人教版七年级相交线和平行线专用教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相交线
第一部分 相交线、垂线
课时目标:理解相交线的定义、对顶角的定义和性质、邻补角的定义,正确识别“三线八角”;理解垂线的定义、点到直线的距离的定义,掌握垂线的性质; 教师讲课要求 【知识要点】:请学生看一下做好上课的准备 (一)相交线 1. 相交线的定义
在同一平面内,如果两条直线只有一个公共点,那么这两条直线叫做相交线,公共点称为两条直线的交点。如图1所示,直线AB 与直线CD 相交于点O 。
O
D
C
B
A
4
3
21A
B
C
D
O 21
O
C
B
A
图1 图2 图3 2. 对顶角的定义
若一个角的两条边分别是另一个角的两条边的反向延长线,那么这两个角叫做对顶角。如图2所示,∠1与∠3、∠2与∠4都是对顶角。
注意:两个角互为对顶角的特征是:(1)角的顶点公共;(2)角的两边互为反向延长线;(3)两条相交线形成2对对顶角。
3. 对顶角的性质 对顶角相等。
4. 邻补角的定义
如果把一个角的一边反向延长,这条反向延长线与这个角的另一边构成一个角,此时就说这两个角互为邻补角。如图3所示,∠1与∠2互为邻补角,由平角定义可知∠1+∠2=180°。
(二)垂线 1. 垂线的定义
当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 A
B C
D
1
A B C D 1
图4
如图4所示,直线AB 与CD 互相垂直,垂足为点O ,则记作AB ⊥CD 于点O 。
其中“⊥”是“垂直”的记号;是图形中“垂直”(直角)的标记。 注意:垂线的定义有以下两层含义:
(1)∵AB ⊥CD (已知) (2)∵∠1=90°(已知) ∴∠1=90°(垂线的定义) ∴AB ⊥CD (垂线的定义) 2. 垂线的性质
(1)性质1:在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直,即过一点有且只有一条直线与已知直线垂直。
(2)性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。即垂线段最短。 3. 点到直线的距离
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
m
D
C
B
A
P
图5 图6
如图5所示,m 的垂线段PB 的长度叫做点P 到 直线m 的距离。 4. 垂线的画法(工具:三角板或量角器) 5. 画已知线段或射线的垂线 (1)垂足在线段或射线上
(2)垂足在线段的延长线或射线的反向延长线上
(三)“三线八角”
两条直线被第三条线所截,可得八个角,即“三线八角”,如图6所示。
(1)同位角:可以发现∠1与∠5都处于直线l 的同一侧,直线a 、b 的同一方,这样位置的一对角就是同位角。图中的同位角还有∠2与∠6,∠3与∠7,∠4与∠8。
(2)内错角:可以发现∠3与∠5都处于直线l 的两旁,直线a 、b 的两方,这样位置的一对角就是内错角。图中的内错角还有∠4与∠6。
(3)同旁内角:可以发现∠4与∠5都处于直线l 的同一侧,直线a 、b 的两方,这样位置的一对角就是同旁内角。图中的同旁内角还有∠3与∠6。
范例1. 判断下列语句是否正确,如果是错误的,说明理由。
(1)过直线外一点画直线的垂线,垂线的长度叫做这个点到这条直线的距离; (2)从直线外一点到直线的垂线段,叫做这个点到这条直线的距离; (3)两条直线相交,若有一组对顶角互补,则这两条直线互相垂直; (4)两条直线的位置关系要么相交,要么平行。 分析:本题考查学生对基本概念的理解是否清晰。(1)、(2)都是对点到直线的距离的描述,由“直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”可判断(1)、(2)都是错的;由对顶角相等且互补易知,这两个角都是90°,故(3)正确;同一平面内,两条直线的位置关系是相交或平行,必须强调“在同一平面内”。 解答:(1)这种说法是错误的。因为垂线是直线,它的长度不能度量,应改为“垂线段的长度叫做点到直线的距离”。 (2)这种说法是错误的。因为“点到直线的距离”不是指点到直线的垂线段的本身,而是指垂线段的长度。 (3)这种说法是正确的。
(4)这种说法是错误的。因为只有在同一平面内,两条直线的位置关系才是相交或平行。如果没有“在同一平面内”这个前提,两条直线还可能是异面直线。
说明:此题目的是让学生抓住相交线平行线这部分概念的本质,弄清易混概念。
范例2. 如下图(1)所示,直线DE 、BC 被直线AB 所截,问∠∠∠∠1424与,与,∠∠34与各是什么角?
A D
1 2 3
E 4
B C
图(1)
A D
1 2 3
E 4
B C
图(2)
范例3 如下图(1),
l 2
3
6 4 5
1 2 l 1
l 3
图(1)
(1)∠∠12与是两条直线_________________与_________________被第三条直线_________________所截构成的___________________角。
(2)∠∠13与是两条直线_______________与_________________被第三条直线____________________所截构成的________________角。
(3)∠∠34与是两条直线_______________与___________________被第三条直线_________________________所截构成的_______________角。
(4)∠5与∠6是两条直线_______________与_______________,被第三条直线______________________所截构成的________________角。 。
2.在下列各题的括号内加注理由。
(1)如图10,∠ABC=∠CDA ,∠CBD=∠ADB 求证:ABCD
证明: ∵ ∠ABC=∠CDA( ) ∠CBD=∠ADB( ) ∴ ∠ABD=∠CDB( )
∴ AB ∥CD( )。
(2)已知:CDE 是一直线,∠1=1250,A=550
求证: AB ∥CD
证明:∵ CDE 是一直线(已知)
∴ ∠1+∠2=1800
( )
∵ ∠1=1250
( )
∴ ∠2=550
( )
又 ∵ ∠A=550
( ) ∴ ∠2=∠A( ) ∴ AB ∥CD( )
范例4按要求作图,并回答问题。