4、等差数列和等比数列的综合运算(一)
第1讲 等差数列与等比数列

第1讲等差数列与等比数列高考定位 1.等差、等比数列基本运算和性质的考查是高考热点,经常以选择题、填空题的形式出现;2.数列的通项也是高考热点,常在解答题中的第(1)问出现,难度中档以下.1.(2021·北京卷)已知{a n}和{b n}是两个等差数列,且a kb k(1≤k≤5)是常值,若a1=288,a5=96,b1=192,则b3的值为()A.64B.100C.128D.132答案C解析由题意可得a1b1=a5b5,则b5=64,故b3=b1+b52=2.(2021·全国甲卷)记S n为等比数列{a n}的前n项和.若S2=4,S4=6,则S6=()A.7B.8C.9D.10答案A解析法一因为S2=4,S4=6,且易知公比q≠±1,所以由等比数列的前n项和公式,得2=a1(1-q2)1-q=a1(1+q)=4,4=a1(1-q4)1-q=a1(1+q)(1+q2)=6,两式相除,得q2=12,所以1=4(2-2),=221=4(2+2),=-22,所以S6=a1(1-q6)1-q=7.故选A.法二易知S2,S4-S2,S6-S4构成等比数列,由等比中项得S2(S6-S4)=(S4-S2)2,即4(S6-6)=22,所以S6=7.故选A.3.(2020·全国Ⅱ卷)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215-25,则k=()A.2B.3C.4D.5答案C解析∵a1=2,a m+n=a m a n,令m=1,则a n+1=a1a n=2a n,∴{a n}是以a1=2为首项,2为公比的等比数列,∴a n=2×2n-1=2n.又∵a k+1+a k+2+…+a k+10=215-25,∴2k+1(1-210)1-2=215-25,即2k+1(210-1)=25(210-1),∴2k+1=25,∴k+1=5,∴k=4.4.(2021·全国乙卷)设S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n+1b n=2.(1)证明:数列{b n }是等差数列;(2)求{a n }的通项公式.(1)证明因为b n 是数列{S n }的前n 项积,所以n ≥2时,S n =b nb n -1,代入2S n +1b n =2可得,2b n -1b n+1b n =2,整理可得2b n -1+1=2b n ,即b n -b n -1=12(n ≥2).又2S 1+1b 1=3b 1=2,所以b 1=32,故{b n }是以32为首项,12为公差的等差数列.(2)解由(1)可知,b n =32+12(n -1)=n +22,则2S n +2n +2=2,所以S n =n +2n +1,当n =1时,a 1=S 1=32,当n ≥2时,a n =S n -S n -1=n +2n +1-n +1n =-1n (n +1).故a n n =1,-1n (n +1),n ≥2.1.等差数列(1)通项公式:a n =a 1+(n -1)d ;(2)求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;(3)常用性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ;②a n =a m +(n -m )d ;③S m,S2m-S m,S3m-S2m,…成等差数列.2.等比数列(1)通项公式:a n=a1q n-1(q≠0);(2)求和公式:q=1,S n=na1;q≠1,S n=a1(1-q n)1-q=a1-a n q1-q;(3)常用性质:①若m,n,p,q∈N*,且m+n=p+q,则a m·a n=a p·a q;②a n=a m·q n-m;③S m,S2m-S m,S3m-S2m,…(S m≠0)成等比数列.温馨提醒应用公式a n=S n-S n-1时一定注意条件n≥2,n∈N*.热点一等差、等比数列的基本运算【例1】设{a n}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(1)求{a n}的通项公式;(2)记{a n}的前n项和为S n,求S n的最小值.解(1)设{a n}的公差为d.因为a1=-10,所以a2=-10+d,a3=-10+2d,a4=-10+3d.因为a2+10,a3+8,a4+6成等比数列,所以(a3+8)2=(a2+10)(a4+6).所以(-2+2d)2=d(-4+3d).解得d=2.所以a n=a1+(n-1)d=2n-12.(2)法一由(1)知,a n=2n-12.则当n≥7时,a n>0;当n=6时,a n=0;当n<6时,a n<0;所以S n的最小值为S5=S6=-30.法二由(1)知,S n =n2(a 1+a n )=n (n -11)-1214,又n ∈N *,所以当n =5或n =6时,S n 的最小值为S 5=S 6=-30.探究提高1.等差(比)数列基本运算的解题途径:(1)设基本量a 1和公差d (公比q ).(2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.2.第(2)题求出基本量a 1与公差d ,进而由等差数列前n 项和公式将结论表示成关于“n ”的函数,求出最小值.【训练1】(2021·济南联考)已知各项均为正数的等差数列{a n }满足a 1a 5=33,a 22=25.(1)求数列{a n }的通项公式;(2)设b n =4n -2+3a n ,若a n ∈N ,求{b n }的前n 项和T n .解(1)设各项均为正数的等差数列的公差为d .由a 1a 5=33,且a 22=25.1(a 1+4d )=33,2=a 1+d =5,1=3,=21=113,=43.故a n =3+2(n -1)=2n +1或a n =113+43(n -1)=4n +73.(2)由于a n ∈N ,所以a n =2n +1.所以b n =4n -2+3a n =4n -2+6n +3.根据等差数列、等比数列的前n 项和公式,得T n =14(1-4n )1-4+12(9+6n +3)n =112(4n -1)+3n 2+6n .热点二等差(比)数列的性质【例2】(1)在等差数列{a n }中,a 1=-9,a 5=-1.记T n =a 1a 2…a n (n =1,2,…),则数列{T n}()A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项(2)已知数列{a n}的各项都为正数,对任意的m,n∈N*,a m·a n=a m+n恒成立,且a3·a5+a4=72,则log2a1+log2a2+…+log2a7=________.(3)(多选)已知S n是等差数列{a n}(n∈N*)的前n项和,且S5>S6>S4.下列四个结论正确的是()A.数列{S n}中的最大项为S10B.数列{a n}的公差d<0C.S10>0D.S11<0答案(1)B(2)21(3)BCD解析(1)由题意可知,等差数列的公差d=a5-a15-1=-1+95-1=2,则其通项公式为a n=a1+(n-1)d=-9+(n-1)×2=2n-11,注意到a1<a2<a3<a4<a5<0<a6=1<a7<…,且由T5<0可知T i<0(i≥6,i∈N),由T i T i-1=a i>1(i≥7,i∈N)可知数列{T n}不存在最小项,由于a1=-9,a2=-7,a3=-5,a4=-3,a5=-1,a6=1,故数列{T n}中的正项只有有限项:T2=63,T4=945.故数列{T n}中存在最大项,为T4.故选B.(2)因为对任意的m,n∈N*,a m·a n=a m+n恒成立,令m=1,则a1·a n=a1+n,即a n+1a n=a1对任意的n∈N*恒成立,所以数列{a n}为等比数列,公比为a1.由等比数列的性质有a3a5=a24,所以a3·a5+a4=a24+a4=72,又a 4>0,解得a 4=8,所以log 2a 1+log 2a 2+…+log 2a 7=log 2(a 1a 7)(a 2a 6)(a 3a 5)a 4=log 2a 74=log 287=21.(3)因为S 5>S 6>S 4,所以a 6<0,a 5>0且a 5+a 6>0,所以数列{S n }中的最大项为S 5,A 错误;数列{a n }的公差d <0,B 正确;S 10=(a 1+a 10)×102=5(a 5+a 6)>0,C正确;S 11=(a 1+a 11)×112=11a 6<0,D 正确.故选BCD.探究提高1.利用等差(比)性质求解的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.2.活用函数性质:数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.【训练2】(1)(2021·江南十校联考)已知等差数列{a n }的前n 项和为S n ,且S 8<S 10<S 9,则满足S n >0的正整数n 的最大值为()A.16B.17C.18D.19(2)(多选)(2021·八省八校一联)已知等比数列{a n }的首项a 1>1,公比为q ,前n 项和为S n ,前n 项积为T n ,函数f (x )=x (x +a 1)(x +a 2)…(x +a 7),若f ′(0)=1,则()A.{lg a n }为递增的等差数列B.0<q <1n D.使得T n >1成立的n 的最大值为6答案(1)C(2)BCD解析(1)由S 8<S 10<S 9,得a 10<0且a 9+a 10>0,所以等差数列{a n }的公差d <0,且a 9>0.从而S17=17(a1+a17)2=17a9>0,S18=18(a1+a18)2=9(a9+a10)>0,S19=19(a1+a19)2=19a10<0.故满足S n>0的正整数n的最大值为18.(2)令g(x)=(x+a1)(x+a2)…(x+a7),则f(x)=xg(x),∴f′(x)=g(x)+xg′(x),∴f′(0)=g(0)=a1a2…a7=1.∵{a n}是等比数列,∴a1a2…a7=a74=1,即a4=1=a1q3.又a1>1,∴0<q<1,B正确;∵lg a n=lg(a1q n-1)=lg a1+(n-1)lg q,又lg q<0,∴{lg a n}是公差为lg q的递减的等差数列,A错误;∵S n-a11-q=a11-q(1-q n-1)=a1qq-1·q n-1,n a1qq-1<0,公比为q的递增的等比数列,C正确;∵a1>1,0<q<1,a4=1,∴当n≤3时,a n>1,当n≥5时,0<a n<1,∴当n≤4时,T n>1.∵T7=a1a2…a7=a74=1,∴当n≥8时,T n=T7a8a9…a n<T7=1.又T5=T7a6a7>1,T6=T7a7>1,∴使得T n>1成立的n的最大值为6,D正确.故选BCD.热点三等差(比)数列的判断与证明【例3】(2021·广东重点中学联考)在数列{a n}中,a1=5,a n=2a n-1+2n-1(n≥2,n∈N*).(1)求a2,a3的值;(2)是否存在实数λ,求出λ的值;若不存在,请说理理由.解(1)因为a1=5,且a n=2a n-1+2n-1(n≥2),所以a2=2a1+22-1=13,a3=2a2+23-1=33.(2)假设存在实数λ.设b n=a n+λ2n,由{b n}为等差数列,得2b2=b1+b3,所以2×a2+λ22=a1+λ2+a3+λ23,即13+λ2=5+λ2+33+λ8,解得λ=-1.而当λ=-1时,有b n+1-b n=a n+1-12n+1-a n-12n=12n+1[(a n+1-2a n)+1]=12n+1[(2n+1-1)+1]=1,b1=a1-12=5-12=2,则{b n}是首项为2,公差为1的等差数列.所以存在实数λ=-12,公差是1的等差数列.探究提高 1.判定等差(比)数列的主要方法:(1)定义法:对于任意n≥1,n∈N*,验证a n+1-a n n无关的一常数;(2)中项公式法,一定注意,a2n=a n-1a n+1(n≥2,n∈N*)是{a n}为等比数列的必要不充分条件,也就是判断一个数列是等比数列时,要注意各项不为0.2.第(2)问,假设存在实数λ列,求得λ的值后,一定要验证数列{b n }是等差数列.【训练3】(2021·全国甲卷)已知数列{a n }的各项为正数,记S n 为{a n }的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n }是等差数列;②数列{S n }是等差数列;③a 2=3a 1.(注:如果选择多个条件分别解答,那么按第一个解答计分.)解①③⇒②.已知{a n }是等差数列,a 2=3a 1.设数列{a n }的公差为d ,则a 2=3a 1=a 1+d ,得d =2a 1,所以S n =na 1+n (n -1)2d =n 2a 1.因为数列{a n }的各项均为正数,所以S n =n a 1,所以S n +1-S n =(n +1)a 1-n a 1=a 1(常数),所以数列{S n }是等差数列.①②⇒③.已知{a n }是等差数列,{S n }是等差数列.设数列{a n }的公差为d ,则S n =na 1+n (n -1)2d =12n 2d 1.因为数列{S n }是等差数列,所以数列{S n }的通项公式是关于n 的一次函数,则a 1-d2=0,即d =2a 1,所以a 2=a 1+d =3a 1.②③⇒①.已知数列{S n }是等差数列,a 2=3a 1,所以S 1=a 1,S 2=a 1+a 2=4a 1.设数列{S n }的公差为d ,d >0,则S 2-S 1=4a 1-a 1=d ,得a 1=d 2,所以S n =S 1+(n -1)d =nd ,所以S n =n 2d 2,所以n≥2时,a n=S n-S n-1=n2d2-(n-1)2d2=2d2n-d2,对n=1也适合,所以a n=2d2n-d2,所以a n+1-a n=2d2(n+1)-d2-(2d2n-d2)=2d2(常数),所以数列{a n}是等差数列.热点四等差数列与等比数列的综合问题【例4】设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(1)求S n和T n;(2)若S n+(T1+T2+…+T n)=a n+4b n,求正整数n的值.解(1)设等比数列{b n}的公比为q(q>0).由b1=1,b3=b2+2,可得q2-q-2=0.因为q>0,可得q=2,故b n=2n-1.所以,T n=1-2n1-2=2n-1.设等差数列{a n}的公差为d.由b4=a3+a5,可得a1+3d=4.由b5=a4+2a6,可得3a1+13d=16,从而a1=1,d=1,故a n=n.所以,S n=n(n+1)2.(2)由(1),有T1+T2+…+T n=(21+22+…+2n)-n=2×(1-2n)1-2-n=2n+1-n-2.由S n+(T1+T2+…+T n)=a n+4b n得n(n+1)2+2n+1-n-2=n+2n+1,整理得n2-3n-4=0,解得n=-1(舍)或n=4.所以n的值为4.探究提高 1.等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.2.数列的通项或前n项和可以看作关于n的函数,然后利用函数的性质求解数列问题.【训练4】(2021·衡水中学联考)已知等差数列{a n}的前n项和为S n,且S4=S5=-20.(1)求数列{a n}的通项公式;(2)已知数列{b n}是以4为首项,4为公比的等比数列,若数列{a n}与{b n}的公共项为a m,记m由小到大构成数列{c n},求{c n}的前n项和T n.解(1)设等差数列{a n}的公差为d,由S4=S5=-20,得4a1+6d=5a1+10d=-20,解得a1=-8,d=2,则a n=-8+2(n-1)=2n-10.(2)数列{b n}是以4为首项,4为公比的等比数列,∴b n=4·4n-1=4n(n∈N*).又依题意2m-10=4n,∴m=10+4n2=5+22n-1,则T n=5n+2(1-4n)1-4=5n+22n+1-23.一、选择题1.(2021·福州一诊)正项等差数列{a n}的前n项和为S n,已知a2+a8-a25+8=0,则S9=()A.35B.36C.45D.54答案B解析由等差数列的性质得a2+a8=2a5,∴a2+a8-a25+8=0,可化为a25-2a5-8=0.又a5>0,解得a5=4.∴S9=9(a1+a9)2=9a5=36.2.在等比数列{a n}中,a4=2,a5=5,则数列{lg a n}的前8项和S8为()A.4B.2C.3D.5答案B解析因为{a n}为等比数列,且a4=2,a5=5,所以a4a5=2·5=10.则数列{lg a n}的前8项和S8=lg a1+lg a2+…+lg a8=lg a1·a2·…·a8=lg(a1·a8)(a2·a7)(a3·a6)(a4·a5)=lg(10)4=4lg10=2.3.(2021·全国甲卷)等比数列{a n}的公比为q,前n项和为S n.设甲:q>0,乙:{S n}是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案B解析当a1<0,q>1时,a n=a1q n-1<0,此时数列{S n}递减,所以甲不是乙的充分条件.当数列{S n}递增时,有S n+1-S n=a n+1=a1q n>0,若a1>0,则q n>0(n∈N*),即q>0;若a1<0,则q n<0(n∈N*),不存在,所以甲是乙的必要条件.综上,甲是乙的必要条件但不是充分条件.4.(2021·日照校际联考)对于数列{a n},若存在正整数k(k≥2),使得a k<a k-1,a k<a k +1,则称a k是数列{a n}的“谷值”,k是数列{a n}的“谷值点”.在数列{a n}中,若a n=|n+9n-8|,则数列{a n}的“谷值点”为()A.2B.7C.2,7D.2,3,7答案C解析因为a n=|n+9n-8|,所以a1=2,a2=32,a3=2,a4=74,a5=65,a6=12,a7=27,a8=9 8.当n≥7,n∈N*时,n+9n-8>0,所以a n=|n+9n-8|=n+9n-8,此时数列{a n}递增.又a2<a1,a2<a3,a7<a6,a7<a8,所以数列{a n}的“谷值点”为2,7.5.(多选)(2021·湖北重点中学调研)设等比数列{a n}的公比为q,前n项和为S n,前n项积为T n,并满足条件a1>1,a2021·a2022>1,(a2021-1)·(a2022-1)<0,则下列结论中正确的有()A.q>1B.S2022>S2021C.a2021·a2023<1D.T2021是数列{T n}中的最大项答案BCD解析由{a n}为等比数列,a1>1,a2021·a2022>1及(a2021-1)·(a2022-1)<0,2021>1,a2022<1a2021<1,2022>1(舍去).∴公比0<q=a2022a2021<1,则A错误;S2022=S2021+a2022>S2021,故B正确;由等比数列性质知a2021·a2023=a22022<1,所以C正确;因为a1>1,a2>1,…,a2021>1,0<a2022<1,0<a2023<1,…,所以(T n)max=T2021,D正确.故选BCD.6.已知数列{a n}满足a n+2+a n=2a n+1+1,且a1=1,a2=5,则a18=()A.69B.105C.204D.205答案D解析由a n+2+a n=2a n+1+1,得a n+2-a n+1=a n+1-a n+1,则(a n+2-a n+1)-(a n+1-a n)=1,∵a2-a1=5-1=4,∴数列{a n+1-a n}是以4为首项,1为公差的等差数列,a n+1-a n=4+1×(n-1)=n+3,则a1=1,a2-a1=4,a3-a2=5,…,a n-a n-1=n+2,各项相加,得a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=1+4+5+…+(n+2)=1+(n-1)·(4+n+2)2=(n-1)(n+6)2+1,∴a18=(18-1)×(18+6)2+1=205.二、填空题7.(2021·上海卷)已知等差数列{a n}的首项为3,公差为2,则a10=________.答案21解析由题意,得a10=3+(10-1)×2=21.8.已知S n 是数列{a n }的前n 项和,S n =2-2a n +1,若a 2=12,则S 5=________.答案3116解析由题意可知,S 1=2-2a 2=1,且S n =2-2(S n +1-S n ),整理可得,S n +1-2=12(S n -2),由于S 1-2=-1,所以{S n -2}是首项为-1,公比为12的等比数列,故S 5-2=(-1)=-116,∴S 5=3116.9.(2021·济南模拟)已知等比数列{a n }的前n 项的乘积为T n ,若T 2=T 9=512,则T 8=________.答案4096解析设等比数列{a n }的公比为q ,由T 2=T 9,得a 76=1,故a 6=1.∴a 1q 5=1.①又T 2=a 1a 2=a 21q =512,②由①②联立,得q 9=1512,则q =12.所以T 8=T 9a 9=T9a 6q 3=212=4096.三、解答题10.(2021·广州质检)已知{a n }是等差数列,{b n }是等比数列,且{b n }的前n 项和为S n ,2a 1=b 1=2,a 5=5(a 4-a 3),________.在①b 5=4(b 4-b 3),②b n +1=S n +2这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答.(1)求数列{a n }和{b n }的通项公式;(2)求数列{a n -b n }的前n 项和T n .(注:如果选择多个条件分别解答,那么按第一个解答计分.)解(1)若选条件①,b 5=4(b 4-b 3).设等差数列{a n}的公差为d,∵2a1=2,a5=5(a4-a3),∴a1+4d=5(a1+3d-a1-2d),∴a1=d=1.∴a n=1+(n-1)×1=n.设等比数列{b n}的公比为q.由b1=2,且b5=4(b4-b3),得b1q4=4(b1q3-b1q2).∴q2-4q+4=0,解得q=2.所以{b n}是首项为2,公比为2的等比数列.故b n=2×2n-1=2n(n∈N*).若选条件②,b n+1=S n+2.令n=1,得b2=S1+2=b1+2=4.∴公比q=b2b1=2.∴数列{b n}是首项为2,公比为2的等比数列.从而b n=2×2n-1=2n(n∈N*).(2)由(1)知a n-b n=n-2n,∴T n=(1+2+3+…+n)-(21+22+23+…+2n),∴T n=n(1+n)2-2(1-2n)1-2,∴T n=2-2n+1+n22+n2.11.(2021·新高考Ⅱ卷)记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.(1)求数列{a n}的通项公式a n;(2)求使S n>a n成立的n的最小值.解(1)由等差数列的性质可得:S5=5a3,则a3=5a3,∴a3=0.设等差数列的公差为d,从而有a2a4=(a3-d)(a3+d)=-d2,S4=a1+a2+a3+a4=(a3-2d)+(a3-d)+a3+(a3+d)=-2d.∵a2a4=S4,∴-d2=-2d,由于公差不为零,故d=2,∴数列{a n}的通项公式为a n=a3+(n-3)d=2n-6.(2)由数列{a n}的通项公式可得:a1=2-6=-4,则S n=n×(-4)+n(n-1)2×2=n2-5n,则不等式S n>a n即n2-5n>2n-6,整理可得:(n-1)(n-6)>0,解得n<1或n>6,又n为正整数,故n的最小值为7.12.(多选)(2021·长沙联考)在“全面脱贫”行动中,贫困户小王2021年1月初向银行借了扶贫免息贷款10000元,用于自己开设的农产品土特产品加工厂的原材料进货,因产品质优价廉,上市后供不应求,据测算每月获得的利润是该月月初投入资金的20%,每月月底需缴纳房租600元和水电费400元,余款作为资金全部用于再进货,如此继续.设第n月月底小王手中有现款为a n,则(参考数据:1.211≈7.5,1.212≈9),()A.a1=12000B.a n+1=1.2a n-1000C.2021年小王的年利润约为40000元D.两年后,小王手中现款约达41万答案BCD解析每月获得的利润是该月月初投入资金的20%,每月月底需缴纳房租600元和水电费400元,∴a1=(1+20%)×10000-(600+400)=11000(元),故A错误;由题意a n+1=1.2a n-1000,故B正确;由a n+1=1.2a n-1000,得a n+1-5000=1.2(a n-5000),∴数列{a n-5000}是首项为6000,公比为1.2的等比数列,∴a12-5000=6000×1.211,即a12=6000×1.211+5000≈50000,则2021年小王的年利润约为50000-10000=40000(元),故C正确;两年后,即a24=5000+6000×1.223≈5000+6000×921.2=410000,即41万,故D正确,故选BCD.13.(2021·江南十校联考)已知等比数列{a n}的前n项和为S n,且a n+1+λ=3S n,a3=12,则实数λ的值为________.答案-3 4解析等比数列{a n}满足a n+1+λ=3S n,①则a n+λ=3S n-1(n≥2,n∈N*),②①-②得a n+1-a n=3S n-3S n-1,则a n+1=4a n,所以等比数列{a n}的公比为4,又由a3=12,则a1=a3q2=34.若a n+1+λ=3S n,则a1q n+λ=3×a1(1-q n)1-q恒成立,∴λ=-a1=-3 4 .14.已知等差数列{a n}的公差为-1,且a2+a7+a12=-6.(1)求数列{a n}的通项公式a n与其前n项和S n;(2)将数列{a n}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n}的前3项,记{b n}的前n项和为T n,若存在m∈N*,使得对任意n∈N*,总有S n<T m +λ恒成立,求实数λ的取值范围.解(1)由a2+a7+a12=-6,得a7=-2,∴a1=4,∴a n=5-n,从而S n=n(9-n)2(n∈N*).(2)由题意知b1=4,b2=2,b3=1,设等比数列{b n}的公比为q,则q=b2b1=12,∴T n1-1281随n的增大而减小,∴{T n}为递增数列,得4≤T n<8.又S n=n(9-n)2=--814,又n∈N*,故(S n)max=S4=S5=10.若存在m∈N*,使得对任意n∈N*,总有S n<T m+λ,则10<8+λ,得λ>2.故实数λ的取值范围为(2,+∞).。
人教版高中数学课件-等差数列与等比数列

第9講 │ 要點熱點探究
【解答】 (1)a10=10,a20=10+10d=40,∴d=3. (2)a30 = a20 + 10d2 = 10(1 + d + d2) = 10 d+122+34 (d≠0).当 d∈(-∞,0)∪(0,+∞)时,a30∈[7.5,+∞). (3)所给数列可推广为无穷数列{an},其中 a1,a2,…, a10 是首项为 1,公差为 1 的等差数列,当 n≥1 时,数列 a10n,a10n+1,…,a10(n+1)是公差为 dn 的等差数列. 研究的问题可以是:试写出 a10(n+1)关于 d 的关系式, 并求出 a10(n+1)的取值范围.研究的结论可以是:由 a40= a30+10d3=10(1+d+d2+d3),依次类推可得:a10(n+1)=
第9講 │ 要點熱點探究
已知数列 a1,a2,…,a30,其中 a1,a2,…,a10 是首项 为 1,公差为 1 的等差数列;a10,a11,…,a20 是公差为 d 的等差 数列;a20,a21,…,a30 是公差为 d2 的等差数列(d≠0).
(1)若 a20=40,求 d; (2)试写出 a30 关于 d 的关系式,并求 a30 的取值范围; (3)续写已知数列,使得 a30,a31,…,a40 是公差为 d3 的等差 数列,…,依次类推,把已知数列推广为无穷数列.提出同(2)类 似的问题((2)应当作为特例),并进行研究,你能得到什么样的结 论?
(2)已知在等比数列{an}中,a1+a3=10,a4+a6=54,
则等比数列{an}的公比 q 的值为( )
1 A.4
1 B.2
C.2
D.8
(1)2 (2)B 【解析】 (1){an}为等比数列,所以 a4- a3=a2q2-a2q=4,即 2q2-2q=4,所以 q2-q-2=0,解得 q =-1 或 q=2.又{an}是递增等比数列,所以 q=2.
数列中的综合问题

[解]
易知
(2)若选择①,解答过程如下.
+1
=
1
3
当 n ≥2时,
−1
+1
·
+2
2
1
,
1
3
1
3
= × ,
3
2
1
3
2
4
= × ,
4
3
1
3
3
5
= × ,…,
−1
1
3
= ×
,
累乘得
2
1
×
1
2
3
2
×…×
−1
因为 b 1 = ,所以 b n =
成立,
=
1
1
+8.
+1
=(4-3 n )·2
-8,
方法总结
数列的综合问题常将等差、等比数列结合,两者相互联系、相互转
化,解答这类问题的方法:寻找通项公式,利用性质进行转化.
跟踪训练
1.
2
(2022·全国甲卷)记 Sn 为数列{ an }的前 n 项和.已知
+ n =2 an +1.
(1)证明:{ an }是等差数列;
的通项公式、前 n 项和公式、求和方法等对式子化简变形.
跟踪训练
3. 已知数列{ an }是等差数列, a 1=1,公差 d ∈[1,2],且 a 4+λ a 10+ a 16
=15,则实数λ的最大值为
1
-
2
.
因为 a 4+λ a 10+ a 16=15,所以 a 1+3 d +λ( a 1+9 d )+ a 1+15 d =15,
专题05 等差等比综合(解析版)

专题5 等差等比综合一、解答题1.已知等差数列{}n a 中,22a =,156a a +=. (1)求{}n a 的通项公式;(2)若2n an b =,求数列{}n b 的前n 项和n S . 【答案】(1)n a n =;(2)122n n S +=-.【解析】(1)先设等差数列的公差为d ,由题中条件,列出方程求出首项和公差,即可得出通项公式; (2)根据(1)的结果,得到n b ,再由等比数列的求和公式,即可得出结果. 【详解】(1)设等差数列{}n a 的公差为d ,因为22a =,156a a +=,所以112246a d a d +=⎧⎨+=⎩,解得11a d ==,所以1(1)n a n n ;(2)由(1)可得,22n a nn b ==,即数列{}n b 为等比数列,所以数列{}n b 的前n 项和()12122212n n n S +-==--.2.已知等差数列{}3log n a 的首项为1,公差为1,等差数列{}n b 满足()212n n b n n k +=++.(1)求数列{}n a 和数列{}n b 的通项公式; (2)若nn nb c a =,求数列{}n c 的前n 项和n S . 【答案】(1)3nn a =.1n b n =+(2)525443n nn S +=-⋅ 【解析】(1)由等差数列的通项公式及对数的运算可得数列{}n a 的通项公式,根据条件中的递推式求出123,,b b b ,利用它们成等差数列列方程求出k ,进而可得数列{}n b 的通项公式; (2)利用错位相减法求数列{}n c 的前n 项和n S . 【详解】解:(1)由条件可知,3log 11n a n n =+-=,3nn a ∴=.()212n n b n n k +=++,132k b +∴=,283k b +=,3154kb +=. 由题意{}n b 为等差数列,2132b b b ∴=+,解得1k =,()211n b n n ∴=+-=+; (2)由(1)知,13n n n n b n c a +==,2231333n n n S +∴=++⋅⋅⋅+① 则23112313333n n n S ++=++⋅⋅⋅+① ①-①可得23311221111525333333623n n n n n S ++++=+++⋅⋅⋅+-=-⋅,525443n nn S +∴=-⋅. 3.若数列{}n a 的前n 项和22n n S a =-,*n N ∈. (1)求数列{}n a 的通项公式;(2)若()221log *n n b a n N -=∈,求数列{}n b 的前n 项和n T . 【答案】(1)2n n a =;(2)2n T n =. 【解析】 【分析】(1)根据公式11(2,),(1)n n n S S n n N a a n *-⎧-≥∈=⎨=⎩,结合等比数列的定义、通项公式进行求解即可;(2)根据对数的运算性质,结合等差数列的定义、等差数列前n 项和公式进行求解即可. 【详解】(1)数列{}n a 的前n 项和22n n S a =-,*n N ∈.2n ≥时,()112222n n n n n a S S a a --=-=---,化为:12n n a a -=,1n =时,1122a a =-,解得12a =.∴数列{}n a 是等比数列,首项为2,公比为2. 2n n a ∴=.(2)221log 21n n b a n -==-.因为12n nb b ,∴数列{}n b 是等差数列,首项为1,公差为2,所以 21()(1+21)22n n n a a n n T n +-∴===. 4.在等差数列{}n a 中,138a a +=,且2429a a a =⋅ (1)求数列{}n a 的首项、公差; (2)设()()1218n n n a a b -+=,若13mm m bb b +++=,求正整数m 的值.【答案】(1)数列{}n a 的首项是4,公差为0或首项是1,公差为3;(2)6. 【解析】 【分析】(1)根据条件,列出两个关于首项和公差的方程,然后解方程即可;(2)由(1)求出数列{}n a 的通项,然后再求出n b ,再根据13m m m b b b +++=求出m .【详解】(1)设等差数列{}n a 的公差为d ,前n 项和为n S ,由已知可得:1121112284(3)()(8)0a d a a d a d a d d ⎧+==⎧⇒⎨⎨+=++=⎩⎩或113a d =⎧⎨=⎩, 即数列{}n a 的首项是4,公差为0或首项是1,公差为3. (2)由(1)可知4n a =或13(1)32n a n n =+-=- 当4n a =时,(41)(42)118n b -+==,又13m m m b b b +++=,而1121+=>不满足题意;当32n a n =-时,(321)(322)(1)182n n n n n b ---+-==,又13m m m b b b +++=,所以(1)(1)(2)(3)222m m m m m m -++++=, 整理得2560m m --=,因为m 为正整数,所以m =6.5.已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①①①中选取两个作为条件,证明另外一个成立.①数列{}n a 是等差数列:①数列是等差数列;①213a a =. 注:若选择不同的组合分别解答,则按第一个解答计分. 【答案】证明过程见解析 【解析】 【分析】选①①作条件证明①,n n a S 的关系求出n a ,利用{}n a 是等差数列可证213a a =;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明. 选①①作条件证明①选①①作条件证明①时,an b =+,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论. 【详解】选①①作条件证明①:[方法一]:待定系数法+n a 与n S 关系式(0)an b a =+>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.[方法二] :待定系数法设等差数列{}n a 的公差为d,等差数列的公差为1d ,1(1)n d -,将1(1)2n n n S na d -=+1(1)n d =-,化简得())2222211111222d d n a n d n d n d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N 恒成立.则有21211112,240,d d a d d d ⎧=⎪⎪-=-⎨=,解得112d d a ==.所以213a a =.选①①作条件证明①:因为213a a =,{}n a 是等差数列, 所以公差2112d a a a =-=, 所以()21112n n n S na d n a -=+==,)1n =+=所以是等差数列. 选①①作条件证明①: [方法一]:定义法(0)an b a =+>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-; 当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a +-03a-<不合题意,舍去. 综上可知{}n a 为等差数列. [方法二]【最优解】:求解通项公式因为213a a =,因为也为等差数列,所以公差1d()11n d -=21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意. 【整体点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①①时,法一:利用等差数列的通项公式是关于n(0)an b a =+>,平方后得到n S 的关系式,利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①①证明①的通式通法;法二:分别设出{}n a 与{}n S 的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系1d 12d a =,进而得到213a a =;选①①时,按照正常的思维求出公差,表示出n S进行证明;选①①时,法一:利用等差数列的通项公式是关于n 的一次函数,(0)an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a前两项的差1d利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.6.已知正项数列{}n a 的前n 项和为n S ,且11a =,n a =*n ∈N 且2n ≥). (1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)21n a n =- (2)21n n T n =+ 【解析】 【分析】(1)由1(2)n n n a S S n -=-≥及题意可得数列为等差数列,从而求出2n S n =,从而可求出答案;(2)利用裂项相消法即可求出答案. (1)①1(2)n n n a S S n -=-≥,①2)n a n =≥,又)*2,,0n n a n n a ≥∈>N ,1(2)n ≥,①数列1==为首项,1为公差的等差数列,1(1)n n =+-=,①2n S n =,当2n ≥时,()221121n n n a S S n n n -=-=--=-, 当1n =时,11a =,满足上式, ①数列{}n a 的通项公式为21n a n =-;(2)由(1)可知,21n a n =-, 12233411111n n n T a a a a a a a a +=++++ 11111335572121n n =++++⨯⨯⨯(-)(+)1111111221213351n n ⎡⎤⎛⎫⎛⎫⎛⎫=⨯-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111221n ⎛⎫=⨯- ⎪+⎝⎭ 21nn =+, ①当*n ∈N 时,21n nT n =+. 7.已知数列{an }满足1a =1,an +1=2an +1,bn =an +1(n ①N*). (1)求证:{ bn }是等比数列; (2)求{ an }的通项公式.【答案】(1)证明见解析;(2)an =2n -1. 【解析】 【分析】(1)由题意可得an +1+1=2(an +1),利用等比数列的定义即可证明. (2)利用等比数列的通项公式即可求解. 【详解】(1)证明:①an +1=2an +1,①an +1+1=2(an +1),即bn +1=2bn , ①b 1=1a +1=2≠0.①bn ≠0,①1n nb b +=2,①{bn }是等比数列. (2)由(1)知{bn }是首项b 1=2,公比为2的等比数列, ①bn =2×2n -1=2n ,即an +1=2n ,①an =2n -1.8.已知等差数列{}n a 的公差为正数,11a =,其前n 项和为n S ,数列{}n b 为等比数列,12b =,且2212b S =,2310b S +=.(1)求数列{}n a 与{}n b 的通项公式; (2)求数列{}n n a b ⋅的前n 项和n T . (3)设1n n n c b S =+,n *∈N,求数列{}n c 的前2n 项和. 【答案】(1)n a n =;2nn b =;(2)()1122n n T n +=-⋅+;(3)212221n n +-+. 【解析】【分析】(1)假设公差d 和公比q ,由等差和等比数列通项与求和公式可构造方程求得,d q ,由等差和等比通项公式可求得结果;(2)由(1)可得2nn n a b n ⋅=⋅,利用错位相减法可求得结果;(3)由(1)可得11221nn c n n ⎛⎫=+⨯- ⎪+⎝⎭,利用分组求和的方法,结合等比数列求和公式和裂项相消法可求得结果. 【详解】(1)设等差数列{}n a 的公差为()0d d >,等比数列{}n b 公比为q ,()()22112311222123323310b S b q a d q d b S b q a d q d ⎧=+=+=∴⎨+=++=++=⎩,解得:21q d =⎧⎨=⎩,()111n a n n ∴=+-⨯=;1222n n n b -=⨯=;(2)由(1)得:2nn n a b n ⋅=⋅,()1231122232122n n n T n n -∴=⨯+⨯+⨯+⋅⋅⋅+-⋅+⋅, ()23412122232122n n n T n n +=⨯+⨯+⨯+⋅⋅⋅+-⋅+⋅, 两式作差得:()()211231212222222212n n nn n T n n -++--=-⋅+++⋅⋅⋅+=-⋅+-112242n n n ++=-⋅-+()1122n n +=-⋅-,()1122n n T n +∴=-⋅+.(3)由(1)得:()()121122221112n n n n c n n n n n n ⎛⎫=+=+=+⨯- ⎪+++⎝⎭, 则2212321111122221223221nn c c c c n n ⎛⎫+++⋅⋅⋅+=++⋅⋅⋅++⨯-+-+⋅⋅⋅+- ⎪+⎝⎭()221212121422122212212121n n n n n n n ++-⎛⎫=+⨯-=-+=- ⎪-+++⎝⎭. 【点睛】方法点睛:当数列通项公式满足等差⨯等比的形式时,采用错位相减法求解数列的前n 项和,具体步骤如下:①列出1231n n n S a a a a a -=+++⋅⋅⋅++的形式;①左右两侧同乘通项中的等比部分的公比q ,得到n qS ;①上下两式作差得到()1n q S -,结合等比数列求和公式可整理等式右侧的部分; ①整理所得式子求得n S .9.已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33()4n n a =-⋅;(2)31λ-≤≤.【解析】 【分析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解. 【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-①,①-①得143n n a a += 122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列, 1933()3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-, 所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234113333333(4)4444444nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以134()4n n T n +=-⋅,由n n T b λ≤得1334()(4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤; 4n >时,312344n n n λ≥-=----,得3λ≥-; 所以31λ-≤≤. 【点睛】易错点点睛:(1)已知n S 求n a 不要忽略1n =情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中(4)30n n λ-+≥恒成立,要对40,40,40n n n -=->-<讨论,还要注意40n -<时,分离参数不等式要变号.10.已知实数111,,a b c 成等差数列,求证:,,222b b b ac --成等比数列.【答案】见详解. 【解析】 【分析】根据条件,证明:2222b b b a c ⎛⎫⎛⎫⎛⎫-⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即可,注意各项均不为零.【详解】因为111,,a b c 成等差数列,所以112a c b +=,即2b ac a c =+且0abc ≠,又()()2220222444b b b b ac b b a c ac a c ac a c a c ⎛⎫⎛⎫-⋅-=-++=-++=> ⎪ ⎪+⎝⎭⎝⎭, 所以2222b b b a c ⎛⎫⎛⎫⎛⎫-⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭成立且各项均不为零,所以:,,222b b ba c --成等比数列.【点睛】本题考查等比数列的证明,难度一般.注意说明各项均不为零. 11.设数列{}n b 的前n 项和为n S ,且22n n b S =-. (1) 求123,,b b b ;(2) 求数列{}n b 的通项公式. 【答案】(1)123b =;229b =;3227b =.(2)23n n b =.【解析】 【分析】(1)对于已知式令1,2,3n =即可解得123,,b b b 的值.(2)由22n n b S =-,得1122n n b S --=-,两式相减可推得{}n b 是等比数列,进而可得通项公式.也可以由(1)的结论归纳出{}n b 的通项公式,再验证其符合已知条件. 【详解】(1)由22n n b S =-,令1n =,得1122b S =-,又11S b =,所以123b =; 令2n =,得21222()b b b =-+,所以229b =; 令2n =,得312322()b b b b =-++,所以3227b =. (2)方法一:当2n ≥时,由22n n b S =-,可得1122n n b S --=-, 两式相减得112()2n n n n n b b S S b ---=--=-,即11=3n n b b -. 所以{}n b 是以123b =为首项,13为公比的等比数列,于是1212333n n n b -⎛⎫=⋅=⎪⎝⎭. 方法二:由(1)归纳可得23n nb =, 此时21133111313nnnS ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦==--,可使22n n b S =-成立,所以23n nb =. 【点睛】本题考查数列问题,考查由n a 和n S 的关系求通项公式.通过赋值列举若干项,寻找规律和解题思路,是解决数列问题的一种常见策略. 12.已知数列{}n a 满足112n n a a +=-+,其中10a =. (1)求证11n a ⎧⎫⎨⎬+⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)设121n n n n T a a a +-=+++,若n T p n ≤-对任意的n *∈N 恒成立,求p 的最小值.【答案】(1)证明见解析,11n a n=-;(2)最小值为1.【解析】 【分析】 (1)根据112n n a a +=-+,可得1211111222n n n n n n a a a a a a ++-++=-+==+++,从而可得12111111n n n n a a a a ++==++++,即可得出结论,再根据等差数列的通项即可求得数列{}n a 的通项公式; (2)121n n n n T a a a p n +-=+++≤-,即()()()()12211111n n n n a a a a p ++-++++++++≤,设()()()()121111n n n H n a a a +-=++++++,利用作差法证明数列(){}H n 单调递减,从而可得出答案.【详解】(1)证明:①112n n a a +=-+, ①1211111222n n n n n n a a a a a a ++-++=-+==+++, ①10n a +≠,①12111111n n n n a a a a ++==++++, ①11n a ⎧⎫⎨⎬+⎩⎭是以1为首项,1为公差的等差数列. ()1111n n n a =+-=+,①11n a n=-. (2)解:①121n n n n T a a a p n +-=+++≤-,①121n n n n a a a p +-++++≤,即()()()()12211111n n n n a a a a p ++-++++++++≤对任意的n *∈N 恒成立,而11n a n+=, 设()()()()121111n n n H n a a a +-=++++++,①()111121H n n n n =++++-, ()1111111221221H n n n n n n +=+++++++-+, ①()()1111110221212H n H n n n n n n+-=+-=-<++, ①数列(){}H n 单调递减,①当n *∈N 时,()()11H n H ≤=,①1p ≥. ①p 的最小值为1.13.设数列{}n a 的前n 项和为n S ,且4120S =,13n n a a +=. (①)求数列{}n a 的通项公式;(①)设321log n n b a -=,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(1)3nn a =(2)n T 21nn =+ 【解析】 【分析】(1)利用13n n a a +=,得到数列{}n a 是等比数列,且公比等于3,利用求和公式求得数列的首项1a ,再利用等比数列的通项公式求得结果;(2)根据题意,可得21n b n =-,之后应用裂项相消法对数列11n n b b +⎧⎫⎨⎬⎩⎭求和.【详解】(①)①13n na a +=,①{}n a 是公比为3q =的等比数列, 又()4141312013a S -==-,解得13a=.①{}n a 是以13a =为首项,以3q =为公比的等比数列,通项公式为113n nn a a q -==. (①)①213log 321n n b n -==- ①()()11113352121n T n n =+++⨯⨯-+ 111111123352121n n ⎛⎫=-+-++- ⎪-+⎝⎭11(122121n n n =-=++) 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等比数列的定义,等比数列的求和公式,等比数列通项公式,裂项相消法求和,属于中档题目.14.某航运公司用300万元买回客船一艘,此船投入营运后,每月需开支燃油费、维修费、员工工资,已知每月燃油费7000元,第n 个月的维修费和工资支出为600(1)3000-+n 元. (1)设月平均消耗为y 元,求y 与n (月)的函数关系; (2)投入营运第几个月,成本最低?(月平均消耗最小)(3)若第一年纯收入50万元(已扣除消耗),以后每年纯收入以5%递减,则多少年后可收回成本? 【答案】(1)30000003009700,y n n N n+=++∈;(2)投入第100个月,成本最低; (3)7年后收回成本. 【解析】 【分析】(1)先求出购船费和所有支出的和,然后把购船费和所有支出费用平摊到每一个月,即可求得平均消耗y与n (月)的函数关系;(2)利用基本不等式可得最值,从而求出此时n 的值,即可求解;(3)假设x 年后可收回成本,则收入是首项为50,公比为0.95的等比数列,然后建立收入大于成本的不等式,即可求解. 【详解】(1)购船费和所有支出费为30000007000[300030006003000260030006000(1)]n n +++⨯+⨯⨯++⨯-230000009700300n n =++元,所以月平均消耗30000003009700=++y n n, 即月平均消耗为y 与n 的函数关系30000003009700,y n n N n+=++∈.(2)由(1)30000003009700970069700y n n =++≥=, 当且仅当3000000300n n=,即100n =时等号成立, 所以当投入营运100个月时,营运成本最低. (3)假设x 年后可收回成本,则收入为: 215050(15%)50(15%)50(15%)1000(10.95)300x x -+-+-++-=->,解得7x =时满足条件,6x =时不满足条件, 故7年后可收回成本. 【点睛】本题主要考查了等比数列的应用,以及基本不等式求最值的应用,着重分析问题和解答问题的能力,属于中档试题.15.已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项. (1)求n a ,n b ; (2)设()11n n n n c b a a =++,求{}n c 的前n 项和n S .【答案】(1)1,2n n n a n b -==;(2)121nn S n =-+. 【解析】 【分析】(1)设数列{}n a 的公差为()0d d ≠,由题意列关于首项与公差的方程,联立求得首项与公差,则n a ,n b 可求;(2)把(1)中求得的通项公式代入n c ,分组后利用等比数列前n 项和与裂项相消法求解数列{}n c 的前n 项和. 【详解】解:(1)设数列{}n a 的公差为()0d d ≠, 由题意,4114(41)446102S a d a d ⨯-=+=+=,① 又①124,,a a a 成等比数列,①2214a a a =, 即2111()(3)a d a a d +=+,得1a d =,①联立①①可得,11a d == ①n a n = ,12n n b -=; (2)①1112(1)(1)n n n n n c b a a n n -=+=+++,①01111111(222)(1)2231n n S n n -=++++-+-++-+ =1211121211n n n n -+-=--++. ①数列{}n c 的前n 项和n S 为121n n S n =-+. 【点睛】本题考查等差等比数列基本量的计算,等比数列求和公式,裂项求和,分组求和法等,考查运算求解能力,是中档题.本题第二问解题的关键在于先根据分组求和,转化为等比数列的和与1(1)n n ⎧⎫⎨⎬+⎩⎭的和,进而利用裂项求和求解.16.记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值. 【答案】(1)26n a n =-;(2)7. 【解析】 【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式; (2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值. 【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-, 从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7. 【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.17.已知数列{}n a 的前n 项和为n S ,且1a ,n a ,n S 为等差数列;数列{}n b 满足16b =,14n n nb S a =++. (1)求数列{}n b 的前n 项和n T ; (2)若对于*N n ∀∈,总有3207464n n m a --<成立,求实数m 的取值范围. 【答案】(1)+1112+32n n n n T -=-. (2)6>7m .【解析】 【分析】(1)由等差数列的性质得12+n n a a S =,继而有+11+12+n n a a S =,两式相减得+12n n a a =,由此得数列{}n a 是以2为公比的等比数列,求得n a ,n S ,再由此求得n b ,运用分组求和法和等比数列的求和公式可求得n T . (2)由(1)将不等式转化为132074>642n n m ---⨯,再令13202n n n c --=,作+12233n nnnc c --=,判断出当8n =时,n c 取得最大值132,由此得174>6432m -⨯,求解即可.(1)解:因为1a ,n a ,n S 为等差数列,所以12+n n a a S =,所以+11+12+n n a a S =,两式相减得+1+122n n n n a a S S -=-, 即+12n n a a =,所以数列{}n a 是以2为公比的等比数列,又16b =,14n n n b S a =++,所以11164a a =++,解得11a =,所以12n n a ,12112122n n n S -⨯-=--=,所以1111242+3212nnn n n b --=++=+-, 所以212112111112+32+32+++++3+22+2n n n n T b b b ---++⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝+⎭⎝⎭()21112+221++2++++32n n n -⎛⎫=+ ⎪⎝⎭111112222+311212nn n --⨯-=+--⨯+1112+32n n n -=-, 所以+1112+32n n n n T -=-; (2)解:由(1)得不等式为132072464n n m ---<,整理得132074>642n n m ---⨯, 令13202n n n c --=,则()+113+122203202332n n n n nn n n c c -----=-=, 所以当07n <≤,*N n ∈时,+1>0n n c c -,即+1>n n c c ,当>7n ,*N n ∈时,+10n n c c -<,即+1n n c c <,所以当8n =时,n c 取得最大值88138201232c -⨯-==,所以174>6432m -⨯,即74>2m -,解得6>7m . 所以实数m 的取值范围为6>7m .18.已知等差数列{}n a 的前n 项和为n S ,且2610a a +=,520S =. (1)求n a 与n S ; (2)设数列{}n c 满足1n n c S n=-,求{}n c 的前n 项和n T . 【答案】(1)1n a n =+,n S ()32n n +=(2)n T 21nn =+ 【解析】 【分析】 (1)由()1553552a a S a +==和2642a a a +=,可求出3a 和4a ,然后利用等差数列的性质可求出n a 与n S ;(2)由(1)知()32n n n S +=,可得2121121n n c S n n n n n ⎛⎫===- ⎪-++⎝⎭,利用裂项相消的求和方法,可求出{}n c 的前n 项和n T . 【详解】解:(1)设等差数列公差为d ,()155355202a a S a+===,故34a =,264210a a a +==,故45a =,1d ∴=,()331n a a d n n =+-=+,易得12a =, ∴()12n n nS a a =+ ()()32122n n n n +=++=. (2)由(1)知()32n n n S +=,则2121121n n c S n n n n n ⎛⎫===- ⎪-++⎝⎭,则111111121223341n T n n ⎛⎫=-+-+-+- ⎪+⎝⎭ 1211n ⎛⎫=- ⎪+⎝⎭21n n =+. 【点睛】本题考查了等差数列的通项公式及前n 项和公式,考查了裂项相消的求和方法,考查了学生的计算能力,属于基础题.19.数列{}n a 满足()1331,2n n n a a n n *-=+-∈≥N ,已知395a =.(1)求1a ,2a ; (2)若()()13n n nb a t n *=+∈N ,则是否存在实数t ,使{}n b 为等差数列?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)15a =;223a =;(2)存在;12t =-.【解析】 【分析】(1)代入2n =,3n =进入1331nn n a a -=+-,结合395a =,即得解;(2)利用等差数列定义,要使{}n b 为等差数列,则11213n n ntb b -+-=-为常数,分析即得解 【详解】(1)当2n =时,221331a a =+-. 当3n =时,33233195a a =+-=,①223a =.①12338a =+,解得15a =. (2)当2n ≥时,()()1111133n n n n n n b b a t a t ----=+-+ ()()1113331233nn n n n a t a t t -=+--=-- 1213nt+=-. 要使{}n b 为等差数列,则1213n t +-为常数,即12t =-, 即存在12t =-,使{}n b 为等差数列.20.在正项数列{}n a 中,11a =()()2211121n n n n a a a a ++-=-,1n n nb a a =-. (1)求数列{}n a 与{}n b 的通项公式; (2)求数列(){}22n n n a b -的前n 项和nT .【答案】(1)22n n a =,2nn b =,(2)()()13144219n n n T n n +-+=++【解析】(1)在已知等式()()2211121n n n n a a a a ++-=-两边同时除以1n n a a +,即可证得{}n b 是等比数列(必须求出10b ≠),然后可求得n b ,解方程1n n nb a a =-可得n a ; (2)由(1)求出2(2)44nn n n a b n n -=⋅+,其前n 项和用分组求和法,一部分由等差数列前n 项和公式可得,另外一部分用错位相减法求和. 【详解】(1)①()()2211121n n n n a a a a ++-=-,①11112n n n n a a a a ++⎛⎫-=- ⎪⎝⎭, ①12n n b b +=. 又11112b a a =-=,①{}n b 是首项为2,公比为2的等比数列, 从而2nn b =.①1n n n b a a =-,①12n n n a a -=,又0n a >,解得22n n a =. (2)()()224444n nn n n a b n n n -=+=⋅+,设数列{}4nn ⋅的前n 项和为n S , 则214244nn S n =⨯+⨯+⋅⋅⋅+⋅,231414244n n S n +=⨯+⨯+⋅⋅⋅+⋅,则2144444n n n n S S n +-=+++-⋅,即()11134444434143n n n n n S n ++---⨯-=-⋅=-,即()131449n nn S +-+=, 故()()()11314442129n n n n n n T S n n ++-+=+⨯=++.【点睛】本题考查等比数列的证明,考查等比数列通项公式,考查分组求和、错位相减法求和.数列求和除等差数列和等比数列的求和公式外还有一些特殊数列的特殊方法:。
数列中的综合问题

(2)若cn=an·bn,n∈N+,求数列{cn}的前n项和Tn.
∵an=3n-1,bn=2n, 则cn=(3n-1)·2n, ∴Tn=2·21+5·22+8·23+11·24+…+(3n-1)·2n, 2Tn=2·22+5·23+8·24+11·25+…+(3n-1)·2n+1, 将两式相减得-Tn=2·21+3(22+23+24+…+2n)-(3n-1)·2n+1 =4+32211--22n-1-(3n-1)·2n+1=(4-3n)·2n+1-8, ∴Tn=(3n-4)·2n+1+8.
(2)已知数列{an}满足a1=37 ,3an,2an+1,anan+1成等差数列. ①证明:数列 a1n-1 是等比数列,并求{an}的通项公式;
由已知得4an+1=3an+anan+1,因为a1=37 ≠0,所以由递推关系可得 an≠0恒成立,
所以a4n=an3+1+1,所以a4n-4=an3+1-3, 即an1+1-1=43a1n-1.
所以a1+2+a2 022+2=0,所以a1+a2 022=-4,
所以S2
022=2
022a1+a2 2
022 =-4
044.
(2)数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10 +a16=15,则 实数λ的最大值为_-__12__.
因为a4+λa10+a16=15, 所以a1+3d+λ(a1+9d)+a1+15d=15, 令 λ=f(d)=1+159d-2,因为 d∈[1,2],所以令 t=1+9d,t∈[10,19], 因此 λ=f(t)=1t5-2, 当t∈[10,19]时,函数λ=f(t)是减函数,故当t=10时,实数λ有最大 值,最大值为f(10)=-12 .
=14n12-n+1 12,
第1讲 等差数列与等比数列

所以 q=- 1 ,所以 S4=S3+a4= 3 - 1 = 5 .
2
4 88
答案: 5 8
4.(2019·全国Ⅰ卷)记
Sn
为等比数列{an}的前
n
项和.若
a1=
1 3
,
a42
=a6,则
S5=
.
解析:设等比数列{an}的公比为 q,由 a42 =a6 可得 a12 q6=a1q5,解得 a1q=1,
则 S9= 9a1 a9 = 9 4 =18.故选 A.
2
2
(2)(2019·南昌期中)已知 Sn 为等差数列{an}的前 n 项和,若 a2019 >-1 且 Sn 有最小 a2020
方法技巧
解等差数列、等比数列基本运算问题的基本思想是方程思想,即通过等差数列、 等比数列的通项公式及前n项和公式得出基本量(等差数列的首项和公差、等 比数列的首项和公比),然后再通过相关公式求得结果.
热点训练1:(1)(2019·湖南省长望浏宁四县高三3月调研)中国古代词中,有一 道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多 十七,要将第八数来言”.题意是:把996斤绵分给8个儿子做盘缠,按照年龄从 大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的 绵是( ) (A)174斤 (B)184斤 (C)191斤 (D)201斤
(1)证明:由题设得 4(an+1+bn+1)=2(an+bn),则 an+1+bn+1= 1 (an+bn). 2
又因为 a1+b1=1,所以{an+bn}是首项为 1,公比为 1 的等比数列. 2
数列中的综合问题(经典导学案及练习答案详解)

§6.6 数列中的综合问题学习目标1.了解数列是一种特殊的函数,会解决等差、等比数列的综合问题.2.能在具体问题情境中,发现等差、等比关系,并解决相应的问题. 题型一 数学文化与数列的实际应用例1 (1)(2020·全国Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3 699块B .3 474块C .3 402块D .3 339块答案 C解析 设每一层有n 环,由题意可知,从内到外每环之间构成公差为d =9,首项为a 1=9的等差数列.由等差数列的性质知S n ,S 2n -S n ,S 3n -S 2n 成等差数列,且(S 3n -S 2n )-(S 2n -S n )=n 2d ,则9n 2=729,解得n =9,则三层共有扇面形石板S 3n =S 27=27×9+27×262×9=3 402(块).(2)(2021·新高考全国Ⅰ)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20 dm ×12 dm 的长方形纸,对折1次共可以得到10 dm ×12 dm,20 dm × 6 dm 两种规格的图形,它们的面积之和S 1=240 dm 2,对折2次共可以得到5 dm ×12 dm ,10 dm ×6 dm ,20 dm ×3 dm 三种规格的图形,它们的面积之和S 2=180 dm 2,以此类推,则对折4次共可以得到不同规格图形的种数为________;如果对折n 次,那么∑k =1nS k =_______ dm 2.答案 5 240⎝⎛⎭⎫3-n +32n解析 依题意得,S 1=120×2=240; S 2=60×3=180;当n =3时,共可以得到5 dm ×6 dm ,52 dm ×12 dm ,10 dm ×3 dm,20 dm ×32 dm 四种规格的图形,且5×6=30,52×12=30,10×3=30,20×32=30,所以S 3=30×4=120;当n =4时,共可以得到5 dm ×3 dm ,52 dm ×6 dm ,54 dm ×12 dm,10 dm ×32 dm,20 dm ×34 dm五种规格的图形,所以对折4次共可以得到不同规格图形的种数为5,且5×3=15,52×6=15,54×12=15,10×32=15,20×34=15,所以S 4=15×5=75; ……所以可归纳S k =2402k ×(k +1)=240(k +1)2k.所以∑k =1n S k =240⎝ ⎛⎭⎪⎫1+322+423+…+n 2n -1+n +12n ,①所以12×∑k =1nS k=240⎝ ⎛⎭⎪⎫222+323+424+…+n 2n +n +12n +1,②由①-②得,12×∑k =1nS k=240⎝⎛⎭⎪⎫1+122+123+124+…+12n -n +12n +1=240⎝ ⎛⎭⎪⎫1+122-12n×121-12-n +12n +1=240⎝ ⎛⎭⎪⎫32-n +32n +1, 所以∑k =1nS k =240⎝⎛⎭⎫3-n +32n dm 2.教师备选1.《周髀算经》中有这样一个问题:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,自冬至日起,其日影长依次成等差数列,前三个节气日影长之和为28.5尺,最后三个节气日影长之和为1.5尺,今年3月20日为春分时节,其日影长为( ) A .4.5尺 B .3.5尺 C .2.5尺 D .1.5尺答案 A解析 冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气日影长构成等差数列{a n },设公差为d ,由题意得,⎩⎪⎨⎪⎧a 1+a 2+a 3=28.5,a 10+a 11+a 12=1.5,解得⎩⎪⎨⎪⎧a 1=10.5,d =-1,所以a n =a 1+(n -1)d =11.5-n , 所以a 7=11.5-7=4.5, 即春分时节的日影长为4.5尺. 2.古希腊时期,人们把宽与长之比为5-12⎝ ⎛⎭⎪⎫5-12≈0.618的矩形称为黄金矩形,把这个比值5-12称为黄金分割比例.如图为希腊的一古建筑,其中图中的矩形ABCD ,EBCF ,FGHC ,FGJI ,LGJK ,MNJK 均为黄金矩形,若M 与K 之间的距离超过1.5 m ,C 与F 之间的距离小于11 m ,则该古建筑中A 与B 之间的距离可能是(参考数据:0.6182≈0.382,0.6183≈0.236,0.6184≈0.146,0.6185≈0.090,0.6186≈0.056,0.6187≈0.034)( )A .30.3 mB .30.1 mC .27 mD .29.2 m答案 C解析 设|AB |=x ,a ≈0.618,因为矩形ABCD ,EBCF ,FGHC ,FGJI ,LGJK ,MNJK 均为黄金矩形, 所以有|BC |=ax ,|CF |=a 2x ,|FG |=a 3x , |GJ |=a 4x ,|JK |=a 5x ,|KM |=a 6x .由题设得⎩⎪⎨⎪⎧a 6x >1.5,a 2x <11,解得26.786<x <28.796,故选项C 符合题意.思维升华 数列应用问题常见模型(1)等差模型:后一个量比前一个量增加(或减少)的是同一个固定值. (2)等比模型:后一个量与前一个量的比是同一个固定的非零常数.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,那么应考虑a n 与a n +1(或者相邻三项)之间的递推关系,或者S n 与S n +1(或者相邻三项)之间的递推关系.跟踪训练1 (1)(2022·佛山模拟)随着新一轮科技革命和产业变革持续推进,以数字化、网络化、智能化以及融合化为主要特征的新型基础设施建设越来越受到关注.5G 基站建设就是“新基建”的众多工程之一,截至2020年底,我国已累计开通5G 基站超70万个,未来将进一步完善基础网络体系,稳步推进5G 网络建设,实现主要城区及部分重点乡镇5G 网络覆盖.2021年1月计划新建设5万个5G 基站,以后每个月比上一个月多建设1万个,预计我国累计开通500万个5G 基站时要到( ) A .2022年12月 B .2023年2月 C .2023年4月 D .2023年6月答案 B解析 每个月开通5G 基站的个数是以5为首项,1为公差的等差数列,设预计我国累计开通500万个5G 基站需要n 个月,则70+5n +n (n -1)2×1=500,化简整理得,n 2+9n -860=0, 解得n ≈25.17或n ≈-34.17(舍),所以预计我国累计开通500万个5G 基站需要25个月,也就是到2023年2月.(2)(多选)(2022·潍坊模拟)南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,…,设各层球数构成一个数列{a n },则( )A .a 4=12B .a n +1=a n +n +1C .a 100=5 050D .2a n +1=a n ·a n +2 答案 BC解析 由题意知,a 1=1,a 2=3,a 3=6,…,a n =a n -1+n ,故a n =n (n +1)2,∴a 4=4×(4+1)2=10,故A 错误;a n +1=a n +n +1,故B 正确; a 100=100×(100+1)2=5 050,故C 正确;2a n +1=(n +1)(n +2), a n ·a n +2=n (n +1)(n +2)(n +3)4,显然2a n +1≠a n ·a n +2,故D 错误.题型二 等差数列、等比数列的综合运算例2 (2022·滨州模拟)已知等差数列{a n }和等比数列{b n }满足a 1=2,b 2=4,a n =2log 2b n ,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)设数列{a n }中不在数列{b n }中的项按从小到大的顺序构成数列{c n },记数列{c n }的前n 项和为S n ,求S 100.解 (1)设等差数列{a n }的公差为d , 因为b 2=4,所以a 2=2log 2b 2=4, 所以d =a 2-a 1=2, 所以a n =2+(n -1)×2=2n . 又a n =2log 2b n ,即2n =2log 2b n , 所以n =log 2b n , 所以b n =2n .(2)由(1)得b n =2n =2·2n -1=a 2n -1, 即b n 是数列{a n }中的第2n-1项.设数列{a n }的前n 项和为P n ,数列{b n }的前n 项和为Q n , 因为b 7=62a =a 64,b 8=72a =a 128,所以数列{c n }的前100项是由数列{a n }的前107项去掉数列{b n }的前7项后构成的, 所以S 100=P 107-Q 7=107×(2+214)2-2-281-2=11 302.教师备选(2020·浙江)已知数列{a n },{b n },{c n }满足a 1=b 1=c 1=1,c n =a n +1-a n ,c n +1=b nb n +2c n ,n ∈N *.(1)若{b n }为等比数列,公比q >0,且b 1+b 2=6b 3,求q 的值及数列{a n }的通项公式; (2)若{b n }为等差数列,公差d >0,证明:c 1+c 2+c 3+…+c n <1+1d,n ∈N *.(1)解 由b 1=1,b 1+b 2=6b 3,且{b n }为等比数列,得1+q =6q 2,解得q =12(负舍).∴b n =12n -1.∴c n +1=b n b n +2c n =4c n ,∴c n =4n -1.∴a n +1-a n =4n -1, ∴a n =a 1+1+4+…+4n -2=1-4n -11-4+1=4n -1+23.(2)证明 由c n +1=b nb n +2·c n (n ∈N *),可得b n +2·c n +1=b n ·c n , 两边同乘b n +1,可得b n +1·b n +2·c n +1=b n ·b n +1·c n , ∵b 1b 2c 1=b 2=1+d ,∴数列{b n b n +1c n }是一个常数列, 且此常数为1+d ,即b n b n +1c n =1+d , ∴c n =1+d b n b n +1=1+d d ·d b n b n +1=⎝⎛⎭⎫1+1d ·b n +1-b n b n b n +1=⎝⎛⎭⎫1+1d ⎝⎛⎭⎫1b n -1b n +1, 又∵b 1=1,d >0,∴b n >0, ∴c 1+c 2+…+c n=⎝⎛⎭⎫1+1d ⎝⎛⎭⎫1b 1-1b 2+⎝⎛⎭⎫1+1d ⎝⎛⎭⎫1b 2-1b 3+…+⎝⎛⎭⎫1+1d ⎝⎛⎭⎫1b n -1b n +1=⎝⎛⎭⎫1+1d ⎝⎛⎭⎫1b 1-1b 2+1b 2-1b 3+…+1b n -1b n +1=⎝⎛⎭⎫1+1d ⎝⎛⎭⎫1b 1-1b n +1=⎝⎛⎭⎫1+1d ⎝⎛⎭⎫1-1b n +1<1+1d , ∴c 1+c 2+…+c n <1+1d.思维升华 对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系.数列的求和主要是等差、等比数列的求和及裂项相消法求和与错位相减法求和,本题中利用裂项相消法求数列的和,然后利用b 1=1,d >0证明不等式成立.另外本题在探求{a n }与{c n }的通项公式时,考查累加、累乘两种基本方法.跟踪训练2 已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 1=1,a 2+a 4=10, 所以2a 1+4d =10, 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5, 所以b 1q ·b 1q 3=9. 又b 1=1,所以q 2=3. 所以b 2n -1=b 1q 2n -2=3n -1. 则b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.题型三 数列与其他知识的交汇问题 命题点1 数列与不等式的交汇例3 已知数列{a n }满足a 1=12,1a n +1=1a n +2(n ∈N *).(1)求数列{a n }的通项公式; (2)求证:a 21+a 22+a 23+…+a 2n <12. (1)解 因为1a n +1=1a n +2(n ∈N *),所以1a n +1-1a n =2(n ∈N *),因为a 1=12,所以1a 1=2,所以数列⎩⎨⎧⎭⎬⎫1a n 是以首项为2,公差为2的等差数列,所以1a n =2+2(n -1)=2n (n ∈N *),所以数列{a n }的通项公式是a n =12n (n ∈N *).(2)证明 依题意可知a 2n =⎝⎛⎭⎫12n 2=14·1n 2<14·1n ·1n -1 =14⎝⎛⎭⎫1n -1-1n (n >1), 所以a 21+a 22+a 23+…+a 2n<14⎝⎛⎭⎫1+1-12+12-13+…+1n -1-1n =14⎝⎛⎭⎫2-1n <12. 故a 21+a 22+a 23+…+a 2n <12.命题点2 数列与函数的交汇例4 (1)(2022·淄博模拟)已知在等比数列{a n }中,首项a 1=2,公比q >1,a 2,a 3是函数f (x )=13x 3-6x 2+32x 的两个极值点,则数列{a n }的前9项和是________. 答案 1 022解析 由f (x )=13x 3-6x 2+32x ,得f ′(x )=x 2-12x +32,又因为a 2,a 3是函数f (x )=13x 3-6x 2+32x 的两个极值点,所以a 2,a 3是函数f ′(x )=x 2-12x +32的两个零点,故⎩⎪⎨⎪⎧a 2+a 3=12,a 2·a 3=32, 因为q >1,所以a 2=4,a 3=8,故q =2, 则前9项和S 9=2(1-29)1-2=210-2=1 022.教师备选1.已知函数f (x )=log 2x ,若数列{a n }的各项使得2,f (a 1),f (a 2),…,f (a n ),2n +4成等差数列,则数列{a n }的前n 项和S n =______________. 答案163(4n-1) 解析 设等差数列的公差为d ,则由题意,得2n +4=2+(n +1)d ,解得d =2, 于是log 2a 1=4,log 2a 2=6,log 2a 3=8,…, 从而a 1=24,a 2=26,a 3=28,…,易知数列{a n }是等比数列,其公比q =a 2a 1=4,所以S n =24(4n -1)4-1=163(4n-1).2.求证:12+1+222+2+323+3+…+n2n +n <2(n ∈N *).证明 因为n 2n+n <n2n , 所以不等式左边<12+222+323+…+n2n .令A =12+222+323+…+n2n ,则12A =122+223+324+…+n 2n +1, 两式相减得12A =12+122+123+…+12n -n 2n +1=1-12n -n2n +1,所以A =2-n +22n <2,即得证.思维升华 数列与函数、不等式的综合问题关键在于通过函数关系寻找数列的递推关系,求出数列的通项或前n 项和,再利用数列或数列对应的函数解决最值、范围问题,通过放缩进行不等式的证明.跟踪训练3 (1)(2022·长春模拟)已知等比数列{a n }满足:a 1+a 2=20,a 2+a 3=80.数列{b n }满足b n =log 2a n ,其前n 项和为S n ,若b n S n +11≤λ恒成立,则λ的最小值为________.答案623解析 设等比数列{a n }的公比为q ,由题意可得⎩⎪⎨⎪⎧a 1+a 1q =20,a 1q +a 1q 2=80,解得a 1=4,q =4,故{a n }的通项公式为a n =4n ,n ∈N *. b n =log 2a n =log 24n =2n , S n =2n +12n (n -1)·2=n 2+n ,b n S n +11=2nn 2+n +11=2n +11n+1,n ∈N *,令f (x )=x +11x,则当x ∈(0,11)时,f (x )=x +11x 单调递减,当x ∈(11,+∞)时,f (x )=x +11x 单调递增,又∵f (3)=3+113=203,f (4)=4+114=274,且n ∈N *,∴n +11n ≥203,即b n S n +11≤2203+1=623,故λ≥623,故λ的最小值为623.(2)若S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列,S 2=4. ①求数列{a n }的通项公式; ②设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m .解 ①设{a n }的公差为d (d ≠0), 则S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d . 因为S 1,S 2,S 4成等比数列, 所以a 1·(4a 1+6d )=(2a 1+d )2. 所以2a 1d =d 2.因为d ≠0,所以d =2a 1.又因为S 2=4,所以a 1=1,d =2, 所以a n =2n -1.②因为b n =3a n a n +1=3(2n -1)(2n +1)=32⎝⎛⎭⎫12n -1-12n +1, 所以T n =32⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1=32⎝⎛⎭⎫1-12n +1<32. 要使T n <m20对所有n ∈N *都成立,则有m 20≥32,即m ≥30.因为m ∈N *,所以m 的最小值为30.课时精练1.(2022·青岛模拟)从“①S n =n ⎝⎛⎭⎫n +a 12;②S 2=a 3,a 4=a 1a 2;③a 1=2,a 4是a 2,a 8的等比中项.”三个条件中任选一个,补充到下面的横线处,并解答.已知等差数列{a n }的前n 项和为S n ,公差d ≠0,________,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =122n n S S +-,数列{b n }的前n 项和为W n ,求W n .注:如果选择多个条件分别解答,按第一个解答计分.解 (1)选①:S n =n ⎝⎛⎭⎫n +a 12=n 2+a 12n , 令n =1,得a 1=1+a 12,即a 1=2, 所以S n =n 2+n .当n ≥2时,S n -1=(n -1)2+n -1,当n ≥2时,a n =S n -S n -1=2n ,又a 1=2,满足上式,所以a n =2n .选②:由S 2=a 3,得a 1+a 2=a 3,得a 1=d ,又由a 4=a 1a 2,得a 1+3d =a 1(a 1+d ),因为d ≠0,则a 1=d =2,所以a n =2n .选③:由a 4是a 2,a 8的等比中项,得a 24=a 2a 8,则(a 1+3d )2=(a 1+d )(a 1+7d ),因为a 1=2,d ≠0,所以d =2,则a n =2n .(2)S n =n 2+n ,b n =(2n +1)2+2n +1-(2n )2-2n=3·22n +2n ,所以W n =3×22+2+3×24+22+…+3×22n +2n =12×(1-4n )1-4+2×(1-2n )1-2=4(4n -1)+2(2n -1)=4n +1+2n +1-6.2.(2022·沈阳模拟)已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2.(1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2 022的最小的正整数n 的值. 解 (1)当n ≥2时,由a 2n +1=2S n +n +1,a 2=2,得a 2n =2S n -1+n -1+1,两式相减得a 2n +1-a 2n =2a n +1,即a 2n +1=a 2n +2a n +1=(a n +1)2.∵{a n }是正项数列,∴a n +1=a n +1.当n =1时,a 22=2a 1+2=4,∴a 1=1,∴a 2-a 1=1,∴数列{a n }是以a 1=1为首项,1为公差的等差数列,∴a n =n .(2)由(1)知b n =a n ·2n =n ·2n ,∴T n =1×21+2×22+3×23+…+n ·2n ,2T n =1×22+2×23+…+(n -1)·2n +n ·2n +1,两式相减得-T n =2·(1-2n )1-2-n ·2n +1 =(1-n )2n +1-2,∴T n =(n -1)2n +1+2.∴T n -T n -1=n ·2n >0,∴T n 单调递增.当n =7时,T 7=6×28+2=1 538<2 022,当n =8时,T 8=7×29+2=3 586>2 022,∴使T n >2 022的最小的正整数n 的值为8.3.(2022·大连模拟)已知等差数列{a n }的前n 项和为S n ,S 5=25,且a 3-1,a 4+1,a 7+3成等比数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)n a n +1,T n 是数列{b n }的前n 项和,求T 2n .解 (1)由题意知,等差数列{a n }的前n 项和为S n ,由S 5=25,可得S 5=5a 3=25,所以a 3=5, 设数列{a n }的公差为d ,由a 3-1,a 4+1,a 7+3成等比数列,可得(6+d )2=4(8+4d ),整理得d 2-4d +4=0,解得d =2,所以a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =(-1)n a n +1=(-1)n (2n -1)+1,所以T 2n =(-1+1)+(3+1)+(-5+1)+(7+1)+…+[-(4n -3)+1]+(4n -1+1)=4n .4.(2022·株洲质检)由整数构成的等差数列{a n }满足a 3=5,a 1a 2=2a 4.(1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =2n ,将数列{a n },{b n }的所有项按照“当n 为奇数时,b n 放在前面;当n 为偶数时,a n 放在前面”的要求进行“交叉排列”,得到一个新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,求数列{c n }的前(4n +3)项和T 4n +3.解 (1)由题意,设数列{a n }的公差为d ,因为a 3=5,a 1a 2=2a 4,可得⎩⎪⎨⎪⎧a 1+2d =5,a 1·(a 1+d )=2(a 1+3d ), 整理得(5-2d )(5-d )=2(5+d ),即2d 2-17d +15=0,解得d =152或d =1, 因为{a n }为整数数列,所以d =1,又由a 1+2d =5,可得a 1=3,所以数列{a n }的通项公式为a n =n +2.(2)由(1)知,数列{a n }的通项公式为a n =n +2,又由数列{b n }的通项公式为b n =2n , 根据题意,得新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,则T 4n +3=b 1+a 1+a 2+b 2+b 3+a 3+a 4+b 4+…+b 2n -1+a 2n -1+a 2n +b 2n +b 2n +1+a 2n +1+a 2n +2 =(b 1+b 2+b 3+b 4+…+b 2n +1)+(a 1+a 2+a 3+a 4+…+a 2n +2)=2×(1-22n +1)1-2+(3+2n +4)(2n +2)2=4n +1+2n 2+9n +5.5.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -14n a n a n +1,求数列{b n }的前n 项和T n . 解 (1)∵等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列, ∴S n =na 1+n (n -1),(2a 1+2)2=a 1(4a 1+12),解得a 1=1,∴a n =2n -1.(2)由(1)可得b n =(-1)n -14n a n a n +1=(-1)n -1⎝⎛⎭⎫12n -1+12n +1, 当n 为偶数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+⎝⎛⎭⎫15+17-… +⎝⎛⎭⎫12n -3+12n -1-⎝⎛⎭⎫12n -1+12n +1 =1-12n +1=2n 2n +1; 当n 为奇数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+⎝⎛⎭⎫15+17-…-⎝⎛⎭⎫12n -3+12n -1+⎝⎛⎭⎫12n -1+12n +1 =1+12n +1=2n +22n +1. ∴T n =⎩⎪⎨⎪⎧ 2n 2n +1,n 为偶数,2n +22n +1,n 为奇数.。
专题33 等差、等比数列的性质的综合应用(课件)-2019年高考数学(理)名师揭秘之一轮总复习

则a4a5a6=5 2.
3.在正项等比数列{an}中,lg a3+lg a6+lg a9= 6,则a1a11的值是( A )
A.10 000 B.1 000
C.100
D.10
(2)设函数 f(x)=12x,数列{bn}满足条件 b1=2,f(bn +1)=f(-31-bn),(n∈N*).
①求数列{bn}的通项公式; ②设 cn=bann,求数列{cn}的前 n 和 Tn.
【解析】(1)因为a=λb,所以12Sn=2n-1,
Sn=2n+1-2. 当n≥2时,an=Sn-Sn-1=(2n+1-2)-(2n-2) =2n,
1.等差数列的常用性质 (1)通项公式的推广:an=ak+(n-k)d(n,k∈N*). (2)若{an}为等差数列,且 m+n=p+q(m,n,p, q∈N*),则 am+an=ap+aq. (3)若{an}是等差数列,公差为 d,则 an,an+m,an+ 2m,…(n,m∈N*)是公差为__m_d____的等差数列. (4)数列 Sm,S2m-Sm,S3m-S2m,…也是等差数列. (5)S2n-1=(2n-1)an.
≤49,
∴ak(k∈M)组成首项为211,公比为4的等比数列.
则所有ak(k∈M)的和211(11--4445)=2101-32
048 .
例4已知数列{an}的前 n 项和为 Sn,向量 a=(Sn,
1),b=2n-1,12,满足条件 a=λb,λ ∈R 且 λ≠0. (1)求数列{an}的通项公式;
②cn=bann=3n2-n 1,
Tn=221+252+283+…+32nn--14+3n2-n 1
①
12Tn=222+253+284+…+3n2-n 4+32nn-+11
第1讲等差数列与等比数列

第1讲等差数列与等比数列高考真题体验1. (2015课标全国I 改编)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若 & = 4S 4,贝y a10= _________ .2. (2015安徽)已知数列{a n }是递增的等比数列,a 1 + 84= 9,a 2a 3 = 8,则数列{a .}的前n 项 和等于 __________ .13. ( 15年新课标2文科)已知等比数列{an }满足a 1蔦,a*4®-1),则a2 =4. (2013江西)某住宅小区计划植树不少于 100棵,若第一天植2棵,以后每天植树的棵数 是前一天的2倍,则需要的最少天数n (n€ N *)等于 _______ .5. 设等差数列{a n }的前n 项和为S n ,若S m -1=— 2,S m = 0, S m +1= 3,贝U m=6. 等差数列{a n }的前n 项和为S n ,已知S 10 = 0, %= 25,则nS n 的最小值为__ 考《考向分折 1. 等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现与函数、不等式的综合问题是高考考查的重点,考查分析问题、解决问题的综合能力热点一 等差数列、等比数列的运算1•通项公式:等差数列:a n = a 1 + (n — 1)d;等比数列:a n = a 1 q n —12. 求和公式 1 一 , a1(1 — q n\ a 1 — agd ;(函数)等比数列:S n = —1—1 q (qM 1). I 一 q I 一 qa m + an = ap +a q ;在等比数列中 am a n = ap a q .S n .若a 1=— 11, 34+ 36=— 6,则当S n 取最小值时,n ⑵已知等比数列{a n }公比为q,其前n 项和为S n ,若S 3, S 9, S 6成等差数列,则q 3= 思维升华 在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化 成关于a i 和d (q )的方程组求解,但要注意消元法及整体计算,以减少计算量.跟踪演练1 (1)(2015浙江)已知{a n }是等差数列,公差d 不为零.若a 2, a 3, £7成等比数列, 且 2a 1 + a 2= 1,贝y a 1 = ________ , d = ________.瞄准高专•2.数列求和及数列等差数列:S n = ^a1+ a n= na 1 +3.性质:若m+n = p+ q ,在等差数列中 例1 (1)设等差数列{a n }的前n 项和⑵已知数列{a n }是各项均为正数的等比数列,a i + a2 = 1, a3 + a4 = 2,则a 2 011 + 32 012 + a 2 013 + 32 014iog 2----------------- 3 ----------热点二 等差数列、等比数列的判定与证明数列{a n }是等差数列或等比数列的证明方法 (1)证明数列{ a n }是等差数列的两种基本方法: ①利用定义,证明a n +1— a n (n € N )为一常数;②利用中项性质,即证明2a n = a n -1 + a n +1(n>2).⑵证明{a n }是等比数列的两种基本方法:①利用定义,证明 空+n€ N )为一常数;②利用等比中项,即证明a 2=為-1a n +1(n > 2).a n 例 2.数列{a n }满足 a 1= 1, na n +1 = (n + 1)a n + n(n+ 1), n€ N . (1)证明:数列 丹j 是等差数列;(1)设b n = a n +1— a n ,证明:{b n }是等差数列; ⑵求{a n }的通项公式.热点三 等差数列、等比数列的综合问题例3已知数列{a n }是首项为2的等差数列,其前n 项和S n 满足4S n = a n • a n + i .数列{b n }是以⑵ 设b n = 3n• {O n ,求数列{b n }的前n 项和S n .跟踪演练1。
等差数列、等比数列与数列求和

突破4个考向
揭秘3年高考
①×q2-②得a1(q1-q2)(q1-1)2=0,
由a1≠0得q1=q2或q1=1. (ⅰ)当q1=q2时,由①②得b1=a1或q1=q2=1,这时(b2- a2)-(b1-a1)=0,与公差不为0矛盾. (ⅱ)当q1=1时,由①②得b1=0或q2=1,这时(b2-a2)-(b1
抓住2个考点 突破4个考向 揭秘3年高考
2.数列求和的常用方法 (1)公式法:直接利用等差数列、等比数列的前n项和公式 求和
①等差数列的前n项和公式: nn-1 na1+an na1+ d Sn= =_______________; 2 2
②等比数列的前 n 项和公式: na1,q=1, Sn=a1-anq 1-q =__________________
抓住2个考点
突破4个考向
揭秘3年高考
2.(2011· 广东卷)已知{an}是递增等比数列,a2=2,a4-a3 =4,则此数列的公比q=________.
解析
1). 答案
由a4-a3=a2q2-a2q=2q2-2q=4,解得q=2(q>
2
抓住2个考点
突破4个考向
揭秘3年高考
3.(2012· 无锡市第一学期期末考试)设Sn是等比数列{an}的
抓住2个考点
突破4个考向
揭秘3年高考
考向二
等差数列与等比数列的判定或证明
【例2】 (2012· 盐城调研二)在数列{an}中,a1=1,且对任
意的k∈N*,a2k-1,a2k,a2k+1成等比数列,其公比为 qk.
(1)若qk=2(k∈N*),求a1+a3+a5+…+a2k-1;
(2)若对任意的 k∈N*,a2k,a2k+1,a2k+2 成等差数列,其 1 公差为 dk,设 bk= . qk-1 ①求证:{bk}是等差数列,并指出其公差; ②若 d1=2,试求数列{dk}的前 k 项的和 Dk.
专题三 第1讲 等差数列、等比数列

核心提炼
等差数列、等比数列的基本公式(n∈N*) (1)等差数列的通项公式:an=a1+(n-1)d. (2)等比数列的通项公式:an=a1qn-1. (3)等差数列的求和公式: Sn=na1+ 2 an=na1+nn- 2 1d.
(4)等比数列的求和公式: Sn=a111--qqn=a11--aqnq,q≠1,
1 2 3 4 5 6 7 8 9 10 11 12 13 14
2.(2022·济宁模拟)在等比数列{an}中,a1+a3=1,a6+a8=-32,则aa105+ +aa172
等于
A.-8
B.16
C.32
√D.-32
设等比数列{an}的公比为q, 则a6+a8=(a1+a3)q5=1×q5=-32,所以q5=-32, 故aa105+ +aa172=aa5+5+aa77q5=q5=-32.
∴S14=14a12+a14=14a42+a11>0, S15=15a12+a15=15×2 2a8<0,
∴当Sn>0时,n的最大值为14,D正确.
考点三
等差数列、等比数列的判断
核心提炼
定义法 通项法 中项法
等差数列 an+1-an=d an=a1+(n-1)d 2an=an-1+an+1(n≥2)
是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的
石板数依次为a1,a2,a3,…,a9,设数列{an}为等差数列,它的前n项
1=6
√B.{an}的公差为9
C.a6=3a3
√D.S9=405
设{an}的公差为d.由a4+a6=90, 得a5=45,又a2=18, 联立方程组aa11++d4=d=184,5, 解得ad1==99,, 故 A 错误,B 正确;
2021届新课标数学一轮复习讲义_第五章_第5讲_数列的综合应用

第5讲 数列的综合应用考点一__等差数列与等比数列的综合问题______已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.[解] (1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=12-33=3,所以a n =a 1+(n -1)d =3n (n =1,2,…).设等比数列{b n -a n }的公比为q ,由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n =1,2,…). (2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1-2n 1-2=2n -1.所以,数列{b n }的前n 项和为32n (n +1)+2n -1.[规律方法] 解决等差数列与等比数列的综合问题,关键是理清两个数列的关系.如果同一数列中部分项成等差数列,部分项成等比数列,要把成等差数列或等比数列的项抽出来单独研究;如果两个数列通过运算综合在一起,要从分析运算入手,把两个数列分割开弄清两个数列各自的特征,再进行求解.1.已知等差数列{a n }的公差不为零,a 1=25 ,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n -2.解:(1)设{a n }的公差为d ,由题意得a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ). 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),d =-2.故a n =-2n +27. (2)令S n =a 1+a 4+a 7+…+a 3n -2. 由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .考点二__数列的实际应用问题__________________某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设S n 表示数列{a n }的前n 项和,求S n (n ≥7).[解] (1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列,a n =120-10(n -1)=130-10n ; 当n ≥6时,数列{a n }是以a 6为首项,34为公比的等比数列.又a 6=70,所以a n =70×⎝⎛⎭⎫34n -6.因此,第n 年初,M 的价值a n 的表达式为a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,70×⎝⎛⎭⎫34n -6,n ≥7. (2)由等差及等比数列的求和公式得 当n ≥7时,由于S 6=570,故S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎡⎦⎤1-⎝⎛⎭⎫34n -6 =780-210×⎝⎛⎭⎫34n -6.[规律方法] 解答数列实际应用问题的步骤:(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单的递推数列模型.基本特征见下表:数列模型 基本特征 等差数列 均匀增加或者减少等比数列 指数增长,常见的是增产率问题、存款复利问题 简单递推数列指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a (常数)作为下年度的开销,即数列{a n }满足a n +1=1.2a n -a(2)或者不等式(组)等,在解模时要注意运算准确;(3)给出问题的答案:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.2.现有流量均为300 m 3s 的两条河A ,B 汇合于某处后,不断混合,它们的含沙量分别为2 kgm 3和0.2 kgm 3,假设从汇合处开始,沿岸设有若干观测点,两股水流在流经相邻两个观测点的过程中,其混合效果相当于两股水流在1 s 内交换100 m 3的水量,即从A 股流入B 股100 m 3水,经混合后,又从B 股流入A 股100 m 3水并混合,问从第几个观测点开始,两股河水的含沙量之差小于0.01 kgm 3(不考虑沙沉淀). 解:设第n 个观测点处A 股水流含沙量为a n kg m 3,B 股水流含沙量为b n kgm 3,则a 1=2,b 1=0.2,b n =1400(300b n -1+100a n -1)=14(3b n -1+a n -1),a n =1400(300a n -1+100b n -1)=14(3a n -1+b n -1),a n -b n =12(a n -1-b n -1),∴{a n -b n }是以(a 1-b 1)为首项,12为公比的等比数列.∴a n -b n =95×⎝⎛⎭⎫12n -1.解不等式95×⎝⎛⎭⎫12n -1<10-2,得2n -1>180,∴n ≥9.因此,从第9个观测点开始,两股水流的含沙量之差小于0.01 kg m 3.考点三__数列与不等式的综合问题(高频考点)__数列与不等式的综合问题是每年高考的难点,多为解答题,难度偏大. 高考对数列与不等式的综合问题的考查常有以下两个命题角度: (1)以数列为载体,考查不等式的恒成立问题; (2)考查与数列问题有关的不等式的证明问题.等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,若不等式S n >ka n -2对一切n ∈N *恒成立,求实数k 的取值范围. [解] (1)设等比数列{a n }的公比为q , ∵a n +1+a n =9·2n -1,n ∈N *, ∴a 2+a 1=9,a 3+a 2=18, ∴q =a 3+a 2a 2+a 1=189=2.∴2a 1+a 1=9,∴a 1=3. ∴a n =3·2n -1,n ∈N *.(2)由(1)知S n =a 1(1-q n )1-q =3(1-2n )1-2=3(2n -1),∴3(2n -1)>k ·3·2n -1-2,∴k <2-13·2n -1对一切n ∈N *恒成立. 令f (n )=2-13·2n -1,则f (n )随n 的增大而增大,∴f (n )min =f (1)=2-13=53,∴k <53.∴实数k 的取值范围为⎝⎛⎭⎫-∞,53. [规律方法] 数列与不等式的综合问题的解题策略(1)数列与不等式的恒成立问题.此类问题常构造函数,通过函数的单调性、最值等解决问题;(2)与数列有关的不等式证明问题.解决此类问题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等.3.(1)已知函数f (x )满足f (x +y )=f (x )·f (y )且f (1)=12.①当n ∈N *时,求f (n )的表达式;②设a n =n ·f (n ),n ∈N *,求证:a 1+a 2+a 3+…+a n <2; (2)已知数列{a n }的前n 项和为S n ,且S n =2-⎝⎛⎭⎫2n +1a n (n ∈N *).①求证:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列;②设数列{2n a n }的前n 项和为T n ,A n =1T 1+1T 2+1T 3+…+1T n ,试比较A n 与2na n 的大小.解:(1)①令x =n ,y =1,得f (n +1)=f (n )·f (1)=12f (n ),∴{f (n )}是首项为12,公比为12的等比数列,∴f (n )=⎝⎛⎭⎫12n .②证明:设T n 为{a n }的前n 项和,∵a n =n ·f (n )=n ·⎝⎛⎭⎫12n, ∴T n =12+2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+…+n ×⎝⎛⎭⎫12n ,12T n =⎝⎛⎭⎫122+2×⎝⎛⎭⎫123+3×⎝⎛⎭⎫124+…+(n -1)×⎝⎛⎭⎫12n +n ×⎝⎛⎭⎫12n +1, 两式相减得12T n =12+⎝⎛⎭⎫122+…+⎝⎛⎭⎫12n -n ×⎝⎛⎭⎫12n +1,∴T n =2-⎝⎛⎭⎫12n -1-n ×⎝⎛⎭⎫12n <2.(2)①证明:由a 1=S 1=2-3a 1,得a 1=12,当n ≥2时,由a n =S n -S n -1,得a n n =12×a n -1n -1,所以⎩⎨⎧⎭⎬⎫a n n 是首项和公比均为12的等比数列.②由①得a n n =12n ,于是2n a n =n ,所以T n =1+2+3+…+n =n (n +1)2,则1T n =2⎝⎛⎭⎫1n -1n +1,于是A n =2⎝⎛⎭⎫1-1n +1=2nn +1,而2na n =2n +1n 2,所以问题转化为比较2n n 2与n n +1的大小. 设f (n )=2n n 2,g (n )=n n +1,当n ≥4时,f (n )≥f (4)=1,而g (n )<1,所以f (n )>g (n ). 经验证当n =1,2,3时,仍有f (n )>g (n ). 因此对任意的正整数n ,都有f (n )>g (n ).即A n <2na n.交汇创新——数列与函数的交汇设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n . [解] (1)由已知,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2.解得d =a 8-a 7=2.所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1,从而a n =n ,b n =2n . 所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n2n -1.因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n .所以T n =2n +1-n -22n.[名师点评] 数列与函数的交汇创新主要有以下两类:(1)如本例,已知函数关系转化为数列问题,再利用数列的有关知识求解;(2)已知数列,在求解中利用函数的性质、思想方法解答.[提醒] 解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到递推数列,因此掌握递推数列的常见解法有助于该类问题的解决,同时要注意n 的范围.已知数列{a n }的前n 项和为S n ,a 1=1且3a n +1+2S n =3(n 为正整数).(1)求{a n }的通项公式;(2)若∀n ∈N *,32k ≤S n 恒成立,求实数k 的最大值.解:(1)当n =1时,a 1=1,3a n +1+2S n =3⇒a 2=13;当n ≥2时,3a n +1+2S n =3⇒3a n +2S n -1=3,得3(a n +1-a n )+2(S n -S n -1)=0,因此3a n +1-a n =0,即a n +1a n =13,因为a 2a 1=13,所以数列{a n }是首项a 1=1,公比q =13的等比数列,所以a n =⎝⎛⎭⎫13n -1.(2)因为∀n ∈N *,32k ≤S n 恒成立,S n =32⎣⎡⎦⎤1-⎝⎛⎭⎫13n ,即32k ≤32⎣⎡⎦⎤1-⎝⎛⎭⎫13n ,所以k ≤1-⎝⎛⎭⎫13n .令f (n )=1-⎝⎛⎭⎫13n,n ∈N *,所以f (n )单调递增,k 只需小于等于f (n )的最小值即可, 当n =1时,f (n )取得最小值,所以k ≤f (1)=1-13=23,实数k 的最大值为23.1.设等差数列{a n }和等比数列{b n }首项都是1,公差与公比都是2,则a b 1+a b 2+a b 3+a b 4+a b 5=( )A .54B .56C .58D .57解析:选D.由题意,a n =1+2(n -1)=2n -1,b n =1×2n -1=2n -1, ∴ab 1+…+ab 5=a 1+a 2+a 4+a 8+a 16=1+3+7+15+31=57.2.已知数列{a n }满足:a 1=m (m 为正整数),a n +1=⎩⎪⎨⎪⎧a n 2,当a n 为偶数时,3a n +1,当a n 为奇数时.若a 6=1,则m 所有可能的取值为( )A .{4,5}B .{4,32}C .{4,5,32}D .{5,32}解析:选C.a n +1=⎩⎪⎨⎪⎧a n 2,当a n 为偶数时,3a n +1,当a n 为奇数时,注意递推的条件是a n (而不是n )为偶数或奇数.由a 6=1一直往前面推导可得a 1=4或5或32.3.设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( )A .d <0B .d >0C .a 1d <0D .a 1d >0解析:选C.设b n =2a 1a n ,则b n +1=2a 1a n +1,由于{2a 1a n }是递减数列,则b n >b n +1,即2a 1a n >2a 1a n +1.∵y =2x 是单调增函数,∴a 1a n >a 1a n +1,∴a 1a n -a 1(a n +d )>0,∴a 1(a n -a n -d )>0,即a 1(-d )>0,∴a 1d <0. 4.在数列{a n }中,若a 1=-2,a n +1=a n +n ·2n ,则a n =( ) A .(n -2)·2n B .1-12n C.23⎝⎛⎭⎫1-14n D.23⎝⎛⎭⎫1-12n 解析:选A.因为a n +1=a n +n ·2n ,所以a n +1-a n =n ·2n ,所以a n -a 1=(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)=(n -1)×2n -1+(n -2)×2n -2+…+2×22+1×21(n ≥2).设T n =(n -1)×2n -1+(n -2)×2n -2+…+2×22+1×21(n ≥2),则2T n =(n -1)×2n +(n -2)×2n -1+(n -3)×2n-2+…+2×23+1×22,两式相减得T n =(n -2)·2n +2(n ≥2),所以a n =(n -2)·2n +2+a 1=(n -2)·2n (n ≥2).又n=1时,上式成立,所以选A.5.在等比数列{a n }中,0<a 1<a 4=1,则能使不等式⎝⎛⎭⎫a 1-1a 1+⎝⎛⎭⎫a 2-1a 2+…+⎝⎛⎭⎫a n -1a n ≤0成立的最大正整数n 是( )A .5B .6C .7D .8解析:选C.设等比数列{a n }的公比为q ,则⎩⎨⎧⎭⎬⎫1a n 为等比数列,其公比为1q ,因为0<a 1<a 4=1,所以q >1且a 1=1q 3.又因为⎝⎛⎭⎫a 1-1a 1+⎝⎛⎭⎫a 2-1a 2+…+⎝⎛⎭⎫a n -1a n ≤0,所以a 1+a 2+…+a n ≤1a 1+1a 2+…+1a n , 即a 1(1-q n)1-q≤1a 1⎝⎛⎭⎫1-1q n 1-1q,把a 1=1q 3代入,整理得q n ≤q 7,因为q >1,所以n ≤7,故选C.6.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.解析:每天植树的棵数构成以2为首项,2为公比的等比数列,其前n 项和S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.由2n +1-2≥100,得2n +1≥102.由于26=64,27=128.则n +1≥7,即n ≥6.答案:67.在等比数列{a n }中,若a n >0,且a 1·a 2·…·a 7·a 8=16,则a 4+a 5的最小值为________. 解析:由等比数列性质得,a 1a 2…a 7a 8=(a 4a 5)4=16,又a n >0,∴a 4a 5=2. 再由基本不等式,得a 4+a 5≥2a 4a 5=2 2.∴a 4+a 5的最小值为2 2. 答案:2 28.设S n 是数列{a n }的前n 项和,若S 2nS n(n ∈N *)是非零常数,则称数列{a n }为“和等比数列”.若数列{2b n }是首项为2,公比为4的等比数列,则数列{b n }__________(填“是”或“不是”)“和等比数列”.解析:数列{2b n }是首项为2,公比为4的等比数列,所以2b n =2·4n -1=22n -1,b n =2n -1.设数列{b n }的前n项和为T n ,则T n =n 2,T 2n =4n 2,所以T 2nT n=4,因此数列{b n }是“和等比数列”.答案:是9.在等比数列{a n }(n ∈N *)中,a 1>1,公比q >0,设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0. (1)求证:数列{b n }是等差数列;(2)求{b n }的前n 项和S n 及{a n }的通项公式a n . 解:(1)证明:∵b n =log 2a n , ∴b n +1-b n =log 2a n +1a n =log 2q 为常数,∴数列{b n }为等差数列且公差d =log 2q .(2)设数列{b n }的公差为d ,∵b 1+b 3+b 5=6,∴b 3=2. ∵a 1>1,∴b 1=log 2a 1>0. ∵b 1b 3b 5=0,∴b 5=0.∴⎩⎪⎨⎪⎧b 1+2d =2,b 1+4d =0,解得⎩⎪⎨⎪⎧b 1=4,d =-1. ∴S n =4n +n (n -1)2×(-1)=9n -n 22.∵⎩⎪⎨⎪⎧log 2q =-1,log 2a 1=4,∴⎩⎪⎨⎪⎧q =12,a 1=16.∴a n =25-n (n ∈N *).10.已知数列{a n }和{b n }满足a 1a 2a 3…·a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2. (1)求a n 与b n ;(2)设c n =1a n -1b n (n ∈N *).记数列{c n }的前n 项和为S n .①求S n ;②求正整数k ,使得对任意n ∈N *,均有S k ≥S n .解:(1)由题意知a 1a 2a 3…a n =(2)b n ,b 3-b 2=6,知a 3=(2)b 3-b2=8.又由a 1=2,得公比q =2(q =-2舍去), 所以数列{a n }的通项公式为a n =2n (n ∈N *), 所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n+1).故数列{b n }的通项公式为b n =n (n +1)(n ∈N *).(2)①由(1)知c n =1a n -1b n =12n -⎝⎛⎭⎫1n -1n +1(n ∈N *),所以S n =1n +1-12n (n ∈N *).②因为c 1=0,c 2>0,c 3>0,c 4>0,当n ≥5时,c n =1n (n +1)⎣⎡⎦⎤n (n +1)2n -1, 而n (n +1)2n-(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0,得n (n +1)2n ≤5×(5+1)25<1, 所以,当n ≥5时,c n <0.综上,对任意n ∈N *恒有S 4≥S n ,故k =4.1.已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0. (1)令c n =a nb n ,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *), 所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1. (2)由b n =3n-1知a n =c n b n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1·30+3·31+5·32+…+(2n -1)·3n -1, 3S n =1·31+3·32+…+(2n -3)·3n -1+(2n -1)·3n ,相减得-2S n =1+2·(31+32+…+3n -1)-(2n -1)·3n =-2-(2n -2)3n , 所以S n =(n -1)3n +1.2.为了加强环保建设,提高社会效益和经济效益,北京市计划用若干时间更换一万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,替换车为电力型和混合动力型车.今年初投入了电力型公交车128辆,混合动力型公交车400辆;计划以后电力型车每年的投入量比上一年增加50%,混合动力型每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数S (n ); (2)若该市计划7年内完成全部更换,求a 的最小值.解:(1)设a n ,b n 分别为第n 年投入的电力型公交车、混合动力型公交车的数量.依题意,得{a n }是首项为128,公比为1+50%=32的等比数列,{b n }是首项为400,公差为a 的等差数列.所以{a n }的前n 项和S n =128×⎣⎡⎦⎤1-⎝⎛⎭⎫32n1-32=256⎣⎡⎦⎤⎝⎛⎭⎫32n-1,{b n }的前n 项和T n =400n +n (n -1)2a . 所以经过n 年,该市被更换的公交车总数为S (n )=S n +T n =256⎣⎡⎦⎤⎝⎛⎭⎫32n-1+400n +n (n -1)2a .(2)若计划7年内完成全部更换,则S (7)≥10 000,所以256⎣⎡⎦⎤⎝⎛⎭⎫327-1+400×7+7×62a ≥10 000,即21a ≥3 082,所以a ≥1461621.又a ∈N *,所以a 的最小值为147.3.已知点⎝⎛⎭⎫1,13是函数f (x )=a x (a >0且a ≠1)的图象上一点,等比数列{a n }的前n 项和为f (n )-c ,数列{b n }(b n >0)的首项为c ,且前n 项和S n 满足S n -S n -1=S n +S n -1(n ≥2,n ∈N *).(1)求数列{a n }和{b n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和为T n .问T n >1 0002 015的最小正整数n 是多少?解:(1)∵f (1)=a =13,∴f (x )=⎝⎛⎭⎫13x,a 1=f (1)-c =13-c , a 2=[f (2)-c ]-[f (1)-c ]=-29,当一个人先从自己的内心开始奋斗,他就是个有价值的人。
数列的综合运算

数列的综合运算数列是数学中常见的一种数学表达形式,它是按照一定规律排列的数的集合。
数列的综合运算是指对数列中的元素进行加减乘除等运算,从而得出数列的和、差、积等结果。
本文将介绍数列的综合运算,并给出相关的例子和解题步骤。
一、等差数列的综合运算等差数列是指数列中的相邻两个数之差恒定的数列。
常用的等差数列的通项公式为:an = a1 + (n-1)d其中,an 表示第 n 个数,a1 表示首项,d 表示公差,n 表示项数。
1. 等差数列的和等差数列的和可使用求和公式来计算。
求和公式如下:Sn = (n/2)(a1 + an)其中,Sn 表示前 n 项的和。
例如:求等差数列 2, 5, 8, 11, 14 的和。
首先确定首项 a1 = 2,公差 d = 5 - 2 = 3,项数 n = 5。
代入求和公式,得到:S5 = (5/2)(2 + 14) = 40因此,等差数列 2, 5, 8, 11, 14 的和为 40。
2. 等差数列的差等差数列的差可以通过相邻两项的差值来计算。
对于等差数列,任意两项之差都相等。
例如:对于等差数列 2, 5, 8, 11, 14,相邻两项之差均为 3。
3. 等差数列的积等差数列的积可以通过将所有项相乘来计算。
例如:求等差数列 2, 5, 8, 11, 14 的积。
将所有项相乘,得到:2 × 5 × 8 × 11 × 14 = 6160因此,等差数列 2, 5, 8, 11, 14 的积为 6160。
二、等比数列的综合运算等比数列是指数列中的相邻两个数之比恒定的数列。
常用的等比数列的通项公式为:an = a1 * q^(n-1)其中,an 表示第 n 个数,a1 表示首项,q 表示公比,n 表示项数。
1. 等比数列的和等比数列的和可使用求和公式来计算。
求和公式如下:Sn = a1 * (1 - q^n) / (1 - q)其中,Sn 表示前 n 项的和。
第六章 §6.6 数列中的综合问题

∴aan+n 1=sin
1 15°+cos
= 15°
1 2sin
= 60°
36,
∴{an}是以 9 为首项, 36为公比的等比数列,
∴a5=a1q4=9×
364=4.
(2)已知函数 f(x)=Acos(ωx+φ)(A>0,|φ|≤π2,ω>0),射线 y=-2(x≥0) 与该函数图象的交点的横坐标从左至右依次构成数列{xn},且 xn=4n- 73(n∈N*),则 f(5)=___-__1___.
方法一
nn2+n 2≥n+12n+n1+3, 由nn2+n 2≥n-12n-n1+1
(n∈N*,n≥2),
n2≥3, 得1- 3≤n≤1+ 3 (n∈N*,n≥2),得 n=2,
所以nn2+n 2max=2×222+2=2,
所以λ≥2,即实数λ的最小值是2.
方法二 令 bn=nn2+n 2, 则令 bn+1-bn=n+12n+n1+3-nn2+n 2=-2nn2++1 3, 所以当n=1时,b2>b1; 当n≥2时,bn+1<bn. 所以当 n=2 时,bn=nn2+n 2取最大值 2.
(2)若数列{bn}满足b1=-1,bn+bn+1=Sn,求b20.
bn+bn+1=Sn=1+22n-1n=n2,
①
bn+1+bn+2=(n+1)2,
②
②-①得,bn+2-bn=2n+1,∵b1=-1,∴b2=2.
∴b20=b20-b18+b18-b16+…+b4-b2+b2=37+33+29+…+5+2
第六章
§6.6 数列中的综合问题
课标要求
数列的综合运算问题以及数列与函数、不等式等知识的交汇问题, 是历年高考的热点内容.一般围绕等差数列、等比数列的知识命题, 涉及数列的函数性质、通项公式、前n项和公式等.
高考数学复习知识点讲解教案第38讲 数列的综合问题

4.某商场为了满足广大数码爱好者的需求,开展商品分期付款活动.已知某商品一次性付款的金额为元,计划以分期付款的形式等额分成 期付清,每期期末所付款是元,每期利率为,则 _ _________.
[解析] 由题意得 ,, .
5.假设每次用相同体积的清水清洗一件衣服,且每次能洗去污垢的 ,那么至少要清洗___次才能使存留的污垢在 以下.
3.[教材改编] 假设某银行的活期存款年利率为 ,某人存入10万元后,既不加进存款也不取款,每年到期利息连同本金自动转存.如果不考虑利息税及利率的变化,经过年到期时的存款余额为万元,那么 ________________________.
,
[解析] 由题意得, ,, ,则易知 .
题组二 常错题
(1) 求数列 的通项公式;
解:因为,所以,,故,,所以等比数列 的公比,故,所以,即等比数列 的通项公式为 .
(2) 记,的前项和分别为,,求满足 的所有数对 .
解: 由已知得,由(1)可知 ,因为,所以 ,则,可得,因为为正整数, ,所以,8,10,则当时,,当时, ,当时,,故满足条件的所有数对为,, .
[总结反思]解决与数列有关的实际问题的一般步骤:首先要认真阅读,学会翻译(数学化),其次考虑用熟悉的数列知识建立数学模型,然后求出问题的解,最后还需验证求得的解是否符合实际.
变式题(1) 某牧场2022年年初牛的存栏数为1200头,计划以后每年存栏数的增长率为 ,且在每年年底卖出100头牛,按照该计划预计_______年年初牛的存栏量首次超过8900头.(参考数据:, )
所以数列是公比为2的等比数列,又 ,,所以,即 ,所以,可得.因为,所以 ,则,由,得 ,可得,所以不等式的解有无限个,故D正确.故选 .
11 高中数学等差数列与等比数列问题专题训练

专题11高中数学等差数列与等比数列问题专题训练【知识总结】1.等差数列、等比数列的基本运算等差数列、等比数列的基本公式(n ∈N *)(1)等差数列的通项公式:a n =a 1+(n -1)d ;(2)等比数列的通项公式:a n =a 1·q n -1.(3)等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ; (4)等比数列的求和公式:S n =⎩⎪⎨⎪⎧a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1,na 1,q =1.2.等差数列、等比数列的性质1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列有a m a n =a p a q =a 2k .2.前n 项和的性质:对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外).【高考真题】1.(2022·全国乙理) 已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( )A .14B .12C .6D .32.(2022·全国乙文) 记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =_______.【题型突破】题型一 等差数列基本量的计算1.(2017·全国Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .82.(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .123.(2014·福建)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .144.(2016·全国Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .975.设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A .259B .269C .3D .2896.设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________.7.(2020·全国Ⅱ)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=________.8.(2020·新高考Ⅱ)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为 ________.9.(2013·全国Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m 等于( )A .3B .4C .5D .610.(2019·全国Ⅱ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n 题型二 等差数列性质的应用11.在等差数列{a n }中,a 4+a 5=15,a 7=12,则a 2等于( )A .3B .-3C .32D .-3212.已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有( )A .a 1+a 101>0B .a 1+a 101<0C .a 3+a 99=0D .a 51=5113.已知数列{a n }是等差数列,若a 1-a 9+a 17=7,则a 3+a 15等于( )A .7B .14C .21D .7(n -1)14.在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( )A .6B .12C .24D .4815.已知等差数列{a n },若a 1+a 2+a 3+…+a 12=21,则a 2+a 5+a 8+a 11=________.16.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7等于( )A .14B .21C .28D .3517.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( ) A .14 B .15 C .16 D .1718.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对于任意的自然数n ,都有S n T n =2n -34n -3,则a 3+a 152(b 3+b 9)+a 3b 2+b 10=( ) A .1941 B .1737 C .715 D .204119.在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( )A .45B .60C .75D .9020.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( )A .13B .12C .11D .10题型三 等比数列基本量的计算21.(2017·全国Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________.22.(2020·全国Ⅱ)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=( )A .12B .24C .30D .3223.(2019·全国Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .224.(2019·全国Ⅰ)设S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________. 25.已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项的和S 9=________. 26.(多选题)已知正项等比数列{a n }满足a 1=2,a 4=2a 2+a 3,若设其公比为q ,前n 项和为S n ,则( )A .q =2B .a n =2nC .S 10=2047D .a n +a n +1<a n +227.(2015·全国Ⅰ)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.28.(2020·全国Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S n a n=( ) A .2n -1 B .2-21-n C .2-2n -1 D .21-n -129.设等比数列{}a n 的前n 项和为S n ,若S 1=13a 2-13,S 2=13a 3-13,则公比q =( ) A .1 B .4 C .4或0 D .830.(2020·全国Ⅱ)数列{a n }中,a 1=2,a m +n =a m a n .若a k +1+a k +2+…+a k +10=215-25,则k =( )A .2B .3C .4D .5 题型四 等比数列性质的应用31.在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的值是( )A .-2B .-2C .±2D .232.公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( )A .8B .9C .10D .1133.在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7=( )A .4B .6C .8D .8-4234.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )A .6B .5C .4D .335.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A .12B .10C .8D .2+log 3536.已知数列{a n }的各项都为正数,对任意的m ,n ∈N *,a m ·a n =a m +n 恒成立,且a 3·a 5+a 4=72,则log 2a 1+log 2a 2+…+log 2a 7=________.37.在等比数列{a n }中,a n >0,a 1+a 2+…+a 8=4,a 1a 2·…·a 8=16,则1a 1+1a 2+…+1a 8的值为( ) A .2 B .4 C .8 D .1638.已知数列{a n }为等比数列,且a 2a 6+2a 24=π,则tan(a 3·a 5)等于( )A .3B .-3C .-33D .±3 39.已知各项均为正数的等比数列{a n }中,a 4与a 14的等比中项为22,则2a 7+a 11的最小值为( )A .16B .8C .22D .440.已知函数f (x )=21+x 2(x ∈R ),若等比数列{a n }满足a 1a 2020=1,则f (a 1)+f (a 2)+f (a 3)+…+f (a 2 020)等于 ( )A .2 020B .1 010C .2D .12题型五 等差与等比数列的综合计算41.已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=-33,b 1+b 6+b 11=7π,则tan b 3+b 91-a 4·a 8的值为( ) A .-3 B .-1 C .-33D .3 42.各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________.43.(2020·江苏)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n +2n -1(n ∈N *),则d +q 的值是________.44.(2017·全国Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .845.设S n 为公比q ≠1的等比数列{a n }的前n 项和,且3a 1,2a 2,a 3成等差数列,则q =_____,S 4S 2=______. 46.公比不为1的等比数列{a n }的前n 项和为S n ,若a 1,a 3,a 2成等差数列,mS 2,S 3,S 4成等比数列,则m =( )A .78B .85C .1D .9547.在公差d <0的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列,则|a 1|+|a 2|+|a 3|+…+|a n |=________.48.已知等差数列{a n }和等比数列{b n }的各项都是正数,且a 1=b 1,a 11=b 11.那么一定有( )A .a 6≤b 6B .a 6≥b 6C .a 12≤b 12D .a 12≥b 1249.已知正项数列{a n }满足a 2n +1-2a 2n -a n +1a n =0,设b n =log 2a n +1a 1,则数列{b n }的前n 项和为( ) A .n B .n (n -1)2 C .n (n +1)2 D .(n +1)(n +2)250.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列.若a 1=1,S n 是数列{a n }的前n 项和,则2S n +16a n +3(n ∈N *)的最小值为( )A .4B .3C .23-2D .92。
高三数学二轮复习:专题二 数列

(2)若数列an+bn是首项为 1,公比为 2 的等比数列,求数列{bn}的前 n 项和. 解 因为数列{an+bn}是首项为1,公比为2的等比数列, 所以an+bn=2n-1, 因为an=2n-1,所以bn=2n-1-(2n-1). 设数列{bn}的前n项和为Sn, 则Sn=(1+2+4+…+2n-1)-[1+3+5+…+(2n-1)] =11--22n-n1+22n-1=2n-1-n2, 所以数列{bn}的前n项和为2n-1-n2(n∈N*).
热点一 等差数列、等比数列的运算
1.通项公式 等差数列:an=a1+(n-1)d; 等比数列:an=a1·qn-1. 2.求和公式 等差数列:Sn=na1+ 2 an=na1+nn2-1d; 等比数列:Sn=a111--qqn=a11--aqnq(q≠1).
3.性质 若m+n=p+q, 在等差数列中am+an=ap+aq; 在等比数列中am·an=ap·aq.
板块三 专题突破 核心考点
专题二 数 列
第1讲 等差数列与等比数列
[考情考向分析]
1.等差、等比数列基本量和性质的考查是高考热点,经常以小 题形式出现. 2.数列求和及数列与函数、不等式的综合问题是高考考查的重 点,考查分析问题、解决问题的综合能力.
内容索引
热点分类突破 真题押题精练
热点分类突破
押题依据 解析 答案
2.在等比数列{an}中,a3-3a2=2,且5a4为12a3和2a5的等差中项,则
{an}的公比等于
A.3
B.2或3
√C.2
D.6
押题依据 等差数列、等比数列的综合问题可反映知识运用的综合性和 灵活性,是高考出题的重点.
押题依据 解析 答案
3.已知各项都为正数的等比数列{an}满足 a7=a6+2a5,存在两项 am,an 使得 am·an=4a1,则m1 +4n的最小值为
高考数学专题三数列 微专题21 等差数列、等比数列

设等差数列{an}的公差为d,等比数列{bn}的公比为q,且q>0, 因为 S14=7(a10+3),则 14a1+14×2 13d=7(a1+9d+3),可得 a1+4d= 3,即 a5=3,
因为b5=b=16,则b1q4=(b1q)4=16,可得q=2,b1=1, 因为cn=an+bn, 所以T9=c1+c2+…+c9=(a1+a2+…+a9)+(b1+b2+…+b9) =a1+2 a9×9+b111--qq9=a5×9+11--229 =3×9+11--229=538.
①
由 a1+S11=67,得 12a1+11×2 10d=67,即 12a1+55d=67.
②
由①②解得a1=1,d=1,所以an=n, 于是a3a10=3×10=30,而a30=30,故a3a10是{an}中的第30项.
1 2 3 4 5 6 7 8 9 10
2.(2023·武汉模拟)已知等比数列{an}满足a6=2,且a7,a5,a9成等差数列,
(2)(2023·新高考全国Ⅰ)设等差数列{an}的公差为 d,且 d>1.令 bn=n2a+n n, 记 Sn,Tn 分别为数列{an},{bn}的前 n 项和. ①若 3a2=3a1+a3,S3+T3=21,求{an}的通项公式;
∵3a2=3a1+a3, ∴3d=a1+2d,解得a1=d, ∴S3=3a2=3(a1+d)=6d,
1 2 3 4 5 6 7 8 9 10
3.记 Sn 为等比数列{an}的前 n 项和.若 a5-a3=12,a6-a4=24,则Sann等于
A.2n-1
√B.2-21-n
C.2-2n-1
D.21-n-1
1 2 3 4 5 6 7 8 9 10
方法一 设等比数列{an}的公比为q, 则 q=aa65--aa43=2142=2. 由a5-a3=a1q4-a1q2=12a1=12,得a1=1. 所以 an=a1qn-1=2n-1,Sn=a111--qqn=2n-1, 所以Sann=22n-n-11=2-21-n.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档
§3.3等差数列与等比数列的综合运算(一)
【复习目标】
1. 熟练掌握利用等差和等比数列的性质解题;
2. 会用方程思想、分类思想等解决与等差、等比数列有关的综合问题。
【重点难点】
会用方程思想、分类思想等解决与等差、等比数列有关的综合问题 【课前预习】 1
.
已
知
等
差
数
列
{a n }
满
足
a 1+a 2+a 3+…+a 101=0
,
则
有
( )
A.a 1+a 101>0
B.a 2+a 100<0
C.a 3+a 99=0
D.a 51=51 2.设数列{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 ( )
A.1
B.2
C.4
D.6 3.一个凸多边形内角成等差数列,其中最小角为120º,公差为5º,则多边形的边数是 。
4.在等差数列}{n a 中,已知,p a a a a =+++10321......,q a a a a n n n n =+++---......789,
则前n 项和=n s 。
【典型例题】
例1 等差数列{a n }的公差为1,且a 1+a 2+a 3+…+a 99=99,则a 3+a 6+a 9+…+a 99的值为
()
A.33
B.66
C.99
D.不能确定
例2 一个等差数列前12项的和为354,在这12项中,偶数项的和与奇数项的和的比为32:27,求公差d。
例3 等差数列{}n a的首项为23,公差为整数,且第6项为正数,从第
..为负
..7.项起数。
(1)求此数列的公差d;
(2)当前n项和n s是正数时,求n的最大值。
实用文档
实用文档
例4 设1a ,2a ,…,n a 成等比数列,且12S a a =++…+n a ,R=
12
11
a a ++…+
1n a , P=1a 2a …n a 。
求证:(1)1n S a a R
=⋅;(2)2n n P R S ⋅=。
【巩固练习】
1.设{a n }是首项为1的正项数列,且(n+1)2
1+n a -n 2n a +a n+1a n =0(n=1,2,3,…),
则它的通项公式是a n = .
2.在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n<19,n ∈N)
成立。
类比上述性质,相应地:在等比数列{b n }中,若b 9=1,则有等式 。
3.设{a n }是由正数组成的等比数列,公比q=2,且a 1a 2a 3…a 30=230,则a 3a 6a 9…a 30= ( )
A.210
B.2020 C .216 D.215 4.已知数列4,,,121--a a 成等差数列,4,,,,1321--b b b ,成等比数列,则
2
1
2b a a -的值是 ( )
实用文档
A.
21 B.21- C. 21-或21 D. 4
1 【本课小结】
【课后作业】
1. 等差数列{}n a 中,10a >,前n 项和为n S ,713S S =,问n 为何值时n S 最大? 2. 等比数列{}n a 中,166n a a +=,21128n a a -=,且前n 项和n S =126,求n 及公比q 。
3. 已知数列}{n a 为等差数列,公差d ≠0,}{n a 中的部分项组成的数列:1k a ,2k a ,…,
n k a 恰为等比数列,其中1k =1,2k =5,3k =17,求数列{}n k 的前n 项和n S .
4. 数列}{n a 是等差数列,n S 是它的前n 项的和,已知75,7157==S S ,n T 为数列}{
n
S n
的前n 项的和,求n T .。