展速度—100%D %100⨯-=基期水平基期水平报告期水平增长速度E %100⨯=基期水平报告期水平增长速度5.采用几何平均法计算平均发展速度的公式有( )A1231201-⨯⨯⨯⨯=n n a a a a a a a a nx B 0a a n x n =C1a a nx n= D n R x = En x x ∑=6.某公司连续五年的销售额资料如下:根据上述资料计算的下列数据正确的有( )A第二年的环比增长速度=定基增长速度=10%B第三年的累计增长量=逐期增长量=200万元C第四年的定基发展速度为135%D第五年增长1%绝对值为14万元E第五年增长1%绝对值为13.5万元7.下列关系正确的有( )A环比发展速度的连乘积等于相应的定基发展速度B定基发展速度的连乘积等于相应的环比发展速度C环比增长速度的连乘积等于相应的定基增长速度D环比发展速度的连乘积等于相应的定基增长速度E平均增长速度=平均发展速度-18.测定长期趋势的方法主要有( )A时距扩大法 B方程法 C最小平方法 D移动平均法 E几何平均法9.关于季节变动的测定,下列说法正确的是( )A目的在于掌握事物变动的季节周期性B常用的方法是按月(季)平均法C需要计算季节比率D按月计算的季节比率之和应等于400%E季节比率越大,说明事物的变动越处于淡季10.时间数列的可比性原则主要指( )A时间长度要一致 B经济内容要一致 C计算方法要一致 D总体范围要一致E计算价格和单位要一致1.BDE 2.BD 3.BC 4.ACD 5.ABD 6.ACE 7.AE 8.ACD 9.ABC 10.ABCDE三、判断题1.时间数列中的发展水平都是统计绝对数。

人大版应用时间序列分析(第5版)习题答案

人大版应用时间序列分析(第5版)习题答案

第一章习题答案略第二章习题答案2.1答案:(1)不平稳,有典型线性趋势(2)1-6阶自相关系数如下(3)典型的具有单调趋势的时间序列样本自相关图2.2答案:(1)不平稳(2)延迟1-24阶自相关系数(3)自相关图呈现典型的长期趋势与周期并存的特征2.3答案:(1)1-24阶自相关系数(2)平稳序列(3)非白噪声序列2.4计算该序列各阶延迟的Q统计量及相应P值。

由于延迟1-12阶Q统计量的P值均显著大于0.05,所以该序列为纯随机序列。

2.5答案(1)绘制时序图与自相关图(2)序列时序图显示出典型的周期特征,该序列非平稳(3)该序列为非白噪声序列2.6答案(1)如果是进行平稳性图识别,该序列自相关图呈现一定的趋势序列特征,可以视为非平稳非白噪声序列。

如果通过adf检验进行序列平稳性识别,该序列带漂移项的0阶滞后P值小于0.05,可以视为平稳非白噪声序列(2)差分后序列为平稳非白噪声序列2.7答案(1)时序图和自相关图显示该序列有趋势特征,所以图识别为非平稳序列。

(2)单位根检验显示带漂移项0阶延迟的P值小于0.05,所以基于adf检验可以认为该序列平稳(3)如果使用adf检验结果,认为该序列平稳,则白噪声检验显示该序列为非白噪声序列如果使用图识别认为该序列非平稳,那么一阶差分后序列为平稳非白噪声序列2.8答案(1)时序图和自相关图都显示典型的趋势序列特征(2)单位根检验显示该序列可以认为是平稳序列(带漂移项一阶滞后P值小于0.05)(3)一阶差分后序列平稳第三章习题答案 3.10101()0110.7t E x φφ===--() 221112() 1.96110.7t Var x φ===--() 22213=0.70.49ρφ==()12122221110.490.7=0110.71ρρρφρρ-==-(4) 3.21111222211212(2)7=0.515111=0.30.515AR φφφρφφφρφρφφφ⎧⎧⎧=⎪=⎪⎪⎪--⇒⇒⎨⎨⎨⎪⎪⎪=+=+⎩⎩⎪⎩模型有:,2115φ=3.312012(1)(10.5)(10.3)0.80.15()01t t t t t tt B B x x x x E x εεφφφ----=⇔=-+==--,22121212()(1)(1)(1)10.15=(10.15)(10.80.15)(10.80.15)1.98t Var x φφφφφφ-=+--+-+--+++=()1122112312210.83=0.70110.150.80.70.150.410.80.410.150.70.22φρφρφρφρφρφρ==-+=+=⨯-==+=⨯-⨯=() 1112223340.70.15=0φρφφφ====-()3.41211110011AR c c c c c ⎧<-<<⎧⎪⇒⇒-<<⎨⎨<±<⎪⎩⎩() ()模型的平稳条件是 1121,21,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩() 3.5证明:该序列的特征方程为:320c c λλλ--+=,解该特征方程得三个特征根:11λ=,2λ=3λ=无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。

应用时间序列第四章习题解答1-4

应用时间序列第四章习题解答1-4
两边同时除以 t,得:
t x x x x x t 1 t (1 ) t 1 (1 ) t 1 (1 ) t 1 ……○ t t t t t t
令 A lim
t
t x t
1 式两端取极限,得: ○
lim
t
(2)
ˆ21 x 20 x20 (1 ) x19 (1 )2 x18 … (1 )19 x1 x
0.4 13 0.4 0.6 11 0.4 0.62 10 … 0.4 0.619 10 11.79240287
t x x lim (1 ) lim t 1 t t t t
即 A (1 ) A
lim
t
xt A 1。 t
另解:根据指数平滑的定义有(1)式成立, (1)式等号两边同乘 (1 ) 有(2)式成立
t t (t 1) (1 ) (t 2) (1 ) 2 (t 2) (1 )3 (1) x t (1 ) x t (1 ) (t 1) (1 ) 2 (t 2) (1 )3 (2)
1 1 ˆ21 ( x20 x19 x18 x17 x16 ) (13 11 10 10 12) 11.2 解:(1) x 5 5
1 1 ˆ22 ( x ˆ21 x20 x19 x18 x17 ) (11.2 13 11 10 10) 11.04 x 5 5
a
6 25 6 4 0.16 。 25 25
b a 0.4
4. 现有序列 xt t , t 1, 2,… ,使用平滑系数为 的指数平滑法

时间序列分析期末题库试题及答案

时间序列分析期末题库试题及答案

时间序列分析期末题库试题及答案(以下是一个范例,您可以根据需要进行修改和调整)时间序列分析期末题库试题及答案时间序列分析是一门研究随时间变化的数据模式和规律的统计学方法,广泛应用于物理学、经济学、环境科学等领域。

在进行时间序列分析时,掌握相关的试题及其答案是提高分析能力和应对考试的重要途径。

本文将为您提供一份时间序列分析期末题库试题及答案,希望能帮助您更好地掌握这门学科。

一、简答题1. 请解释什么是时间序列分析。

答:时间序列分析是一种统计学方法,用于研究随时间变化的数据。

它可以揭示出数据内在的趋势、季节性和周期性等模式,帮助我们进行预测和决策。

2. 时间序列分析的主要步骤有哪些?答:时间序列分析的主要步骤包括:数据收集和整理、数据可视化、确定模型、模型识别和拟合、模型检验和评估、模型预测和应用。

3. 请解释平稳时间序列的概念。

答:平稳时间序列是指其数学期望、方差和自协方差不随时间的变化而发生显著变化的时间序列。

平稳时间序列的均值和方差不依赖于时间,具有稳定的趋势和季节性。

4. 如何进行时间序列的平稳性检验?答:常见的平稳性检验方法包括ADF检验、KPSS检验和单位根检验。

这些方法可以通过检验时间序列数据的单位根是否存在来判断其是否平稳。

5. 时间序列分析中的自相关和偏自相关函数有什么作用?答:自相关函数(ACF)和偏自相关函数(PACF)用于分析时间序列数据的相关性。

ACF可以帮助确定数据的季节性和周期性,而PACF可以帮助确定数据的自回归阶数。

二、计算题请根据以下时间序列数据,回答下面的问题:年份 | 销售额(万元)-----------------------2015 | 2002016 | 2302017 | 2502018 | 2802019 | 3002020 | 3201. 请绘制销售额的时间序列图。

答:(在此插入相应的时间序列图)2. 根据观察的时间序列图,总结该时间序列的趋势和季节性。

【分享】应用时间序列分析课后答案

【分享】应用时间序列分析课后答案

【分享】应用时间序列分析课后答案在学习应用时间序列分析这门课程的过程中,课后答案对于我们巩固知识、检验理解程度以及发现问题和不足都有着至关重要的作用。

今天,我就来和大家分享一下我整理的应用时间序列分析课后答案,希望能对正在学习这门课程的朋友们有所帮助。

首先,让我们来了解一下什么是时间序列分析。

简单来说,时间序列分析是一种用于研究随时间变化的数据的统计方法。

它可以帮助我们揭示数据中的趋势、季节性、周期性等特征,并进行预测和建模。

在课程的第一章,通常会介绍时间序列的基本概念和表示方法。

课后答案中,对于一些关键概念的理解问题,比如时间序列的平稳性、白噪声等,会有详细的解释和说明。

以平稳性为例,答案会指出平稳时间序列的均值和方差不随时间变化,自相关函数只与时间间隔有关等重要特征,并通过具体的例子来帮助我们加深理解。

第二章可能会涉及到时间序列的模型。

常见的模型如自回归模型(AR)、移动平均模型(MA)以及自回归移动平均模型(ARMA)。

课后答案会给出这些模型的数学表达式、参数估计方法以及适用场景。

比如,在解释 AR 模型时,答案会说明如何通过 YuleWalker 方程来估计参数,以及如何判断模型的阶数。

当学习到时间序列的预测方法时,课后答案会展示具体的预测步骤和计算过程。

例如,使用简单的移动平均法进行预测,答案会清晰地列出计算每个预测值的算式,并对预测结果的准确性进行评估和分析。

在时间序列的季节性分析这部分内容中,课后答案会介绍如何识别季节性模式,以及如何通过季节性调整来消除季节性影响。

对于一些复杂的季节性模型,如乘积季节模型,答案会提供详细的建模思路和参数估计方法。

另外,关于时间序列的平稳化处理也是一个重要的知识点。

课后答案会讲解常见的平稳化方法,如差分法、对数变换等,并通过实际数据演示这些方法的效果。

除了理论知识的答案,一些课后习题还会要求我们运用所学知识进行实际数据分析。

这时候,答案不仅会给出最终的分析结果,还会展示详细的数据处理过程和使用的统计软件代码。

应用时间序列分析第章答案

应用时间序列分析第章答案

河南大学:姓名:汪宝班级:七班学号:1122314451 班级序号:685:我国1949年-2008年年末人口总数(单位:万人)序列如表4-8所示(行数据).选择适当的模型拟合该序列的长期数据,并作5期预测。

解:具体解题过程如下:(本题代码我是做一问写一问的)1:观察时序图:data wangbao4_5;input x@@;time=1949+_n_-1;cards;54167 55196 56300 57482 58796 60266 61465 6282864653 65994 67207 66207 65859 67295 69172 7049972538 74542 76368 78534 80671 82992 85229 8717789211 90859 92420 93717 94974 96259 97542 98705100072 101654 103008 104357 105851 107507 109300 111026112704 114333 115823 117171 118517 119850 121121 122389123626 124761 125786 126743 127627 128453 129227 129988130756 131448 132129 132802;proc gplot data=wangbao4_5;plot x*time=1;symbol1c=black v=star i=join;run;分析:通过时序图,我可以发现我国1949年-2008年年末人口总数(随时间的变化呈现出线性变化.故此时我可以用线性模型拟合序列的发展.X t=a+b t+I t t=1,2,3,…,60E(I t)=0,var(I t)=σ2其中,I t为随机波动;X t=a+b就是消除随机波动的影响之后该序列的长期趋势。

2:进行线性模型拟合:proc autoreg data=wangbao4_5;model x=time;output out=out p=wangbao4_5_cup;run;proc gplot data=out;plot x*time=1 wangbao4_5_cup*time=2/overlay ;symbol2c=red v=none i=join w=2l=3;run;分析:由上面输出结果可知:两个参数的p值明显小于0.05,即这两个参数都是具有显著非零,4:模型检验又因为Regress R-square=total R-square=0.9931,即拟合度达到99.31%所以用这个模型拟合的非常好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4LB=4.83,LB 统计量对应的分位点为0.9634,P 值为0.0363。

显著性水平 =0.05 ,序列不能视为纯随机序列。

2.5(1)时序图与样本自相关图如下(2) 非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 解:1()0.7()()t t t E x E x E ε-=⋅+0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01(t t t B B B x εε)7.07.01()7.01(221 +++=-=- 229608.149.011)(εεσσ=-=t x Var49.00212==ρφρ 022=φ3.2 解:对于AR (2)模型:⎩⎨⎧=+=+==+=+=-3.05.02110211212112011φρφρφρφρρφφρφρφρ 解得:⎩⎨⎧==15/115/721φφ3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E原模型可变为:t t t t x x x ε+-=--2115.08.02212122)1)(1)(1(1)(σφφφφφφ-+--+-=t x Var2)15.08.01)(15.08.01)(15.01()15.01(σ+++--+==1.98232σ⎪⎩⎪⎨⎧=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ ⎪⎩⎪⎨⎧=-====015.06957.033222111φφφρφ 3.4 解:原模型可变形为:t t x cB B ε=--)1(2由其平稳域判别条件知:当1||2<φ,112<+φφ且112<-φφ时,模型平稳。

由此可知c 应满足:1||<c ,11<-c 且11<+c 即当-1<c<0时,该AR(2)模型平稳。

3.5证明:已知原模型可变形为:t t x cB cB B ε=+--)1(32其特征方程为:0))(1(223=-+-=+--c c c λλλλλλ 不论c 取何值,都会有一特征根等于1,因此模型非平稳。

3.6 解:(1)错,)1/()(2201θσγε-==t x Var 。

(2)错,)1/()])([(21210111θσθγργμμε-===---t t x x E 。

(3)错,T lT x l x1)(ˆθ=。

(4)错,112211)(+--+-++++++=T l l T l T l T T G G G l e εεεε =11122111+--+-++++++T l l T l T l T εθεθεθε(5)错,22122121111]1[1lim )]([lim )](ˆ[lim εεσθσθθ-=--==-∞→∞→+∞→l l T l T lT l l e Var l x x Var 。

3.7解:12411112112111-=-+-=⇒+-=ρρθθθρMA(1)模型的表达式为:1-+=t t t x εε。

3.8解法1:由1122=+t t t t x μεθεθε----,得111223=+t t t t x μεθεθε------,则111212230.5=0.5+(0.5)(0.5)+0.5t t t t t t x x μεθεθθεθε------+--,与123=10+0.5+0.8+t t t t t x x C εεε----对照系数得12120.510,0.500.50.80.5Cμθθθθ=⎧⎪+=⎪⎨-=⎪⎪=⎩,故1220,0.5,0.55,0.275C μθθ=⎧⎪=-⎪⎨=⎪⎪=⎩。

解法2:将123100.50.8t t t t t x x C εεε---=++-+等价表达为()2323223310.82010.510.8(10.50.50.5)t ttB CB x BB CB B B B εε-+-=-=-+++++展开等号右边的多项式,整理为22334423243410.50.50.50.50.80.80.50.80.50.5B B B B B B B CB CB +++++--⨯-⨯-+++合并同类项,原模型等价表达为233020[10.50.550.5(0.50.4)]k k t t k x B B C B ε∞+=-=+-+-+∑当30.50.40C -+=时,该模型为(2)MA 模型,解出0.275C =。

3.9解::0)(=t x E22222165.1)1()(εεσσθθ=++=t x Var 5939.065.198.0122212111-=-=+++-=θθθθθρ 2424.065.14.01222122==++-=θθθρ 30≥=k k ,ρ。

3.10解法1:(1))(21 +++=--t t t t C x εεε)(3211 +++=----t t t t C x εεε11111)1(------++=⎪⎭⎫⎝⎛+-+=t t t t t t t t C x C x C x εεεεε即 t t B C x B ε])1(1[)1(--=-显然模型的AR 部分的特征根是1,模型非平稳。

(2) 11)1(---+=-=t t t t t C x x y εε为MA(1)模型,平稳。

221122111+--=+-=C C C θθρ 解法2:(1)因为22()lim(1)t k Var x kC εσ→∞=+=∞,所以该序列为非平稳序列。

(2)11(1)t t t t t y x x C εε--=-=+-,该序列均值、方差为常数,()0t E y =,22()1(1)t Var y C εσ⎡⎤=+-⎣⎦自相关系数只与时间间隔长度有关,与起始时间无关121,0,21(1)k C k C ρρ-==≥+-所以该差分序列为平稳序列。

3.11解:(1)12.1||2>=φ,模型非平稳;=1λ 1.3738 =2λ-0.8736(2)13.0||2<=φ,18.012<=+φφ,14.112<-=-φφ,模型平稳。

=1λ0.6 =2λ0.5(3)13.0||2<=θ,16.012<=+θθ,12.112<-=-θθ,模型可逆。

=1λ0.45+0.2693i =2λ0.45-0.2693i(4)14.0||2<=θ,19.012<-=+θθ,17.112>=-θθ,模型不可逆。

=1λ0.2569 =2λ-1.5569 (5)17.0||1<=φ,模型平稳;=1λ0.7 16.0||1<=θ,模型可逆;=1λ0.6(6)15.0||2<=φ,13.012<-=+φφ,13.112>=-φφ,模型非平稳。

=1λ0.4124 =2λ-1.2124 11.1||1>=θ,模型不可逆;=1λ 1.1。

3.12 解法1: 01G =,11010.60.30.3G G φθ=-=-=,1111110.30.6,2k k k k G G G k φφ---===⨯≥所以该模型可以等价表示为:100.30.6kt t t k k x εε∞--==+⨯∑。

解法2:t t B x B ε)3.01()6.01(-=-t t B B B x ε)6.06.01)(3.01(22 +++-= t B B B ε)6.0*3.06.0*3.03.01(322 ++++= j t j j t -∞=-∑+=εε116.0*3.010=G ,16.0*3.0-=j j G3.13解:3)()5.01(])(3[])([2=-⇒Θ+=Φt t t x E B E x B E ε12)(=t x E 。

3.14 证明:已知112φ=,114θ=,根据(1,1)ARMA 模型Green 函数的递推公式得:01G =,2110110.50.25G G φθφ=-=-=,1111111,2k k k k G G G k φφφ-+-===≥01ρ=52232111112245011111142422(1)11112011170.27126111j jj j j j jj j G GGφφφφφφφφρφφφφφ∞∞++==∞∞+==++--+======-+++-∑∑∑∑ ()11111122200,2jj kjj k jj k j j j k k jjjj j j G G G GG Gk GGGφρφφρ∞∞∞++-+-===-∞∞∞=======≥∑∑∑∑∑∑3.15 (1)成立 (2)成立 (3)成立 (4)不成立3.16 解:(1)t t t x x ε+-=--)10(*3.0101, 6.9=T x88.9])10(*3.010[)()1(ˆ11=+-+==++T T t T x E x E xε964.9])10(*3.010[)()2(ˆ212=+-+==+++T T t T x E x E xε 9892.9])10(*3.010[)()3(ˆ323=+-+==+++T T t T x E x E xε 已知AR(1)模型的Green 函数为:j j G 1φ=, ,,21=j 121213122130)3(++++++++=++=t t t t t t T G G G e εφεφεεεε 8829.99*)09.03.01()]3([22=++=T e Var3+t x %的置信区间:的95[9.9892-1.96*8829.9,9.9892+1.96*8829.9] 即[3.8275,16.1509](2)62.088.95.10)1(ˆ11=-=-=++T T T xx ε 15.10964.962.0*3.0)()1(ˆ21=+==++t T x E x045.109892.962.0*09.0)()2(ˆ31=+==++t T x E x81.99*)3.01()]2([22=+=+T e Var3+t x %的置信区间:的95[10.045-1.96×81.9,10.045+1.96*81.9] 即[3.9061,16.1839]。

相关文档
最新文档