小学五年级下册数学概念与通用公式
小学五年级数学公式大全
一、加法运算:1.相加法则:a+b=b+a2.加零法则:a+0=a3.加法交换律:(a+b)+c=a+(b+c)4.结合律:a+(b+c)=(a+b)+c二、减法运算:1.减法定义:a-b=c,其中c+b=a2.0的减法法则:a-0=a3.减去自身法则:a-a=04.减法交换律:a-b=-(b-a)三、乘法运算:1.相乘法则:a×b=b×a2.乘一法则:a×1=a3.乘零法则:a×0=04.乘法分配律:a×(b+c)=a×b+a×c四、除法运算:1.除法定义:a÷b=c,其中c×b=a2.除以自身法则:a÷a=13.除以一法则:a÷1=a4.除零非法:a÷0非法,无解五、分数运算:1.分数定义:分数是一个整数除以另一个非零整数的结果,例如1/2,3/4等2. 分数加法:a/b + c/d = (ad + bc)/bd3. 分数减法:a/b - c/d = (ad - bc)/bd4. 分数乘法:(a/b) × (c/d) = ac/bd5. 分数除法:(a/b) ÷ (c/d) = (a/b) × (d/c) = ad/bc六、平方运算:1.平方定义:a²=a×a2.平方互逆法则:(a²)²=a^(2×2)=a⁴3.平方根定义:√a=b,其中b×b=a七、乘方运算:1.乘方定义:a^b=a×a×...×a(共b个a相乘)2.乘方互逆法则:(a^b)^c=a^(b×c)3.乘方基本法则:a^0=1,a^1=a4.乘方分配律:(a×b)^c=a^c×b^c八、百分数运算:1.百分数定义:百分数是百分之一的分数表示,例如25%表示25/1002.百分数转换为小数:百分数除以100即可(移动两位小数点)3.小数转换为百分数:小数乘以100即可(移动两位小数点)4.百分数转换为分数:百分数除以100后将分母化为1005.分数转换为百分数:分数化为百分数时将分子除以分母后乘以100。
五年级下册数学公式大全
五年级下册数学公式大全一、图形的面积公式。
1. 长方形的面积 = 长×宽。
- 用字母表示为S = ab,其中S表示面积,a表示长,b表示宽。
2. 正方形的面积 = 边长×边长。
- 用字母表示为S=a^2,这里a表示正方形的边长。
3. 平行四边形的面积 = 底×高。
- 用字母表示为S = ah,a是底,h是高。
4. 三角形的面积 = 底×高÷2。
- 用字母表示为S = ah÷2,a为底,h为高。
5. 梯形的面积=(上底 + 下底)×高÷2。
- 用字母表示为S=(a + b)h÷2,其中a是上底,b是下底,h是高。
二、长方体和正方体相关公式。
1. 长方体的棱长总和=(长+宽 + 高)×4。
- 用字母表示为C=(a + b+h)×4,a为长,b为宽,h为高。
2. 长方体的表面积=(长×宽+长×高+宽×高)×2。
- 用字母表示为S=(ab + ah+bh)×2。
3. 长方体的体积 = 长×宽×高。
- 用字母表示为V = abh。
4. 正方体的棱长总和 = 棱长×12。
- 用字母表示为C = 12a,a为正方体的棱长。
5. 正方体的表面积 = 棱长×棱长×6。
- 用字母表示为S = 6a^2。
6. 正方体的体积 = 棱长×棱长×棱长。
- 用字母表示为V=a^3。
三、分数相关公式。
1. 分数乘法。
- 分数乘整数:(a)/(b)× c=(ac)/(b)(b≠0)。
- 分数乘分数:(a)/(b)×(c)/(d)=(ac)/(bd)(b≠0,d≠0)。
2. 分数除法。
- 除以一个数(0除外)等于乘这个数的倒数。
即(a)/(b)÷c=(a)/(b)×(1)/(c)=(a)/(bc)(b≠0,c≠0),(a)/(b)÷(c)/(d)=(a)/(b)×(d)/(c)=(ad)/(bc)(b≠0,c≠0,d≠0)。
小学五年级下册数学公式必背
小学五年级下册数学公式必背1、分数与整数相乘:分子和整数相乘,分母不变。
(能约分的要约分)2、分数与分数相乘,分子与分子相乘,分母与分母相乘,能约分的可以先约分。
3、长方体有6个面,一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。
4、长方体的棱长总和=(长+宽+高)×45、长方体6个面的总面积叫作它的表面积。
长方体相对的面的面积相等。
前后面的面积=长×高;左右面的面积=宽×高;上下面的面积=长×宽6、长方体的表面积=(长×宽+长×高+宽×高)×2S=(a×b+a×h+b×h)×27、正方体是特殊的长方体。
(长宽高都相等)8、正方体有6个面,都是面积相等的正方形;8个顶点,12条棱都相等。
9、正方体的棱长总和=棱长×1210、正方体6个面的总面积叫作它的表面积,6个面的面积都相等。
11、正方体的表面积=棱长×棱长×6S=6a²12、长方体的体积=长×宽×高V=abh13、正方体的体积=棱长×棱长×棱长V=a×a×a或V=a³14、长方体和正方体体积的统一公式:长方体(正方体)体积=底面积×高V=Sh15、如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。
比如1/2的倒数是2,2的倒数是1/2,这两个数互为倒数。
1的倒数是它本身,0没有倒数。
16、一个数除以一个整数(零除外)等于这个数乘以这个整数的倒数。
17、一个数除以一个分数等于这个数乘以这个分数的倒数。
18、除以一个数(零除外)等于乘这个数的倒数。
19、物体所占空间的大小叫作物体的体积。
常用的体积单位有:方厘米,立方分米,立方米。
五年级数学下册公式
五年级数学下册公式五年级数学下册公式是指五年级下学期学生需要学习和掌握的数学公式和相关知识点。
下面是五年级数学下册常见的公式和相关参考内容。
1. 四则运算公式五年级下册的数字运算涉及加法、减法、乘法和除法,需要掌握的公式有:- 加法公式:a + b = c,其中a、b为被加数,c为和。
- 减法公式:a - b = c,其中a为被减数,b为减数,c为差。
- 乘法公式:a × b = c,其中a、b为因数,c为积。
- 除法公式:a ÷ b = c,其中a为被除数,b为除数,c为商。
2. 倍数和约数公式- 倍数公式:a是b的倍数,可以表示为a = nb,其中a、b为整数,n为自然数。
- 约数公式:a是b的约数,可以表示为a | b,其中a、b为整数。
3. 平均数公式- 平均数公式:平均数 = 总和 / 个数。
4. 长方形和正方形的周长和面积公式- 长方形周长公式:周长 = 2 × (长 + 宽)。
- 长方形面积公式:面积 = 长 ×宽。
- 正方形周长公式:周长 = 4 ×边长。
- 正方形面积公式:面积 = 边长 ×边长。
5. 直角三角形的勾股定理和三角形面积公式- 勾股定理:直角三角形中,直角边的平方等于两个其他边的平方之和。
即 a^2 + b^2 = c^2,其中a、b为直角边的长度,c 为斜边的长度。
- 三角形面积公式:面积 = 底边长 ×高 / 2,其中底边为三角形的一条边的长度,高为以底边为底的高的长度。
6. 圆的周长和面积公式- 圆周长公式:周长= 2 × π × 半径,其中π约等于3.14。
- 圆面积公式:面积= π × 半径^2。
7. 分式运算的公式- 分数加减法:a/b ± c/d = (ad ± bc)/bd,其中a、b、c、d为整数,分母b、d不为0。
- 分数乘法:(a/b) × (c/d) = ac/bd,其中a、b、c、d为整数,分母b、d不为0。
五年级下册所有数学公式
五年级下册所有数学公式一、图形的面积公式。
1. 长方形的面积公式。
- 长方形面积 = 长×宽,用字母表示为S = ab(其中S表示面积,a表示长,b表示宽)。
2. 正方形的面积公式。
- 正方形面积 = 边长×边长,用字母表示为S=a^2(其中S表示面积,a表示边长)。
3. 平行四边形的面积公式。
- 平行四边形面积 = 底×高,用字母表示为S = ah(其中S表示面积,a表示底,h表示高)。
4. 三角形的面积公式。
- 三角形面积 = 底×高÷2,用字母表示为S = ah÷2(其中S表示面积,a表示底,h表示高)。
5. 梯形的面积公式。
- 梯形面积=(上底 + 下底)×高÷2,用字母表示为S=(a + b)h÷2(其中S表示面积,a表示上底,b表示下底,h表示高)。
二、长方体和正方体的相关公式。
1. 长方体的棱长总和公式。
- 长方体棱长总和=(长+宽 + 高)×4,用字母表示为C=(a + b+h)×4(其中C 表示棱长总和,a表示长,b表示宽,h表示高)。
2. 长方体的表面积公式。
- 长方体表面积=(长×宽+长×高+宽×高)×2,用字母表示为S=(ab +ah+bh)×2(其中S表示表面积,a表示长,b表示宽,h表示高)。
3. 长方体的体积公式。
- 长方体体积 = 长×宽×高,用字母表示为V = abh(其中V表示体积,a表示长,b表示宽,h表示高)。
4. 正方体的棱长总和公式。
- 正方体棱长总和 = 棱长×12,用字母表示为C = 12a(其中C表示棱长总和,a表示棱长)。
5. 正方体的表面积公式。
- 正方体表面积 = 棱长×棱长×6,用字母表示为S = 6a^2(其中S表示表面积,a表示棱长)。
五年级新版数学下册概念及公式
五年级新版数学下册概念及公式五年级下册数学复资料第二单元:因数与倍数在研究因数和倍数时,我们所说的数指的是整数(一般不包括)。
一个数的最小因数是1,最大的因数是本身。
一个数的因数的个数是有限的。
一个数的最小倍数是本身,没有最大的倍数。
一个数的倍数的个数是无限的。
一个数的最大因数和最小倍数是相等的,都是它本身。
完全数是指因数之和等于本身的数,也叫完美数。
例如6、28、496、8128等都是完全数。
个位上是2、4、6、8的数都是2的倍数。
自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。
自然数中的数不是奇数就是偶数。
奇数加偶数等于奇数,奇数加奇数等于偶数,偶数加偶数等于偶数。
偶数减偶数等于偶数,奇数减奇数等于偶数,奇数减偶数等于奇数。
偶数个偶数相加是偶数,奇数个奇数相加是奇数。
偶数乘以偶数等于偶数,奇数乘以奇数等于奇数,奇数乘以偶数等于偶数。
相邻两个自然数之和为奇数,相邻自然数之积为偶数。
如果乘式中有一个数为偶数,那么乘积一定是偶数。
个位上是5或0的数是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
个位上是5或0并且各个数位上的数字之和能被3整除的数是3和5的倍数。
个位是2、4、6、8并且各个数位上的数字之和能被3整除的数是2和3的倍数。
个位是0,并且各个数位上的数字之和能被3整除的数是2、3和5的倍数。
质数是只有1和本身两个因数的数,如2、3、5、7等。
合数是除了1和本身还有别的因数的数,如4、6、8、9、10等。
1既不是质数也不是合数。
自然数包括1、质数和合数。
小于100的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97.如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
把一个合数用质因数相乘的方式表示出来叫做分解质因数,如4=2×2,6=2×3,8=2×2×2.第三单元:长方形和正方形分数的意义在于用来表示测量、分物或计算时得到的非整数结果。
小学五年级数学下册公式及概念汇总最新
小学五年级数学下册公式及概念汇总最新培养数学应用能力,首先要养成将实际问题数学化的习惯。
小偏整理了小学五年级数学下册公式及概念汇总最新,感谢您的阅读。
小学五年级数学下册公式及概念汇总最新01分数乘法、分数除法1. 分数乘法的意义:求几个相同分数的和的简便运算2. 分数除法的意义:已知两个乘数的积和其中一个乘数,求另一个乘数的运算3. 分数乘法的运算法则:分数与整数相乘:分子和整数相乘,分母不变。
分数与分数相乘:分子与分子相乘,分母与分母相乘,能约分的可以先约分。
4. 分数除法的运算法则:(1)一个数除以一个整数(0除外)等于这个数乘以这个整数的倒数。
(2)一个数除以一个分数等于这个数乘以这个分数的倒数。
(3) 除以一个数(0除外)等于乘这个数的倒数。
5. 如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。
比如1/2的倒数是2,2的倒数是1/2,这两个数互为倒数。
1的倒数是1,0没有倒数。
6. 分数乘、除法的实际问题(1)求一个数的几分之几是多少,用乘法。
(2)已知一个数的几分之几是多少,求这个数,用除法,也可以用解方程。
02分数的混合运算1. 分数混合运算的顺序与整数混合运算的顺序一样:先算乘除后算加减,有括号的先算括号里面的,再算括号外面的。
2. 运算定律:(1)乘法分配律:a×(b+c)=a×b+a×c(2)乘法结合律:a×b×c=ax(b×c)(3)乘法交换律:a×b=b×a运用运算定律可对分数的混合运算进行简便运算。
03长方体的认识、表面积、体积和容积1. 长方体有6个面,一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。
2. 正方体有6个面,都是面积相等的正方形;有8个顶点,12条棱,每条棱的长度都相等。
3. 正方体是特殊的长方体。
五年级数学下册基本概念及公式大全
五年级数学下册基本概念及公式大全一、观察物体(三)1、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
2、知道一个方向的平面图,可以摆出多种立体图形。
3、知道三个方向的平面图,只能摆出一种立体图形。
二、因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)a÷b=c(a、b、c都是整数),那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
(4)2、3、5的倍数特征a、个位上是0,2,4,6,8的数都是2的倍数。
b、一个数各位..上的数的和是3的倍数,这个数就是3的倍数。
C、个位上是0或5的数,是5的倍数。
d、能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
e、如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
4:自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。
叫奇数。
也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
最小的奇数是1,最小的偶数是0.关系:奇数±偶数=奇数奇数±奇数=偶数偶数±偶数=偶数。
5、自然数按因数的个数来分:质数、合数、1、0四类.质数(或素数):只有1和它本身两个因数。
合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
1:只有1个因数。
“1”既不是质数,也不是合数。
五年级下册数学概念及公式
第一单元图形的变换1、轴对称图形沿着对称轴重叠后,图形两边可以完全重合。
2、平形四边形不是轴对称图形。
长方形有2条对称轴,正方形有4条对称轴,等腰三角形有1条对称轴,正(等边)三角形有3条对称轴,圆有无数条对称轴,半圆有一条对称轴。
3、轴对称图形沿着对称轴的交点至少旋转(360÷对称轴的条数)=度,可以与原来的图形完全重合。
长方形沿着对称轴的交点至少旋转360÷2=180(度)正方形沿着对称轴的交点至少旋转360÷4=90(度)等腰三角形沿着对称轴的交点至少旋转360÷1=360(度)等边(正)三角形方形沿着对称轴的交点至少旋转360÷3=120(度),形沿着对称轴的交点至少旋转360÷360=1(度)半圆沿着对称轴的交点至少旋转360÷1=360(度)与原来的图形完全重合。
4、我们学过的图形的变换有轴对称、平移、旋转。
第二单元因数和倍数1、我们说的因数和倍数指的是整数,不包括0,也不能说小数。
2、因数和倍数是相对的,不能单独说因数和倍数。
3、一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的倍数的个数有无限的,最小的倍数是它本身,没有最大的倍数。
一个数的最大因数=最小倍数=它本身。
4、a÷b=c(a、b、c都是整数),我们就可以说,能被b整除,也可以说b能整除a.(例10÷2=5,可以说10能被2整除,2能整除10)。
5、2的倍数特征:个位上是0、2、4、6、8的数都是2的倍数。
5的倍数特征:个位上是0或5的数都是5的倍数。
3的倍数特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
2和5的倍数特征:个位上是0的数,既是2的倍数又是5的倍数。
判断奇数和偶数的依据是:是否是2的倍数。
自然数不是奇数就是偶数。
奇数:不是2的倍数的数叫奇数。
(就是我们生活中常说的单数)偶数:是2 的倍数的数叫偶数。
小学五年级数学公式大全整理
学习整理收集于网络,仅供参考小学五年级数学公式大全整理小学五年级数学公式大全涵盖了多个方面,包括基本的数量关系、几何图形计算、统计与概率等。
以下是一些常用的数学公式及其说明:一、数量关系计算公式1、单价、数量与总价单价×数量 = 总价总价÷单价 = 数量总价÷数量 = 单价2、速度、时间与路程速度×时间 = 路程路程÷速度 = 时间路程÷时间 = 速度3、工效、时间与工作总量工效×时间 = 工作总量工作总量÷工效 = 时间工作总量÷时间 = 工效4、加数与和加数 + 加数 = 和和 - 一个加数 = 另一个加数5、被减数、减数与差被减数 - 减数 = 差被减数 - 差 = 减数差 + 减数 = 被减数6、因数与积因数×因数 = 积积÷一个因数 = 另一个因数7、被除数、除数与商被除数÷除数 = 商被除数÷商 = 除数商×除数 = 被除数8、有余数的除法被除数 = 商×除数 + 余数二、几何图形计算公式1、正方形周长 = 边长× 4面积 = 边长×边长2、长方形周长 = (长 + 宽) × 2面积 = 长×宽3、三角形面积 = (底×高) ÷ 24、平行四边形面积 = 底×高5、梯形面积 = (上底 + 下底) ×高÷ 26、圆周长 = 直径×π = 2 ×半径×π面积 = 半径×半径×π7、长方体表面积 = 2 × (长×宽 + 长×高 + 宽×高) 体积 = 长×宽×高8、正方体表面积 = 棱长×棱长× 6体积 = 棱长×棱长×棱长9、圆柱侧面积 = 底面周长×高表面积 = 侧面积 + 2 ×底面积体积 = 底面积×高10、圆锥体积 = (1/3) ×底面积×高三、其他常用公式1、分数分子÷分母 = 分数值分数值×分母 = 分子分子÷分数值 = 分母2、百分数百分数 = (部分÷总量) × 100%3、统计与概率中位数:一组数据从小到大(或从大到小)排列,中间的数众数:一组数据中出现次数最多的数四、运算定律1、加法交换律:两数相加,交换加数的位置,和不变。
【小学数学】五年级下册数学概念及公式
【小学数学】五年级下册数学概念及公式一、观察物体(三)从不同的角度观察物体,看到的形状可能不同。
通过观察多个小正方体组成的几何体,可以根据从一个方向看到的图形,用小正方体摆出多种几何体。
要确定一个几何体的形状,至少需要从三个不同的方向进行观察。
二、因数与倍数1、因数和倍数在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
例如:12÷2 = 6,12 是 2 和 6 的倍数,2 和 6 是 12 的因数。
因数和倍数是相互依存的,不能单独说谁是因数,谁是倍数。
一个数的因数的个数是有限的,其中最小的因数是 1,最大的因数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
2、 2、5、3 的倍数的特征(1)2 的倍数的特征:个位上是 0、2、4、6、8 的数都是 2 的倍数。
(2)5 的倍数的特征:个位上是 0 或 5 的数都是 5 的倍数。
(3)3 的倍数的特征:一个数各位上的数字之和是 3 的倍数,这个数就是 3 的倍数。
同时是 2 和 5 的倍数的特征:个位上是 0 的数。
同时是 2、3、5 的倍数的特征:个位上是 0 且各位上的数字之和是3 的倍数。
3、奇数和偶数整数中,是 2 的倍数的数叫做偶数(0 也是偶数),不是 2 的倍数的数叫做奇数。
奇数+奇数=偶数偶数+偶数=偶数奇数+偶数=奇数奇数×奇数=奇数偶数×偶数=偶数奇数×偶数=偶数三、长方体和正方体1、长方体(1)长方体有 6 个面,每个面都是长方形(可能有两个面是正方形),相对的面完全相同。
(2)长方体有 12 条棱,相对的棱长度相等。
(3)长方体有 8 个顶点。
(4)相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体的棱长总和=(长+宽+高)× 42、正方体(1)正方体有 6 个面,每个面都是正方形,6 个面完全相同。
人教版小学五年级数学下册概念及公式
五年级数学下册概念公式一、旋转、平移时针旋转1小时就是30度二、因数与倍数1、如果a×b=c(a、b、c都就是不为0的整数),那么a、b就就是c得因数,c就就是a、b的倍数。
2、一个数的因数个数就是有限的,其中最小的因数就是1,最大的因数就是它本身。
一个数的倍数就是无限的,其中最小的倍数就是它本身,没有最大倍数。
3、奇数与偶数:自然数中,就是2的倍数的数叫做偶数(0也就是偶数),不就是2的倍数的数叫做奇数。
偶数:个位就是0,2,4,6,8的数。
奇数:个位不就是0,2,4,6,8的数。
4、倍数特征:2的倍数的特征:各位就是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之与就是3(或9)的倍数。
5的倍数的特征:各位就是0,5。
5、质数与合数:质数:一个数,如果只有1与它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1与它本身还有别的约数,这样的数叫做合数。
1不就是质数,也不就是合数。
1既不就是质数也不就是合数。
6、奇数与偶数的运算规律偶数+偶数=偶数奇数+奇数=奇数奇数+偶数=奇数偶数-偶数=偶数奇数-奇数=奇数奇数-偶数=奇数偶数个偶数相加就是偶数, 奇数个奇数相加就是奇数。
偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数7、质因数:如果一个质数就是某个数的因数,那么这个质数就就是这个数的质因数。
8、分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
9、100以内的质数表:2、 3、 5、 7、 11、 13、17、1923、29、31、 37、 41、 43、47、5359、61、67、71、 73、 79、83、89、97三、长方体的认识、表面积、体积与容积1、长方体有6个面,一般都就是长方形(特殊情况有两个相对的面就是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。
人教版小学五年级数学下册概念及公式
欢迎下载可编辑可修改五年级数学下册概念公式一、旋转、平移时针旋转1小时是30度二、因数与倍数1、如果a×b=c(a、b、c都是不为0的整数),那么a、b就是c得因数,c就是a、b的倍数。
2、一个数的因数个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数是无限的,其中最小的倍数是它本身,没有最大倍数。
3、奇数与偶数:自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
偶数:个位是0,2,4,6,8的数。
奇数:个位不是0,2,4,6,8的数。
4、倍数特征:2的倍数的特征:各位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:各位是0,5。
5、质数与合数:质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1不是质数,也不是合数。
1既不是质数也不是合数。
6、奇数与偶数的运算规律偶数+偶数=偶数奇数+奇数=奇数奇数+偶数=奇数偶数-偶数=偶数奇数-奇数=奇数奇数-偶数=奇数偶数个偶数相加是偶数,奇数个奇数相加是奇数。
偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数7、质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
8、分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
9、100以内的质数表:2、 3、 5、 7、 11、 13、17、1923、29、31、 37、 41、 43、47、5359、61、67、71、 73、 79、83、89、97三、长方体的认识、表面积、体积和容积1. 长方体有6个面,一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。
2. 正方体有6个面,都是面积相等的正方形;有8个顶点,12条棱,每条棱的长度都相等。
小学五年级数学概念及公式
1.数字的认识和运算:
-整数:正整数、负整数、零
-四则运算:加法、减法、乘法、除法
-乘法公式:a×(b+c)=a×b+a×c
2.几何图形:
-点、直线、线段、射线
-平行线和垂直线
-角的分类:锐角、直角、钝角
-三角形:等边三角形、等腰三角形
-四边形:矩形、正方形、长方形、菱形、平行四边形
-圆:半径、直径、圆心、弧、弦
3.分数和小数的认识与运算:
-分数:分子、分母、真分数、假分数、带分数
-分数的四则运算:加法、减法、乘法、除法
-分数的化简:求最大公约数
-分数的比较:分子相乘、分母相乘
-小数与分数的转换:小数转换为分数、分数转换为小数-小数的计算:加法、减法、乘法、除法
4.数据的收集与分析:
-统计:调查、收集数据
-数据的表示:表格、柱状图、折线图-平均数:算术平均数。
小学五年级数学公式大全(2024)
引言概述:数学公式在小学阶段是非常重要的,它们是学生掌握数学知识和解决问题的基础。
在小学五年级,学生们开始接触更加复杂的数学概念和公式。
本文将为大家介绍小学五年级数学公式的内容,以帮助学生们更好地理解和运用这些公式。
正文:一、面积和体积公式1.长方形面积公式:长方形的面积等于长乘以宽,即A=lw,其中A表示面积,l表示长,w表示宽。
2.正方形面积公式:正方形的面积等于边长的平方,即A=a^2,其中A表示面积,a 表示边长。
3.三角形面积公式:三角形的面积等于底边乘以高的一半,即A=(bh)/2,其中A表示面积,b表示底边长,h表示高。
4.梯形面积公式:梯形的面积等于上底加下底的和乘以高的一半,即A=((a+b)h)/2,其中A表示面积,a表示上底长,b表示下底长,h 表示高。
5.立方体体积公式:立方体的体积等于边长的立方,即V=a^3,其中V表示体积,a 表示边长。
二、比例和百分数公式1.比例关系公式:比例关系可以表示为a:b=c:d,其中a、b、c、d分别表示不同的量。
2.比例分配公式:当已知一个比例关系,并且其中一个量的值已知,可以用比例关系公式来计算另一个量的值。
例如,如果a:b=c:d,且已知a的值,可以通过计算得到b的值。
3.百分数的基本概念:百分数是指以100为基数的表示比例的方式。
例如,50%表示50除以100,即0.5。
4.百分数转换公式:将一个数转换为百分数,可以将其乘以100。
例如,0.5可以转换为50%。
5.百分数之间的关系:两个百分数之间的关系可以通过比较它们的大小,或者通过计算它们的差值。
三、多边形相关公式1.正多边形内角和公式:正多边形的内角和可以用公式(n2)180°来计算,其中n表示多边形的边数。
2.三角形内角和公式:三角形的内角和是180°,即两个角的和等于180°。
3.等腰三角形的性质:等腰三角形的两边相等,两个底角也相等。
4.直角三角形的性质:直角三角形的两个锐角加起来等于90°,其中一个角是直角(90°)。
(完整版)五年级数学下册概念公式-整理
五年级数学下册概念公式一、旋转、平移时针旋转1小时是30度二、因数与倍数1、如果a×b=c(a、b、c都是不为0的整数),那么a、b就是c得因数,c就是a、b的倍数。
2、一个数的因数个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数是无限的,其中最小的倍数是它本身,没有最大倍数。
3、奇数与偶数:自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
偶数:个位是0,2,4,6,8的数。
奇数:个位不是0,2,4,6,8的数。
4、倍数特征:2的倍数的特征:各位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:各位是0,5。
5、质数与合数:质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1不是质数,也不是合数。
1既不是质数也不是合数。
6、奇数与偶数的运算规律偶数+偶数=偶数奇数+奇数=奇数奇数+偶数=奇数偶数-偶数=偶数奇数-奇数=奇数奇数-偶数=奇数偶数个偶数相加是偶数,奇数个奇数相加是奇数。
偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数7、质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
8、分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
9、100以内的质数表:2、 3、 5、 7、 11、 13、17、1923、29、31、 37、 41、 43、47、5359、61、67、71、 73、 79、83、89、97三、长方体的认识、表面积、体积和容积1. 长方体有6个面,一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。
2. 正方体有6个面,都是面积相等的正方形;有8个顶点,12条棱,每条棱的长度都相等。
五年级下册数学概念公式定理
五年级下册数学必记概念、公式、定理刘国立整理第一单元:图形的变换1、轴对称图形的特征:沿着对称轴对折,两边完全重合。
2、旋转分顺时针旋转和逆时针旋转。
3、图形的变换有轴对称、旋转和平移。
第二单元:因数与倍数1、2X6=12,2和6是12的因数,12是6的倍数,12也是2的倍数。
2、一个数的的最小因数是1,最大的因数是本身。
3、一个数的因数的个数是有限的。
4、一个数的最小倍数是本身,没有最大倍数。
5、一个数的倍数的个数是无限的。
6、自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
7、2的倍数的特征:个位上是0、2、4、6、8的数是2的倍数(0不是2的倍数)5的倍数的特征:个位上是0或5的数,是5的倍数(0不是5的倍数)3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
8、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
如2、3、5、7都是质数。
9、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
如4、6、15、49都是合数。
(1不是质数,也不是合数)10、100以内的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
第三单元《长方体和正方体》1、长方体有8个顶点,有4条长;有4条宽;有4条高;有6个面,相对的两个面相等。
2、正方体有8个顶点,有12条棱;有6个面,每个面都相等。
3、正方体是特殊的长方体。
长方体棱长总和=长×4+宽×4+高×4 =a×4+b×4+h×4=(长+宽+高) ×4 =(a+b+h) ×4正方体棱长总和= 棱长×12=a×12长方体表面积=长×宽×2+长×高×2+宽×高×2=a×b×2+a×h×2+b×h×2=(长×宽+长×高+宽×高) ×2=(a×b+a×h+b×h)×2正方体表面积=棱长×棱长×6=a×a×6长方体体积=长×宽×高=a×b×h正方体体积=棱长×棱长×棱长=a×a×a1立方米=1000立分方米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1升=1000毫升 1立方分米=1000毫升第四单元:分数的意义和性质1、单位"1"的含义一个物体和一些物体,我们都可以看作一个整体.这个整体可以用自然数1来表示,通常把它叫做单位"1".也叫做整体"1".2、分数的意义 把单位"1"平均分成若干份,表示这样的一份或几份的数叫分数. 分数的形式可以用 n m(n 是不为0的自然数)表示.分数的组成:分数是由分子,分数线,分母三部份组成.读分数时,先读分数的分母,再读"分之",最后读分子 把单位"1"平均分成若干份.表示其中一份的数叫分数单位。
五年级下册数学概念及公式
五年级下册数学概念及公式㈠因数与倍数⑴一个数的最小因数是1,最大的因数是本身。
一个数的因数的个数是有限的。
⑵一个数的最小倍数是本身,没有最大的倍数。
一个数的倍数的个数是无限的。
⑶一个数的最大因数和最小倍数是相等的,都是它本身。
⑷自然数中,是2的倍数的数叫做偶数(0是最小的偶数),不是2的倍数的数叫做奇数。
自然数不是奇数就是偶数。
⑸奇数±偶数=奇数奇数±奇数=偶数偶数±偶数=偶数奇数个奇数相加是奇数。
偶数个奇数相加是偶数。
⑹个位上是0,2,4,6,8的数都是2的倍数。
⑺个位上是0或5的数,是5的倍数。
⑺一个数各位上的数的和是3的倍数,这个数就是3的倍数。
⑻一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
如2,3,5,7都是质数。
⑼一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
如4,6,8,9,10都是合数。
⑽1既不是质数,也不是合数。
最小的自然数是0,最小的质数是2,最小的合数是4。
⑾100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97⑿分解质因数:把一个合数用质因数相乘的方式表示出来叫做分解质因数。
如:6=2×3,12=2×2×3。
㈡:长方形和正方形1、两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
在一个长方体中,相对面完全相同,相对的棱长度相等。
正方体12条棱都相等,6个面都完全相同。
2、长方体和正方体都有6个面、12条棱和8个顶点,只是正方体的棱长都相等。
正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
3、长方体或正方体6个面的总面积叫做它的表面积。
4、长方体和正方体公式:⑴长方体棱长和=(长+宽+高)×4 ⑵长方体的表面积=(长×宽+长×高+宽×高)×2⑶底面积(占地面积)=长×宽⑷长方体侧面积(左面、右面)=宽×高长方体前(后)面积=长×高⑸无盖的长方体表面积=长×宽+(长×高+宽×高)×2 如:教室的粉刷面积就像无盖长方体表面积⑹长方体的体积(容积)=长×宽×高=底面积×高⑺不规则物体的体积=容器的长×宽×水上升的高度⑻正方体的棱长和=棱长×12正方体的棱长=棱长和÷12⑼正方体的表面积=棱长×棱长×6无盖的正方体的表面积=棱长×棱长×5⑽正方体的体积(容积)=棱长×棱长×棱长=底面积×高⑾正方体的棱长(或长方体的长宽高)扩大a倍,表面积扩大a2倍,体积扩a3 倍,例如:正方体的棱长(或长方体的长宽高)扩大3倍,表面积扩大9倍,体积扩大27倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学五年级下册数学概念与通用公式第一单元图形的变换1、轴对称图形沿着对称轴重叠后,图形两边可以完全重合。
2、平形四边形不是轴对称图形。
长方形有2条对称轴,正方形有4条对称轴,等腰三角形有1条对称轴,正(等边)三角形有3条对称轴,圆有无数条对称轴,半圆有一条对称轴。
3、轴对称图形沿着对称轴的交点至少旋转(360÷对称轴的条数)=度,可以与原来的图形完全重合。
长方形沿着对称轴的交点至少旋转360÷2=180(度)正方形沿着对称轴的交点至少旋转360÷4=90(度)等腰三角形沿着对称轴的交点至少旋转360÷1=360(度)等边(正)三角形方形沿着对称轴的交点至少旋转360÷3=120(度),形沿着对称轴的交点至少旋转360÷360=1(度)半圆沿着对称轴的交点至少旋转360÷1=360(度)与原来的图形完全重合。
4、我们学过的图形的变换有轴对称、平移、旋转。
第二单元因数和倍数1、我们说的因数和倍数指的是整数,不包括0,也不能说小数。
2、因数和倍数是相对的,不能单独说因数和倍数。
3、一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的倍数的个数有无限的,最小的倍数是它本身,没有最大的倍数。
一个数的最大因数=最小倍数=它本身。
4、a÷b=c(a、b、c都是整数),我们就可以说,能被b整除,也可以说b 能整除a.(例10÷2=5,可以说10能被2整除,2能整除10)。
5、2的倍数特征:个位上是0、2、4、6、8的数都是2的倍数。
5的倍数特征:个位上是0或5的数都是5的倍数。
3的倍数特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
2和5的倍数特征:个位上是0的数,既是2的倍数又是5的倍数。
判断奇数和偶数的依据是:是否是2的倍数。
自然数不是奇数就是偶数。
奇数:不是2的倍数的数叫奇数。
(就是我们生活中常说的单数)偶数:是2 的倍数的数叫偶数。
(就是我们生活中常说的双数)6、质数:一个数,如果只有1和它本身两个因数,这样的数叫质数(或素数)。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
判断质数和合数的依据是:根据因数的个数。
一个质数只有两个因数,一个合数至少有两个因数。
7、1既不是质数也不是合数。
一个自然数除了质数还有合数,还有1。
8、既是质数又是偶数的一位数是2,既是奇数又是偶数的最小的一位数是9,最小的两位数是15。
第三单元长方体的正方体第一部分长方体和正方体的认识1、长方体是由六个长方形,特殊情况下(由两个相对面是正方形)围成的立体图形。
正方体是由六个完全相同的正方形围成的立体图形。
2、长方体和正方体都有6个面,12条棱,8个顶点。
长方体相对的2个面的面积相等,相对的4条棱的长度相等。
正方体的6个面完全相同,12条棱长度都相等。
正方体可以看成是长、宽、高都相等的长方体。
正方体是特殊的长方体。
3、长方体中最少有2个面完全相同,最多有4个面完全相同。
长方体最少有4条棱长度相等,最多有8条棱长度相等。
4、计算长方体或正方体的棱长总和就用长度单位:米、分米、厘米。
每相邻两个长度单位之间的进率是10。
长方体的棱长总和=长×4+宽×4+高×4长方体的棱长总和 =(长+宽+高)×4长+宽+高=棱长总和÷4 长方体的长=棱长总和÷4 -(宽+高)长方体的宽=棱长总和÷4-(长+高) 长方体的高=棱长总和÷4 -(长+宽)5、正方体的棱长总和=棱长×12 正方体的棱长=棱长总和÷12第二部分长方体和正方体的表面积1、长方体和正方体6个面的总面积叫做它们的表面积。
计算表面积也用面积单位:平方米、平方分米、平方厘米。
每相邻两个面积单位之间的进率是100。
2、长方体上(下)面的面积=长×宽长方体左(右)面的面积=宽×高长方体前(后)面的面积=长×高长方体的表面积=长×宽×2+长×高×2+宽×高×2长方体的表面积=(长×宽+长×高+宽×高) ×2正方体的表面积=棱长×棱长×6正方体一个面的面积=正方体的表面积÷6第三部分长方体或正方体的体积和容积1、物体所占空间的大小叫做物体的体积。
2、常用的体积单位有立方厘米、立方分米、立方米。
每相邻两个体积单位之间的进率是1000。
3、棱长1米的正方体,体积是1立方米。
用3根1米长的木条做成一个互成直角的架子,放在墙角,是1立方米。
棱长1分米的正方体,体积是1立方分米。
一个粉笔盒的体积接近1立方分米。
棱长1厘米的正方体,体积是1立方厘米。
一个手指尖的体积大约是1立方厘米。
4、长方体的体积=长×宽×高 V= abh长方体的长= 长方体的体积÷宽÷高长方体的宽=长方体的体积÷长÷高长方体的高=长方体的体积÷长÷宽正方体的体积= 棱长×棱长×棱长 V=a×a×a=a5、长方体或正方体底面的面积叫做底面积。
长方体(或正方体的体积)=底面积×高 V=sh6、一个正方体的棱长扩大a倍,棱长总和扩大a倍,表面积扩大a×a倍,体积扩大a× a× a倍。
7、计算不规则物体的体积可以用排水法。
水中物体的体积(不规则物体的体积)=容器的底面积×水面上升(或下降)的高度。
水面上升(或下降)的高度=水中物体的体积(不规则物体的体积)÷容器的底面积。
8、容器所能容纳物体的体积叫做它们的容积。
计量容积,一般就用体积单位。
计量液体的体积,常用容积单位升或毫升,也可以写成L或ml。
1ml=1cm lL=1dm 1L=1000ml9、长方体和正方体的容积计算方法,跟体积的计算方法相同。
但是容积要从容器里面量出长、宽、高。
物体的容积一般都小于物体的体积。
只是,为了计算方便,我们把厚度忽略不计。
第四单元分数的意义和性质第一部分分数的意义1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
例(1)58表示把单位“1”平均分成8份,表示其中5份的数。
或者表示把5平均分成8份,表示其中1份的数。
例(2)58吨表示把1吨平均分成8份,表示其中5份的数。
或者表示把5吨平均分成8份,表示其中1份的数。
2、把单位“1”平均分成若干份,表示这样的一份的数,叫做分数单位。
3、解决分数应用题。
带单位与不带单位的区别。
⑴如果问题中不带单位,用问题开始的那个单位÷条件中同样的单位的数。
⑵如果问题中带单位,用问题后面的单位÷前边的单位。
最后要带上单位。
如果问题中每份长?重?也要按带单位的处理,要自觉带上单位。
4、分数与除法的关系:被除数÷除数=被除数除数a ÷b=ab(b不等于0)第二部分真分数和假分数1、分子比分母小的分数叫做真分数。
真分数小于1。
2、分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
3、最小的假分数就是分子和分母相等的分数。
4、由一个整数和一个真分数合成的分数叫做带分数。
带分数都大于1。
5、把假分数化成整数或带分数,用分数的分子除以分母,商是带分数的整数部分,余数是带分数的分子,分母不变。
第三部分分数的基本性质、约分、通分1、分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
这叫做分数的基本性质。
2、几个数公有的因数,叫做它们的公因数。
其中,最大的公因数叫做它们的最大公因数。
3、两个数的公因数是最大公因数的因数。
已知最大公因数,求出最大公因数的所有因数,就是这两个数的所有公因数。
4、分解质因数法求两个数的最大公因数:24=2×2×2×3 36=2×2×3×3 24和36的最大公因数=2×2×3=12 5、两个不同质数一定是互质数,但互质的两个数不一定都是质数。
公因数只有1的两个数,叫做互质数。
6、任意两个相邻的自然数是互质数。
1与任何自然数是互质数。
任意两个不同质数的是互质数。
7、任意两个相邻的自然数的公因数是1,最大公因数是1。
1与任何自然数的公因数是1,最大公因数是1。
任意两个不同质数的公因数是1,最大公因数是1。
8、分子和分母只有公因数1,像这样的分数叫做最简分数。
9、把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
10、约分时通常用分子和分母的最大公因数约分比较简便。
约分的结果必须是最简分数。
11、约分和通分的依据都是分数的基本性质。
12、两个数或几个数公有的倍数叫做这几个数的公倍数。
其中最小的一个公倍数叫做它们的最小公倍数。
13、公倍数是最小公倍数的倍数。
14、如果两个数是因数和倍数关系,那么它们的最大公因数是较小数,最小公倍数是较大数。
如果两个数是互质数,那么它们最大公因数是1,最小公倍数是它们的乘积。
15、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
通分时通常选用两个分母的最小公倍数做公分母比较简便。
16、分母相同的两个分数,分子大的分数就大。
分子相同的两个分数,分母小的分数就大。
第四部分分数与小数的互化1、把分数化成小数:把分数化为小数,直接用分子除以分母。
(除不尽的根据需要按“四舍五入”法保留一定的小数位数。
)2、把小数化成分数:看小数部分有几位小数,就在1后面写几个0作分母,将原来的小数去掉小数点作分子,再把分数化成最简分数。
3、如何判断一个分数能否化成有限小数。
先看看这个分数是不是最简分数,如果不是最简分数,先把它化为最简分数。
再把分数的分母分解质因数,如果分母中除了2和5以外,不含有其他质因数,这个分数就能化成有限小数。
如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
第五单元分数的加法和减法1、同分母分数相加减,分母不变,只把分子相加减。
结果能约分的要化成最简分数。
2、异分母分数不能直接相加减,因为分母不同,就是分数单位不同;要先通分,把它们转化成分母相同的分数,再相加减。
3、分数加减法的验算方法与整数加减法的验算方法相同。
整数加法的交换律、结合律对分数加法同样适用。
第六单元、第七单元1、一组数据中,出现次数最多的数,叫做这组数据的众数。
众数能够反映一组数据的集中情况。
2、在一组数据中,众数可能不止一个,也可能没有众数。
下一分钟通知到的人数=上一分钟通知的人数×2+1单位换算的方法:大化小×进率小化大÷进率长度单位:大小千米、米、分米、厘米、毫米1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米面积单位:大小平方千米、公顷、平方米、平方分米、平方厘米、平方毫米1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体积单位:大小立方米、立方分米、立方厘米1立方米=1方1立方米=1000立方分米1立方分米=1000立方厘米容积单位:大小升、毫升1升=1000毫升1升=1立方分米1毫升=1立方厘米重量单位:大小吨、千克、克1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算:大小元、角、分1元=10角1角=10分1元=100分时间单位换算: 大小年、月、日、时、分、秒1年=12个月1日=24小时1时=60分1分=60秒。