小波分析及其在图像处理中的应用.ppt
小波分析及其在图像处理中的应用.
![小波分析及其在图像处理中的应用.](https://img.taocdn.com/s3/m/d2eeba0858fb770bf78a55c9.png)
a2
x
a1
x1
x a1x1 a2 x2 , ai x, xi
线性空间中内积与基下的坐标的关系
对于非标准的正交基
ai
x,
xi
/
||
xi
||
2 2
线性空间中内积与基下的坐标的关系
线性空间中内积与基下的坐标的关系
x1
~x1
a1'
a1
xa2Βιβλιοθήκη a2'x2
~x2
总结
集合 关系 数域
内积 内积空间
• 在抽象的线性空间中赋予内积结构,便能 建立正交性的概念,从而使空间类似于欧 几里得空间,具有正交集、正交投影等几 何属性。抽象的内积的定义依据酉空间中 内积的四条性质。
内积
内积空间
如果线性空间X中规定了内积(·,·),则X与 (·,·)在一起,称为一个内积空间(inner product space),记作
线性运算
x
零元素(zero element):1
x 1 负元素(negative element) : x
线性空间
线性子空间
空间的和与直和
线性相关与线性无关
维数与基
维数与基
距离 度量空间
• 设集合S≠¢,如果实值函数ρ:S×S→ R满 足下列三个条件:
• (1) ρ(x,y)≥0,ρ(x,y)=0 x = y ; • (2) ρ(x,y) =ρ(y,x) ; • (3) ρ(x,z) ≤ρ(x,y) +ρ(y,z), • 其中x, y, z 是S中任意的点,则称ρ为S上
小波分析及其在图 像处理中的应用
第0章 预备知识
最新小波分析及其应用PPT课件
![最新小波分析及其应用PPT课件](https://img.taocdn.com/s3/m/7dbc10b7011ca300a7c39068.png)
4、离散小波变换的应用
❖ 例子:某电信号如图所示,数据长度1024。利用 sym5小波对信号进行小波变换。分解到第二层并进 行压缩。
❖ 采用阈值:0.05*细节小波系数的绝对值最大值
无忧PPT整理发
4、离散小波变换的应用
❖ 进行小 波变换 后,对 信号进 行重构 恢复信 号。
无忧PPT整理发
❖ 降低采样频率的一种方法。在信号样本中隔 一个点选取一个点。
❖ 做一次隔点采样,信号的采样频率就减少一 半。信号中的数据量也减半。
无忧PPT整理发
❖ 重构算法
A jf( t) 2 h ( t 2 k )A j 1 f( t) g ( t 2 k )D j 1 f( t)
k
k
无忧PPT整理发
❖ 以后说明的离散小波变换一般为二进离散小波变 换。
无忧PPT整理发
2、离散小波变换定义
❖ 定义:
W f( m , n ) f ( t ) ,m ( , n t ) = a 0 m / 2 f ( t )( a 0 m t n b 0 ) d t
❖ 小波变换的思想是:将任意函数和信号表示为小波 函数的线性组合。 W f (m , n ) 为小波系数。
压缩)
滤波)
❖ 1、将原始信号进行小 ❖ 1、将原始信号进行小波 波变换,得到小波系数。 变换,得到小波系数。
❖ 2、将系数中足够小的 ❖ 2、将系数中代表高频率
系数去除得到滤噪后数 信号的系数去除,得到的
据。
数据。
❖ 3、用数据对原始信号 ❖ 3、用数据对原始信号进
进行重构。
行重构。
无忧PPT整理发
k
D
j
f
(t
《小波分析概述》课件
![《小波分析概述》课件](https://img.taocdn.com/s3/m/f15373a3162ded630b1c59eef8c75fbfc77d948c.png)
泛函分析
泛函分析是研究函数空间和算子的性 质及其应用的数学分支。
小波分析在泛函分析的框架下,将函 数空间表示为小波基的线性组合,从 而能够更好地研究函数空间的性质和 算子的行为。
03
小波变换的算法实现
《小波分析概述》ppt课件
目录
• 小波分析的基本概念 • 小波变换的数学基础 • 小波变换的算法实现 • 小波分析在图像处理中的应用 • 小波分析在信号处理中的应用 • 小波分析的未来发展与挑战
01
小波分析的基本概念
小波的定义与特性
小波的定义
小波是一种特殊的数学函数,具有局 部特性和可伸缩性,能够在时间和频 率两个维度上分析信号。
一维小波变换算法
一维连续小波变换算法
01
基于连续小波基函数的变换方法,通过伸缩和平移参数实现信
号的多尺度分析。
一维离散小波变换算法
02
将连续小波变换离散化,便于计算机实现,通过二进制伸缩和
平移实现信号的多尺度分析。
一维小波包变换算法
03
基于小波包的概念,对信号进行更精细的分解,提供更高的频
率分辨率和时间分辨率。
图像增强
图像平滑
小波分析能够去除图像中的噪声 ,实现平滑处理,提高图像的视 觉效果。
细节增强
通过调整小波变换的参数,可以 突出图像中的某些细节,增强图 像的对比度和清晰度。
边缘检测
小波变换能够快速准确地检测出 图像中的边缘信息,有助于后续 的图像分析和处理。
图像识别
特征提取
小波变换可以将图像分解成不同频率的子带,提取出与特定任务 相关的特征,为后续的图像识别提供依据。
《小波分析方法》课件
![《小波分析方法》课件](https://img.taocdn.com/s3/m/bf0dee85ab00b52acfc789eb172ded630a1c9854.png)
论文和研究报告
介绍一些发表在期刊和会议上 的相关论文和研究报告
小波分析工具和库
提供一些开放源代码的小波分 析工具和库的信息
Matlab工具箱
介绍基于Matlab的小波分析工具箱,讲 解如何使用该工具箱进行小波分析
小结和展望
1 小波分析方法的优点和局限性
总结小波分析方法相较于其他方法的优点并讨论其局限性
2 未来的研究和应用方向
展望小波分析方法在未来可能的研究方向和应用领域
参考资料
相关领域的经典书籍 和教材
推荐一些与小波分析相关的经 典书籍和教材
信号去噪和压缩
学习如何使用小波分析方法对信号进行去噪和压缩 处理
图像处理
探索小波分析在图像处理中的广泛应用
音频处理
了解如何利用小波分析进行音频特征提取和音频效 果处理
视频处理
发现小波分析在视频编解码和视频特征提取中的应用
小波分析算法实现
1
Python和其他编程语言
2
探讨使用Python和其他编程语言实现小 波分析的库和方法
《小波分析方法》PPT课 件
本课程将介绍小波分析方法的基本概念和应用场景,帮助您掌握信号分析的 强大工具。让我们一起开启这个精彩的学习之旅吧!
课程介绍
内容和目标
了解本课程将涵盖的内容和学习目标
小波分析方法
掌握小波分析方法的基本概念和它在实际应用 中的价值
信号分析基础
1 信号的分类
了解不同类型的信号及其 特点
2 傅里叶分析方法
介绍傅里叶分析方法的原 理和局限性
3 小波分析方法
探讨小波分析方法相较于 傅里叶分析的优点和适用 性
小波分析的数学基础
滤波器组和小波变换
小波变换及其在图像处理中的典型应用PPT课件
![小波变换及其在图像处理中的典型应用PPT课件](https://img.taocdn.com/s3/m/afaae545df80d4d8d15abe23482fb4daa48d1d10.png)
要点一
总结词
要点二
详细描述
通过调整小波变换后的系数,可以增强图像的某些特征, 如边缘、纹理等。
小波变换可以将图像分解为不同频率的子图像,通过调整 小波系数,可以突出或抑制某些特征。增强后的图像可以 通过小波逆变换进行重建,提高图像的可视效果。
感谢您的观看
THANKS
实现方式
通过将输入信号与一组小波基函 数进行内积运算,得到小波变换 系数,这些系数反映了信号在不 同频率和位置的特性。
特点
一维小波变换具有多尺度分析、 局部化分析和灵活性高等特点, 能够有效地处理非平稳信号,如 语音、图像等。
二维小波变换
定义
二维小波变换是一种处理图像的方法,通过将图像分解成不同频率和方向的小波分量, 以便更好地提取图像的局部特征。
实现方式
02
通过将小波变换系数进行逆变换运算,得到近似信号或图像的
原始数据。
特点
03
小波变换的逆变换具有重构性好、计算复杂度低等特点,能够
有效地恢复信号或图像的原始信息。
03
小波变换在图像处理中的 应用
图像压缩
利用小波变换对图像进行压缩,减少 存储空间和传输带宽的需求。
通过小波变换将图像分解为不同频率 的子图像,保留主要特征,去除冗余 信息,从而实现图像压缩。压缩后的 图像可以通过解压缩还原为原始图像。
图像融合
利用小波变换将多个源图像融合成一个目 标图像,实现多源信息的综合利用。
通过小波变换将多个源图像分解为不同频 率的子图像,根据一定的规则和权重对各个 子图像进行融合,再通过逆变换得到融合后 的目标图像。图像融合在遥感、医学影像、 军事侦察等领域有广泛应用,能够提高多源
信息的综合利用效率和目标识别能力。
小波分析理论ppt课件
![小波分析理论ppt课件](https://img.taocdn.com/s3/m/8bdf5105842458fb770bf78a6529647d27283406.png)
S(w,t ) f (t)g*(w t ) eiwt d t R
(1.12)
25
其中,“*”表示复共轭;g(t)为有紧支集的函数;f(t)为被 分析的信号。在这个变换中,ejwt起着频限的作用,g(t)起 着时限的作用。随着时间t的变化,g(t)所确定的“时间窗” 在t轴上移动,使f(t)“逐渐”进行分析。因此g(t)往往被称为
(1.4)
为序列{X(k)}的离散傅里叶逆变换(IDFT)。 在式(1.4)中,n相当于对时间域的离散化,k相当于频
率域的离散化,且它们都是以N点为周期的。离散傅里叶 变换序列{X(k)}是以2p为周期的,且具有共轭对称性。
9
若f(t)是实轴上以2p为周期的函数,即f(t)∈L2(0,2p) ,则f(t)可以表示成傅里叶级数的形式,即
(1.1)
F(w)的傅里叶逆变换定义为
f (t) 1 eiwt F (w)dw 2 π -
(1.2)
6
为了计算傅里叶变换,需要用数值积分,即取f(t)在R 上的离散点上的值来计算这个积分。在实际应用中,我们 希望在计算机上实现信号的频谱分析及其他方面的处理工 作,对信号的要求是:在时域和频域应是离散的,且都应 是有限长的。下面给出离散傅里叶变换(Discrete Fourier Transform,DFT)的定义。
。将母函数y(t)经伸缩和平移后,就可以得到一个小波序
列。
对于连续的情况,小波序列为
y a,b (t)
2
其中,短时傅里叶变换和小波变换也是因传统的傅里叶变 换不能够满足信号处理的要求而产生的。短时傅里叶变换 分析的基本思想是:假定非平稳信号在分析窗函数g(t)的 一个短时间间隔内是平稳(伪平稳)的,并移动分析窗函数,
《小波分析及应用》课件
![《小波分析及应用》课件](https://img.taocdn.com/s3/m/a287ca7f5627a5e9856a561252d380eb6394235d.png)
在本PPT课件中,我们将介绍小波分析及其广泛的应用。了解小波基础和小波 应用的重要概念。
小波分析及应用
1
第一部分:小波基础
了解小波变换的基本概念和时频表示方法,以及常用的基本小波函数。
2
第二部分:小波应用
探索小波在信号去噪、信号压缩和信号分析中的实际应用。
小波变换简介
信号压缩
1 压缩感知理论
基于信号的稀疏性,通过稀疏表示和重建算法实现信号的高效压缩。
2 小波稀疏表示
利用小波变换将信号转换为稀疏系数,实现信号的高效压缩和重建。
3 小波压缩算法
使用小波变换、阈值处理和反变换等技术实现信号的无损和有损压缩。
信号分析
1
小波能量谱分析
通过小波变换将信号分解为不同频带的能量谱,分析信号的频域特性。
2
小波分析在图像处理中的应用
利用小波变换处理图像,实现图像去噪、边缘检测等图像处理任务。
3
小波变换与神经网络结合应用
将小波变换与神经网络相结合,实现信号和图像的深度学习分析与处理。
Daubechies小波是一类紧支小波 函数,适用于信号分析和压缩。
Symlet小波
Symlet小波是对称小波函数系列, 适用于信号平滑和噪声去除。
小波分解算法
1
基于滤波器组的小波分解
通过一系列滤波器和下采样将信号分解为多个频带的近似和细节系数。
2
快速小波变换(FWT)
使用基于迭代的算法,快速计算信号的小波变换。
定义
小波是一种数学函数,用于描述信号在不同时间和频率上的变化。
时频表示
小波变换将信号分解为时域和频域信息,揭示了信号的局部特征。
《小波阈值图像去噪》课件
![《小波阈值图像去噪》课件](https://img.taocdn.com/s3/m/07f87a82d4bbfd0a79563c1ec5da50e2524dd1d1.png)
本PPT课件将深入介绍小波阈值图像去噪的原理、方法和应用。通过本课件, 你将了解到噪声对图像的影响,掌握常见的图像去噪方法,并学习小波变换 及其原理。欢迎加入这个有趣而充满挑战的领域!
什么是噪声?
噪声指的是图像中的非期望信号,常见的有高斯噪声、椒盐噪声等。噪声会降低图像质量,影响图像分 析和识别的准确性。
计算小波系数的方法
常见的计算小波系数的方法有级联算法、快速小波变换等。这些方法能够高效地计算小波系数,提高处 理速度。
去噪中的阈值选择问题
阈值的选择对去噪效果有重要影响。常用的阈值选择方法有固定阈值、自适 应阈值和统计阈值等,根据具体场景来选择合适的阈值方法。
经典的软、硬阈值算法
软阈值算法通过保留能量大于阈值的小波系数,将能量较小的小波系数置零;硬阈值算法则直接将能量 小于阈值的小波系数置零。
为了进一步提高去噪效果,可以结合其他图像处理技术,如边缘保留滤波器、 稀疏表示等,实现更精确的图像恢复。
基于小波能量和熵的去噪算法
基于小波能量的去噪算法通过设定能量阈值来去除能量较小的高频噪声;基 于小波熵的去噪算法通过最大化小波系数的熵,实现图像的复杂度和纹理保 留。
基于小波去噪的边缘保留滤波器算法
如均值滤波、中值滤波等。
非线性滤波器
如双边滤波、非局部均值滤波等。
小波阈值去噪
这种方法更适用于处理复杂、有噪声结构的图像。
小波变换及其原理
小波变换是一种基于频域的信号分析方法,通过将信号分解成不同频率的小 波基函数,实现信号的时频分析。
小波阈值去噪方法
小波阈值去噪是一种基于小波变换的图像去噪方法,它利用小波分解系数的 能量分布来判断和抑制噪声。
动态阈值去噪和多阈值去噪
小波分析及其在图像处理中的应用
![小波分析及其在图像处理中的应用](https://img.taocdn.com/s3/m/dc9c1239b42acfc789eb172ded630b1c59ee9bc4.png)
小波分析及其在图像处理中的应用小波分析是一种新兴的数学分析方法,它能够对非平稳信号进行分析。
与傅里叶分析相比,小波分析具有更好的局部性和多分辨率性,可以有效地处理噪声、边缘、纹理等图像特征。
因此,在图像处理中,小波分析被广泛应用。
一、小波分析原理小波分析是一种在时间和频率两个方面都具有局部性的信号分析方法。
它使用小波基函数对非平稳信号进行分解,然后把分解出来的不同频率部分表示为对应的小波系数。
通过对这些小波系数进行处理,可以还原出原始的信号。
小波基函数是一组具有局部性、正交且可变性的函数,其中比较常用的有哈尔小波、Daubechies小波、db小波等。
小波基函数在时间和频率上都是有限的,因此可以有效地处理非平稳信号。
二、小波分析在图像处理中的应用小波分析在图像处理中的应用广泛,以下为几个常见的应用:1.图像压缩小波分析可以对图像进行离散小波变换,得到图像的小波系数。
通过对这些系数进行阈值处理,可以实现图像压缩。
由于小波系数在频域上呈现出分布不均匀的特点,因此可以通过适当的阈值处理来实现图像的有损压缩。
2.图像去噪图像常常包含许多噪声,这些噪声会干扰到图像的质量。
小波分析可以对图像进行小波变换,得到图像的小波系数。
通过对这些系数进行滤波,可以去除噪声。
在滤波的过程中,可以通过设置不同的阈值来实现不同程度的去噪效果。
3.图像边缘检测小波变换可以将图像在不同频率、不同尺度上进行分解,因此可以很好地提取图像中的特征。
在边缘检测中,可以通过对图像进行小波变换,得到不同频率的小波系数,然后根据边缘提取的原理,选取合适的小波系数进行边缘检测。
4.图像增强小波分析可以把图像分解为不同尺度的频域信息,由于不同尺度的频域信息对应着图像中的不同特征,因此可以通过增强不同尺度的频域信息来实现图像增强的效果。
三、总结小波分析作为一种新兴的数学分析方法,在图像处理中有着广泛的应用。
通过对图像进行小波变换,可以得到不同频率的小波系数,使得图像的局部特征得到了更加精细的描述,并且可以用于图像压缩、去噪、边缘检测和图像增强等方面。
小波变换及应用(图像压缩)ppt课件
![小波变换及应用(图像压缩)ppt课件](https://img.taocdn.com/s3/m/5864497177232f60ddcca12b.png)
小波分析因为同时具有好的空间分辨率和好的 频率分辨率,特别适于分析非稳态信号。自然 图像正具有这种非稳态特性,可以看作是能量 空间集中(图像边沿和细节)和频率集中(图 像的平缓变化部分)信号的线性组合[8]。因此, 使用小波分析进行图像压缩可以取得很好的效 果。
基于小波的图像压缩思想来源
E m b e d d e d意 即 编 码 器 可 以 在 任 一 希 望 速 率 上 停 止 编 码 。 同 样 , 解 码 器 可 在 码 流 的 任 一 点 截 断 码 流 , 停 止 解 码 。 优 点 : 不 需 要 图 像 预 先 知 识 , 不 用 存 储 其 码 表 , 和 不 用 训 练 。
2级2-D DWT的上式计算,可由下框图实现:
N
列
N N N
N
4
4
NLeabharlann H(Z)22 2 2 2
a n ,n 2( 1 2)
1 d n 2( 1,n 2)
2 d2 (n 1,n 2)
列
H(Z)
行
2 2 2 2
N 2 N
G(Z )
a n ,n 1( 1 2)
H(Z)
G(Z )
2 2
H(Z)
G(Z )
和 好 的 频 时 在 频 率 的 作 用 。
( n , n ) ( n ) ( n ) 若2-D滤波器 (n 可分解为 ,则 1,n 2) 1 2 1 1 2 2 1, n 2)为一个近似 可分的2-D DWT,将分解近似图象ai (n 图象和3个细节图象,即:
ai 1 (n1 , n2 ) h(k1 )h(k2 )ai (2n1 k1 ,2n2 k2 )
2 i 1 k1 0 k 2 0 L 1 L 1
小波基本理论及应用PPT课件
![小波基本理论及应用PPT课件](https://img.taocdn.com/s3/m/8c6232e50129bd64783e0912a216147917117ea6.png)
小波变换的应用领域
信号处理
小波变换在信号处理领域应用广泛,可 以用于信号的降噪、压缩、识别和分类
等。
模式识别
小波变换可以用于模式识别中的特征 提取和分类器设计,如人脸识别、语
小波基本理论及应用ppt课 件
目录
• 小波理论概述 • 小波变换的数学基础 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换在其他领域的应用
01
小波理论概述
小波的定义与特性
小波的定义
小波是一种特殊的函数,其时间窗和频率窗都可以改变,且在时间域和频率域 都具有很好的局部化特性。
在信号处理中,通过调整小波变换的尺度和平移参数,可 以得到信号在不同时间和频率下的局部信息,从而更好地 理解信号的特征和性质。
03
小波变换的算法实现
一维小波变换算法
一维小波变换算法是实现小波变换的基本方法之一,它通过对一维信号进行多尺度分析,将信号分解 成不同频率和不同时间分辨率的成分。
一维小波变换算法可以分为连续小波变换和离散小波变换两种,其中离散小波变换在实际应用中更为广 泛。
量子纠缠的检测
小波变换可以用于检测量子纠缠,有 助于理解和应用量子纠缠的性质。
量子计算中的优化问题
小波变换可以用于优化量子计算中的 某些问题,提高量子计算的效率。
量子模拟中的近似方法
小波变换可以用于近似求解某些量子 模拟问题,提供一种有效的近似方法。
在金融领域的应用
金融数据分析
小波变换可以用于金融数据分析,如股票价 格、外汇汇率和商品价格等的分析。
小波分析入门PPT课件
![小波分析入门PPT课件](https://img.taocdn.com/s3/m/15c88f8009a1284ac850ad02de80d4d8d15a0137.png)
THANKS
感谢观看
应用
在音频处理、图像处理、信号处理等领域有广泛应用 。
复数小波变换
定义
复数小波变换是指小波基函数为复数的小波变换,其变换结果也 为复数。
特点
复数小波变换具有更强的灵活性和表达能力,能够更好地描述信 号的复杂性和细节。
应用
在雷达信号处理、通信信号处理、图像处理等领域有广泛应用。
04
CATALOGUE
小波变换的基本原理
小波变换的定义
小波变换是一种信号的时间-频率分析方法,通过将信号分解 成不同频率和时间的小波分量,实现对信号的时频分析和去 噪。
小波变换的原理
小波变换通过将信号与一组小波基函数进行内积运算,得到 信号在不同频率和时间上的投影,从而实现对信号的时频分 析和去噪。
小波变换的应用领域
小波变换的基本理论
一维小波变换
定义
实例
一维小波变换是一种将一维函数分解 为不同频率和时间尺度的过程,通过 小波基函数的平移和伸缩实现。
一维小波变换在图像压缩中广泛应用 ,如JPEG2000标准就采用了小波变 换技术。
作用
一维小波变换用于信号处理、图像处 理等领域,能够有效地提取信号中的 特征信息,实现信号的时频分析和去 噪等。
数值计算中的应用
数值求解偏微分方程
小波分析可以用于求解偏微分方程的数值解,通过小波变 换可以将方程转化为离散形式,便于计算。
数值积分与微分
小波分析可以用于数值积分与微分的计算,通过小波基函 数展开被积函数或被微分函数,可以快速计算积分或微分 值。
数值优化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2
2
f1 (t ) ,
f2 (t)
R
f1(t) f2 (t)dt
R
f1
(t
)[
1
2
R
fˆ2 ()eitd]dt
1
2
R
fˆ2 ()[
R
f1(t)eit dt]d
1
2
R
fˆ2 () fˆ1()d
1
2
fˆ1(), fb f ) f tw(t b)eitdt
t
窗函数
窗函数
1
x1
x2
t
窗函数
2
0
2ˆ
t0
窗函数
• Heisenberg测不准原理
窗函数
• 窗函数的举例(Gaussian 函数 )
短时付氏变换(STFT)
短时付氏变换(STFT)
短时付氏变换定义
Parseval等式
证:
f1(t),
f2 (t)
1
2
fˆ1(),
fˆ2 (
f (t) 2 1 fˆ () 2
小波分析及其在图 像处理中的应用
第1章 时频分析
• Fourier分析
Fourier分析
Fourier分析
j
b
V
ai
V ai bj
V ai bj
f (x) cne jnx n
Fourier分析
Fourier分析
时频局部化分析
• 相空间
➢相空间是指以“时间”为横坐标,“频域”为 纵坐标的欧氏空间,而相空间中的有限区域被 称为窗口,沿时间轴的一段区间被称为时间窗, 沿频率轴的一段区间被称为频率窗。
➢ 信号高频部分对应时域中的快变成分,如陡峭的前沿、后沿、尖脉冲 等,分析时对时域分辨率要求高,对频域分辨率要求低。
➢ 信号低频成分对应时域中的慢变成分,分析对时域分辨率要求低,对 频域分辨率要求高。
➢ 因此,短时Fourier变换不能敏感地反映信号的突变,不能很好地刻 画信息。
t
1
2
R
(G~b
R
f
)eit w(t
b)ddb
短时付氏变换(STFT)
窗函数的特点:
➢ 随着 的变换,窗口在相空间不断平移; ➢ 短时Fourier变换就是通过这些移动的窗口来提取被变换函数
的信息; ➢ 函数族 确定的时频窗口只是随 发生平移,窗口的大小和形状
固定不变.
实际中信号分析的要求:
R
f
t w(t
b)
1
2
(G~b
R
f
) eit d
f
t (w(t
b))2
1
2
~ (Gb
R
f
)eit w(t
b)d
R
f
t (w(t
b))2db
1
2
~ (Gb
R
f
)eit w(t
b)ddb
f
t
w(t)
2 2
1
2
R
(G~b
R
f
)eit w(t
b)ddb
w(t) 2 1 2
f