超疏水纳米材料的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《纳米科技导论》文献综述题目:超疏水纳米材料的应用
学院:___专业:__班级:_学号:_____学生姓名:_______指导教师:________
年月日
超疏水纳米材料的应用
姓名
(学校学院班级指导教师)
摘要:几十年来人们在荷叶,水黾腿,蝴蝶翅膀等自然界中超疏水性组织和器官的启发下,研究了各种各样的超疏水纳米材料,超疏水纳米材料的设计和研发的目标不仅在于模仿生物的功能结构,更主要的是制备组分和结构均可调的超疏水表面。超疏水表面纳米材料具有特殊微纳米结构,因此有疏水自清洁性,防污染等一系列优异性能,同时在强度、耐热、耐酸碱等性能方面又十分优异的新材料。该类材料在国防、工业、农业、医学、建筑涂料及交通航行等多个领域中。但它们对各种低表面能的液体反而更加亲液。近年来超疏液纳米材料作为超疏水纳米材料的升级和扩展,它对几乎所有液体都具有接近150度左右的接触角,可以极大降低固液表面的粘附力和流动阻力,而且压力稳定性比同样结构的超疏水表面更好。但是,超疏液纳米材料的制备也比超疏水表面更有挑战性,因为需要制备球状、蘑菇状等倒悬微纳米结构,使得低表面能的液体能够钉扎在这些结构上保持悬空状态。因此有望在诸多领域取代超疏水纳米材料并开发出更多新兴的应用。
关键词:纳米,超疏水,应用,表面,接触角
引言
纳米超疏水性材料的发现很早,而系统化理论的建立则是要归功于20世纪三四十年代 Wenzel和 Cassie的研究工作。他们发现了表面粗糙度微结构与浸润性之间所具有的关系。大多固体的表面往往不是光滑和平整的,从微观上看凹凸不平有起伏。在较好的超疏水情况下,液体滴在固体表面上,并不能完全填满粗糙固体表面上的凹面,在液滴与固体凹面之间将会存在有空气。表观上看,固
体和液体的接触界面实际上是由气—液界面和固—液界面所共同组成的混合界面。Wenzel和Cassie两人所总结的公式已经成为目前研究不同粗糙度或者表面微结构的模型基础,材料的超疏水性是由表面的化学组成和微观几何结构共同决定的,通常以接触角θ表征液体对固体的浸润程度。固体表面的疏水性能由化学组成和微观结构共同决定。其中化学组成结构是内因:低表面自由能物质如含硅、含氟可以得到疏水的效果,研究表明,光滑固体表面接触角最大为1200左右;表面几何结构有重要影响:具有微细粗糙结构的表面可以有效的提高疏水表面的疏水性能。超疏水性纳米材料在日常生活用品、公共建筑、乃至国防航空等方面有着广泛的应用。另一方面,作为一种典型的界面现象,表面浸润性在界面化学、物理学、材料学、界面结构设计以及其它交叉学科的基础研究中也有极为重要的研究价值。由于其重要性,各行业、各领域的专家及科研人员都开始加入到这方面的研究和探索中。
正文
超疏水材料由于其优异的超拒水性能,在国防、工农业生产和日常生活中有着广泛的应用前景。例如超疏水技术用在室外天线上,可防止积雪从而保证通信质量;用在船、潜艇的外壳上,不但能减少水的阻力,提高航行速度,还能达到防污、防腐的功效;用在石油输送管道内壁、微量注射器针尖上能防止粘附、堵塞、减少损耗;用在纺织品、皮革上,还能制成防水、防污的服装、皮鞋。正是由于有如此的需求,超疏水材料的应用研究才越来越受关注。将拒水拒油剂涂覆在纺织品、皮革表面或将需处理的材料浸没在含硅、氟元素高聚物的溶液、乳液中,可以制备拒水、防污的材料。
一、超疏水纳米材料在防污、防腐、自清洁方面的应用
众所周知,冰箱(冰柜)内胆表面凝聚FOFM-TEXT冷凝水,结霜、结冰现象严重,使导热率降低,不利于制冷并影响食物保存且耗费电能。王跃河将纳米超疏水技术应用于制冷领域中发现,采用超疏水内胆或者在内胆上采用特殊工艺附上一层纳米超疏水材料,内胆表面上的小水滴就会自动滑落不在内胆上沉积,从而避免内胆表面出现结霜、结冰现象.超疏水界面材料还可用在室外天线等户外设备上,可有效防止积雪,从而保证高质量的接收信号。