高中数学必修五模块综合测试人教A版

合集下载

【步步高】2021学年高中数学 模块综合检测(A)新人教A版选修1-1(1)

【步步高】2021学年高中数学 模块综合检测(A)新人教A版选修1-1(1)

模块综合检测(A)(时刻:120分钟 总分值:150分)一、选择题(本大题共12小题,每题5分,共60分)1.命题“假设A ⊆B ,那么A =B ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是( ) A .0 B .2 C .3 D .42.已知命题p :假设x 2+y 2=0 (x ,y ∈R ),那么x ,y 全为0;命题q :假设a >b ,那么1a <1b.给出以下四个复合命题:①p 且q ;②p 或q ;③綈p ;④綈q .其中真命题的个数是( )A .1B .2C .3D .43.以x 24-y 212=-1的核心为极点,极点为核心的椭圆方程为( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 4.已知a >0,那么x 0知足关于x 的方程ax =b 的充要条件是( ) A .∃x ∈R ,12ax 2-bx ≥12ax 20-bx 0 B .∃x ∈R ,12ax 2-bx ≤12ax 20-bx 0 C .∀x ∈R ,12ax 2-bx ≥12ax 20-bx 0D .∀x ∈R ,12ax 2-bx ≤12ax 20-bx 0 5.已知椭圆x 2a 2+y 2b 2=1 (a >b >0),M 为椭圆上一动点,F 1为椭圆的左核心,那么线段MF 1的中点P 的轨迹是( )A .椭圆B .圆C .双曲线的一支D .线段6.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,那么α的取值范围是( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)7.已知a >0,函数f (x )=x 3-ax 在区间[1,+∞)上是单调递增函数,那么a 的最大值是( ) A .1 B .3 C .9 D .不存在8.过抛物线y 2=4x 的核心作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,若是x 1+x 2=6,那么|AB |等于( ) A .10 B .8 C .6 D .49.中心在原点,核心在x 轴上的双曲线的一条渐近线通过点(4,-2),那么它的离心率为( ) A.6 B.5 C.62 D.5210.假设当x =2时,函数f (x )=ax 3-bx +4有极值-43,那么函数的解析式为( )A .f (x )=3x 3-4x +4B .f (x )=13x 2+4C .f (x )=3x 3+4x +4D .f (x )=13x 3-4x +411.设O 为坐标原点,F 1、F 2是x 2a 2-y 2b 2=1(a >0,b >0)的核心,假设在双曲线上存在点P ,知足∠F 1PF 2=60°,|OP |=7a ,那么该双曲线的渐近线方程为( ) A .x ±3y =0 B.3x ±y =0 C .x ±2y =0 D.2x ±y =012.假设函数f (x )=x 2+a x(a ∈R ),那么以下结论正确的选项是( )A .∀a ∈R ,f (x )在(0,+∞)上是增函数B .∀a ∈R ,f (x )在(0,+∞)上是减函数C .∃a ∈R ,f (x )是偶函数D .∃a ∈R ,f (x )是奇函数题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4小题,每题5分,共20分)13.已知p (x ):x 2+2x -m >0,若是p (1)是假命题,p (2)是真命题,那么实数m 的取值范 围是 ________________________________________________________________. 14.已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程是y =3x ,它的一个核心与抛物线y 2=16x 的核心相同,那么双曲线的方程为________________________________________________________________________. 15.假设AB 是过椭圆x 2a2+y 2b 2=1 (a >b >0)中心的一条弦,M 是椭圆上任意一点,且AM 、BM 与坐标轴不平行,k AM 、k BM 别离表示直线AM 、BM 的斜率,那么k AM ·k BM =________.16.已知f (x )=x 3+3x 2+a (a 为常数)在[-3,3]上有最小值3,那么在[-3,3]上f (x )的最大值是________. 三、解答题(本大题共6小题,共70分)17.(10分)已知p :2x 2-9x +a <0,q :⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0,且綈q 是綈p 的必要条件,求实数a 的取值范围.18.(12分)设P 为椭圆x 2100+y 264=1上一点,F 1、F 2是其核心,假设∠F 1PF 2=π3,求△F 1PF 2的面积.19.(12分)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,知足|MN →||MP →|+MN →·NP →=0,求动点P (x ,y )的轨迹方程.20.(12分)已知函数f (x )=ax 2-43ax +b ,f (1)=2,f ′(1)=1.(1)求f (x )的解析式;(2)求f (x )在(1,2)处的切线方程.21.(12分)已知直线y =ax +1与双曲线3x 2-y 2=1交于A ,B 两点. (1)求a 的取值范围;(2)假设以AB 为直径的圆过坐标原点,求实数a 的值.22.(12分)已知函数f (x )=ln x -ax +1-ax-1(a ∈R ).(1)当a =-1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当a ≤12时,讨论f (x )的单调性.模块综合检测(A) 答案1.B [原命题为假,故其逆否命题为假;其逆命题为真,故其否命题为真;故共有2个真命题.] 2.B [命题p 为真,命题q 为假,故p ∨q 真,綈q 真.]3.D [双曲线x 24-y 212=-1,即y 212-x 24=1的核心为(0,±4),极点为(0,±23).因此对椭圆y 2a2+x 2b 2=1而言,a 2=16,c 2=12.∴b 2=4,因此方程为y 216+x 24=1.]4.C [由于a >0,令函数y =12ax 2-bx =12a (x -b a )2-b 22a ,现在函数对应的图象开口向上,当x =ba 时,取得最小值-b 22a ,而x 0知足关于x 的方程ax =b ,那么x 0=b a ,y min =12ax 20-bx 0=-b 22a ,那么关于任意的x ∈R , 都有y =12ax 2-bx ≥-b 22a =12ax 20-bx 0.]5.A [∵P 为MF 1中点,O 为F 1F 2的中点, ∴|OP |=12|MF 2|,又|MF 1|+|MF 2|=2a ,∴|PF 1|+|PO |=12|MF 1|+12|MF 2|=a .∴P 的轨迹是以F 1,O 为核心的椭圆.] 6.D [∵y =4e x +1,∴y ′=-4e xe x +12.令e x +1=t ,那么e x =t -1且t >1, ∴y ′=-4t +4t 2=4t 2-4t.再令1t=m ,那么0<m <1,∴y ′=4m 2-4m =4(m -12)2-1,m ∈(0,1). 容易求得-1≤y ′<0,∴-1≤tan α<0,得34π≤α<π.]7.B [因为函数f (x )在区间[1,+∞)上单调递增,因此有f ′(x )≥0,x ∈[1,+∞),即3x 2-a ≥0在区间[1,+∞)上恒成立,因此a ≤3x 2.因为x ∈[1,+∞)时,3x 2≥3,从而a ≤3.] 8.B [由抛物线的概念, 得|AB |=x 1+x 2+p =6+2=8.]9.D [由题意知,过点(4,-2)的渐近线方程为y =-b a x ,∴-2=-ba×4,∴a =2b ,设b =k ,则a =2k ,c =5k ,∴e =c a =5k2k =52.]10.D [因为f (x )=ax 3-bx +4, 因此f ′(x )=3ax 2-b .由题意得⎩⎪⎨⎪⎧f ′2=12a -b =0f 2=8a -2b +4=-43,解得⎩⎪⎨⎪⎧a =13b =4,故所求函数解析式为f (x )=13x 3-4x +4.]11.D [如下图,∵O 是F 1F 2的中点,PF 1→+PF 2→=2PO →, ∴(PF 1→+PF 2→)2=(2PO →)2.即 |PF 1→|2+|PF 2→|2+2|PF 1→|·|PF 2→|·cos 60°=4|PO →|2. 又∵|PO |=7a ,∴ |PF 1→|2+|PF 2→|2+|PF 1→||PF 2→|=28a 2. ① 又由双曲线概念得|PF 1|-|PF 2|=2a , ∴(|PF 1|-|PF 2|)2=4a 2.即|PF 1|2+|PF 2|2-2|PF 1||PF 2|=4a 2. ② 由①-②得|PF 1|·|PF 2|=8a 2, ∴|PF 1|2+|PF 2|2=20a 2. 在△F 1PF 2中,由余弦定理得 cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|,∴8a 2=20a 2-4c 2.即c 2=3a 2. 又∵c 2=a 2+b 2,∴b 2=2a 2. 即b 2a 2=2,b a=2.∴双曲线的渐近线方程为2x ±y =0.]12.C [f ′(x )=2x -ax2,故只有当a ≤0时,f (x )在(0,+∞)上才是增函数,因此A 、B 不对,当a =0时,f (x )=x 2是偶函数,因此C 对,D 不对.]13.[3,8)解析 因为p (1)是假命题,因此1+2-m ≤0, 即m ≥3.又因为p (2)是真命题,因此4+4-m >0, 即m <8.故实数m 的取值范围是3≤m <8. 14.x 24-y 212=1解析 由双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程为y =3x 得b a=3,∴b =3a .∵抛物线y 2=16x 的核心为F (4,0),∴c =4. 又∵c 2=a 2+b 2,∴16=a 2+(3a )2,∴a 2=4,b 2=12.∴所求双曲线的方程为x 24-y 212=1.15.-b 2a 2解析 设A (x 1,y 1),M (x 0,y 0), 则B (-x 1,-y 1), 则k AM ·k BM =y 0-y 1x 0-x 1·y 0+y 1x 0+x 1=y 20-y 21x 20-x 21=⎝ ⎛⎭⎪⎫-b 2a 2x 20+b 2-⎝ ⎛⎭⎪⎫-b 2a 2x 21+b 2x 20-x 21=-b 2a 2.16.57解析 f ′(x )=3x 2+6x ,令f ′(x )=0, 得x =0或x =-2. 又∵f (0)=a ,f (-3)=a ,f (-2)=a +4,f (3)=54+a ,∴f (x )的最小值为a ,最大值为54+a . 由题可知a =3,∴f (x )的最大值为57.17.解 由⎩⎪⎨⎪⎧ x 2-4x +3<0x 2-6x +8<0,得⎩⎪⎨⎪⎧1<x <32<x <4,即2<x <3.∴q :2<x <3.设A ={x |2x 2-9x +a <0},B ={x |2<x <3}, ∵綈p ⇒綈q ,∴q ⇒p ,∴B ⊆A . 即2<x <3知足不等式2x 2-9x +a <0. 设f (x )=2x 2-9x +a ,要使2<x <3知足不等式2x 2-9x +a <0,需⎩⎪⎨⎪⎧ f 2≤0f 3≤0,即⎩⎪⎨⎪⎧8-18+a ≤018-27+a ≤0.∴a ≤9.故所求实数a 的取值范围是{a |a ≤9}. 18.解 如下图,设|PF 1|=m ,|PF 2|=n , 则S △F 1PF 2=12mn sin π3=34mn .由椭圆的概念知 |PF 1|+|PF 2|=20,即m +n =20. ① 又由余弦定理,得|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos π3=|F 1F 2|2,即m 2+n 2-mn =122. ② 由①2-②,得mn =2563.∴S △F 1PF 2=6433.19.解 设 P =(x ,y ),那么 MN →=(4,0),MP →=(x +2,y ),NP →=(x -2,y ).∴ |MN →|=4,|MP →|=x +22+y 2,MN →·NP →=4(x -2),代入 |MN →|·|MP →|+MN →·NP →=0, 得4x +22+y 2+4(x -2)=0, 即x +22+y 2=2-x ,化简整理,得y 2=-8x .故动点P (x ,y )的轨迹方程为y 2=-8x . 20.解 (1)f ′(x )=2ax -43a ,由已知得⎩⎪⎨⎪⎧f ′1=2a -43a =1f 1=a -43a +b =2,解得⎩⎪⎨⎪⎧a =32b =52,∴f (x )=32x 2-2x +52.(2)函数f (x )在(1,2)处的切线方程为y -2=x -1,即x -y +1=0.21.解 (1)由⎩⎪⎨⎪⎧y =ax +1,3x 2-y 2=1消去y ,得(3-a 2)x 2-2ax -2=0.依题意得⎩⎪⎨⎪⎧3-a 2≠0,Δ>0,即-6<a <6且a ≠± 3.(2)设A (x 1,y 1),B (x 2,y 2),那么⎩⎪⎨⎪⎧x 1+x 2=2a3-a 2,x 1x 2=-23-a 2.∵以AB 为直径的圆过原点,∴OA ⊥OB , ∴x 1x 2+y 1y 2=0,即x 1x 2+(ax 1+1)(ax 2+1)=0, 即(a 2+1)x 1x 2+a (x 1+x 2)+1=0. ∴(a 2+1)·-23-a 2+a ·2a3-a 2+1=0, ∴a =±1,知足(1)所求的取值范围. 故a =±1.22.解 (1)当a =-1时,f (x )=ln x +x +2x-1,x ∈(0,+∞),因此f ′(x )=x 2+x -2x 2,x ∈(0,+∞),因此f ′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1. 又f (2)=ln 2+2,因此曲线y =f (x )在点(2,f (2))处的切线方程为y -(ln 2+2)=x -2,即x -y +ln 2=0.(2)因为f (x )=ln x -ax +1-ax-1,因此f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x2,x ∈(0,+∞). 令g (x )=ax 2-x +1-a ,x ∈(0,+∞). ①当a =0时,g (x )=-x +1,x ∈(0,+∞), 因此当x ∈(0,1)时,g (x )>0, 现在f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,g (x )<0, 现在f ′(x )>0,函数f (x )单调递增. ②当a ≠0时,由f ′(x )=0,即ax 2-x +1-a =0,解得x 1=1,x 2=1a-1. a .当a =12时,x 1=x 2,g (x )≥0恒成立, 现在f ′(x )≤0,函数f (x )在(0,+∞)上单调递减.b .当0<a <12时,1a-1>1, x ∈(0,1)时,g (x )>0,现在f ′(x )<0,函数f (x )单调递减;x ∈⎝ ⎛⎭⎪⎫1,1a -1时,g (x )<0, 现在f ′(x )>0,函数f (x )单调递增;x ∈⎝ ⎛⎭⎪⎫1a -1,+∞时,g (x )>0, 现在f ′(x )<0,函数f (x )单调递减.c .当a <0时,由于1a-1<0. x ∈(0,1)时,g (x )>0,现在f ′(x )<0,函数f (x )单调递减;x ∈(1,+∞)时,g (x )<0,现在f ′(x )>0,函数f (x )单调递增.综上所述:当a ≤0时,函数f (x )在(0,1)上单调递减, 在(1,+∞)上单调递增;当a =12时,函数f (x )在(0,+∞)上单调递减; 当0<a <12时,函数f (x )在(0,1)上单调递减,在⎝ ⎛⎭⎪⎫1,1a -1上单调递增,在⎝ ⎛⎭⎪⎫1a -1,+∞上单调递减.。

人教A版高中数学必修五高一单元测试题.docx

人教A版高中数学必修五高一单元测试题.docx

高一数学单元测试题一.选择题:(每小题5分,共40分)1.在ABC ∆中,已知角45,60,A B a ===o o 则b= ( )A. BC .2 D.2.如果128,,a a a L 为各项都大于零的等差数列,公差0d ≠,则 ( )A .1845a a a a >B .1845a a a a < C.1845++a a a a < D .1845=a a a a3.已知数列{}n a 满足1112,1n n a a a +==-+,则2001a 等于 ( ) A.32- B. 13- C. 1D. 2 4.在△ABC 中,边,,a b c 的对角分别为A 、B 、C ,且B C A C A 222sin sin sin sin sin =⋅-+,则角B ( )A. 30oB. 60oC. 120oD. 45o 5.在△ABC中,45a b A ===o 此三角形的解的情况是 ( )A.无解B.一解C.二解D.不定6.n S 是公差不为0的等差数列{}n a 的前n 项和,5233()S a a =+,则53a a 的值为 ( ) A.16 B.13 C.53 D.56 7.已知公差不为0的正项等差数列{}n a 中,n S 为其前n 项和,若1lg a ,2lg a ,4lg a 也成等差数列,510a =,则5S 等于 ( )A . 30B . 40C . 50D . 60 8.若数列{}n a 是等差数列,首项10a >,200320040a a +>,200320040a a ⋅<,则使前n 项和0n S >成立的最大自然数n 是 ( )A .4 005B .4 006C .4 007D .4 008二.填空题:(每小题5分,共20分9.在等差数列{}n a 中,35710133()2()24a a a a a ++++=,则此数列前13项之和为 .10. 已数列的前n 项和为n n S n 322-=,则=n a _________.11.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B在北偏东60︒,行驶4h 后,船到达C处,看到这个灯塔在北偏东15︒,这时船与灯塔的距离为 km .12.已知数列))}1({log *2N n a n ∈-为等差数列,且133,9a a ==,则=n a _________.三.解答题:(本题共40分)13.(本题10分)设{}n a 为等差数列,n S 是其前n 项和,已知7157,75S S ==,n T 为数列n S n ⎧⎫⎨⎬⎩⎭的前n 项和,求n T .14.(本题10分)已知数列满足11a =,132n n a a +=-(1)求证:{}1n a -为等差数列; (2)求数列{}n a 的前n 项和.15.(本题10分)在△ABC 中,,,A B C 所对的边分别为,,a b c ,6A π=,(12c b +=.(1)求角C ;(2)若1CB CA ⋅=u u u r u u u r c .16.(本题10分)在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=. (1)若sin sin()2sin 2C B A A +-=,求ABC △的面积.(2)求三角形的周长的取值范围。

2021学年高中数学人教A版必修5课件:模块综合测试

2021学年高中数学人教A版必修5课件:模块综合测试

使用效率最高.
三、解答题(本大题共 6 小题,共 70 分.解答应写出必要的 文字说明、证明过程或演算步骤.)
17.(10 分)已知△ABC 的内角 A,B,C 所对的边分别为 a,b, c,且 a=2,cosB=35.
(1)若 b=4,求 sinA 的值; (2)若△ABC 的面积 S△ABC=4,求 b,c 的值.
所表示的平面区域的面积
为 4,则 k 的值为( A )
A.1
B.-3
C.1 或-3
D.0
解析:由题意知若 k≤0,则不等式组所表示的平面区域的面 积小于等于12×2×2=2,故 k>0.
所以不等式组所表示的平面区域如图中阴影部分所示,
由于阴影部分的面积为12×BC×OC=4⇒BC=4, 则 B(2,4),即直线 kx-y+2=0 过点(2,4),代入可求得 k=1.
19.(12 分)已知不等式 log2(ax2-3x+6)>2 的解集为{x|x<1 或 x>b}.
(1)求 a,b 的值. (2)解不等式(ax+b)(c-x)>0(c 为常数).
解:(1)依题意可知 ax2-3x+6>4 即 ax2-3x+2>0 的解集为 x<1 或 x>b,于是知 1,b 是方程 ax2-3x+2=0 的两根,且 a>0,
7.公差不为零的等差数列{an}的前 n 项和为 Sn.若 a4 是 a3 与
a7 的等比中项,S8=32,则 S10 等于( C )
A.18
B.24
C.60
D.90
解析:设数列{an}的公差为 d, ∵a4 是 a3 与 a7 的等比中项, ∴(a1+3d)2=(a1+2d)(a1+6d), 即 2a1d=-3d2,∵d≠0,∴a1=-32d. 又 S8=32,∴8a1+8×2 7d=32, 将 a1=-32d 代入解得 d=2,a1=-3, ∴S10=-30+10× 2 9×2=60.

人教A版高中数学必修五必修五 综合测试题 (第三套).docx

人教A版高中数学必修五必修五 综合测试题 (第三套).docx

必修五 综合测试题 (第三套)一.选择题:1. 已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A . 15B . 30 C. 31 D. 642. 若全集U=R,集合M ={}24x x >,S =301x xx ⎧-⎫>⎨⎬+⎩⎭,则()U M S I ð=( ) A.{2}x x <- B. {23}x x x <-≥或 C. {3}x x ≥ D. {23}x x -≤<3. 若1+2+22+ (2)>128,n ÎN*,则n 的最小值为( ) A. 6 B. 7 C. 8 D. 9 4. 在ABC V 中,60B =o ,2b ac =,则ABC V 一定是( )A 、等腰三角形B 、等边三角形C 、锐角三角形D 、钝角三角形 5. 若不等式022>++bx ax的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 值是( )A.-10B.-14C. 10D. 14 6. 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是( )A .14B .16C .18D .207.已知12=+y x ,则y x 42+的最小值为( ) A .8 B .6 C .22 D .238. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖的块数是( ) A.42n +B.42n -C.24n +D.33n +9. 已知变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,目标函数是y x z +=2,则有( )A .3,12min max ==z zB .,12max=z z 无最小值C .z z ,3min=无最大值 D .z 既无最大值,也无最小值10.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则实数a 的取值范围是( ) A .11a -<< B .02a << C .1322a -<< D .3122a -<< 二填空题: 11. 在数列{}n a 中,11a =,且对于任意正整数n ,都有1n n a a n +=+,则100a =______第1个 第2个 第3个12.在⊿ABC 中,5:4:21sin :sin :sin=C B A ,则角A =13.某校要建造一个容积为83m ,深为2m 的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为 元。

2019-2020学年高中数学人教A版必修5同步作业与测评:综合质量测评(一) Word版含解析

2019-2020学年高中数学人教A版必修5同步作业与测评:综合质量测评(一) Word版含解析

姓名,年级:时间:综合质量测评(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式错误!〈错误!的解集是( )A.(-∞,2)B.(2,+∞)C.(0,2)D.(-∞,0)∪(2,+∞)答案D解析错误!<错误!⇔错误!-错误!<0⇔错误!<0⇔错误!〉0⇔x〈0或x〉2.2.在△ABC中,若sin2A+sin2B=2sin2C,则角C为( )A.钝角B.直角C.锐角D.60°答案C解析由sin2A+sin2B=2sin2C,得a2+b2=2c2,即a2+b2-c2=c2〉0,cos C>0.故角C为锐角.3.在△ABC中,a=20,b=10,B=29°,则此三角形解的情况是()A.无解B.有一解C.有两解D.有无数个解答案C解析a sin B=a sin29°〈a sin30°=20×错误!=10=b<a,所以有两解.故选C.4.设变量x,y满足约束条件错误!则目标函数z=2x+5y的最小值为()A.-4 B.6 C.10 D.17答案B解析 由题意知,约束条件错误!所表示的三角形区域的顶点分别为A(0,2),B(3,0),C (1,3).将A ,B ,C 三点的坐标分别代入z =2x +5y ,得z =10,6,17,故z 的最小值为6.5.已知△ABC 的三边长构成公差为2的等差数列,且最大角的正弦值为错误!,则这个三角形的周长为( )A .15B .18C .21D .24答案 A解析 根据题意,设△ABC 的三边长为a,a +2,a +4,且a +4所对的角为最大角α,∵sin α=错误!,∴cos α=错误!或-错误!,当cos α=错误!时,α=60°,不符合题意,舍去; 当cos α=-12时,α=120°,由余弦定理得:cos α=cos 120°=错误!=-错误!,解得a =3或a =-2(不符合题意,舍去),则这个三角形周长为a +a +2+a +4=3a +6=9+6=15.故选A .6.在△ABC 中,三个内角A ,B ,C 所对的边分别是a ,b ,c ,若内角A ,B,C 依次成等差数列,且不等式-x 2+6x -8>0的解集为{x |a <x <c},则S △ABC =( )A . 3B .2错误!C .3错误!D .4错误!答案 B解析 不等式-x 2+6x -8>0的解集为{x |2<x <4},由此可知a =2,c =4.又由A ,B ,C 依次成等差数列,知2B =A +C ,而A +B +C =π,所以B =错误!.于是S △ABC =错误!ac sin B =错误!×2×4×错误!=2错误!.故选B .7.在等差数列{a n }中,若a 3+a 5+a 7+a 9+a 11=200,则4a 5-2a 3的值为( )A .80B .60C .40D .20答案 A解析 ∵a 3+a 5+a 7+a 9+a 11=200,∴5a7=200,a7=40.又4a5=2(a3+a7)=2a3+2a7,∴4a5-2a3=2a7=80.故选A.8.已知S n和T n分别为数列{a n}与数列{b n}的前n项和,且a1=e4,S n=e S n+1-e5,a n=e b n,则当T n取得最大值时n的值为()A.4 B.5 C.4或5 D.5或6答案C解析由S n=e S n+1-e5,得S n-1=e S n-e5(n≥2),两式相减,得a n=e a n+1(n≥2),易知a2=e3,错误!=错误!=错误!,所以{a n}是首项为e4,公比为错误!的等比数列,所以a n=e5-n.因为a n=e b n,所以b n=5-n.由错误!即错误!解得4≤n≤5,所以当n=4或n=5时,T n取得最大值.故选C.9.已知△ABC的周长为2,角A,B,C的对边分别为a,b,c,且满足错误!=3c,则c等于()A.错误!B.1 C.1或错误!D.错误!答案D解析由正弦定理得:错误!=错误!=3c,即3c2=b+a,又∵a+b+c=2,∴3c2+c=2.解得c=错误!.故选D.10.某种生产设备购买时费用为10万元,每年的设备管理费用为9千元,这种生产设备的维护费用:第一年2千元,第二年4千元,第三年6千元,依每年2千元的增量逐年递增,则这套生产设备最多使用________年报废最划算( )A.3 B.5 C.7 D.10答案D解析设使用x年,年平均费用为y万元,则y=错误!=错误!=1+x10+错误!≥3,当且仅当x=10时等号成立.故选D.11.设{a n}是正数等差数列,{b n}是正数等比数列,且a1=b1,a2n+1=b2n+1,则()A.a n+1〉b n+1B.a n+1≥b n+1C.a n+1<b n+1D.a n+1=b n+1答案B解析a n+1=错误!≥错误!=错误!=b n+1.12.如图,一轮船从A点沿北偏东70°的方向行驶10海里至海岛B,又从B沿北偏东10°的方向行驶10海里至海岛C,若此轮船从A点直接沿直线行驶至海岛C,则此船沿________方向行驶________海里至海岛C()A.北偏东60°;10错误!B.北偏东40°;10错误!C.北偏东30°;10错误!D.北偏东20°;10错误!答案B解析由已知得在△ABC中,∠ABC=180°-70°+10°=120°,AB=BC=10,故∠BAC=30°.所以从A到C的航向为北偏东70°-30°=40°.由余弦定理得AC2=AB2+BC2-2AB·BC cos∠ABC=102+102-2×10×10×-错误!=300,所以AC=10 3.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=3,b=4,c=6,则bc cos A+ca cos B+ab cos C=________.答案61 2解析由余弦定理得bc cos A+ca cos B+ab cos C=错误!+错误!+错误!=错误!=错误!.14.已知数列{a n}是各项为正数,首项为1的等差数列,S n为其前n项和,若数列{错误!}也为等差数列,则错误!的最小值是________.答案错误!解析设数列{a n}的公差为d(d>0),即有a n=1+(n-1)d,S n=n+错误!n(n-1)d,错误!=错误!,由于数列{错误!}也为等差数列,可得d=2,即有a n=2n-1,S n=n2,则错误!=错误!=错误!错误!≥错误!·2错误!=2错误!,当且仅当n=2错误!取得等号,由于n为正整数,即有n=2或3取得最小值.当n=2时,取得3;n=3时,取得错误!,故最小值为错误!.15.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元,另一种是每袋24千克,价格为120元,在满足需要的条件下,最少要花费________元.答案500解析设购买35 kg的x袋,24 kg的y袋,则35x+24y≥106,x∈N*,y∈N*,共花费z=140x+120y.作出由35x+24y≥106,x∈N*,y∈N*对应的平面区域,再作出目标函数z=140x+120y对应的一组平行线,观察在点(1,3)处z最小,为500元.16.如果a〉b,给出下列不等式:①1a〈错误!;②a3>b3;③错误!〉错误!;④2ac2〉2bc2;⑤错误!>1;⑥a2+b2+1>ab+a+b.其中一定成立的不等式的序号是________.答案②⑥解析①若a>0,b〈0,则错误!>错误!,故①不成立;②∵y=x3在x∈R上单调递增,且a〉b.∴a3〉b3,故②成立;③取a=0,b=-1,知③不成立;④当c=0时,ac2=bc2=0,2ac2=2bc2,故④不成立;⑤取a=1,b=-1,知⑤不成立;⑥∵a2+b2+1-(ab+a+b)=错误![(a-b)2+(a-1)2+(b-1)2]〉0,∴a2+b2+1〉ab+a+b,故⑥成立.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在△ABC中,角A,B,C的对边分别为a,b,c,已知b cos2错误!+a cos2错误!=错误!c.(1)求证:a,c,b成等差数列;(2)若C=π3,△ABC的面积为2错误!,求c.解(1)证明:由正弦定理得:sin B cos2A2+sin A cos2错误!=错误!sin C,即sin B·错误!+sin A·错误!=错误!sin C,∴sin B+sin A+sin B cos A+cos B sin A=3sin C,∴sin B+sin A+sin(A+B)=3sin C,∴sin B+sin A+sin C=3sin C,∴sin B+sin A=2sin C,∴a+b=2c,∴a,c,b成等差数列.(2)S=错误!ab sin C=错误!ab=2错误!,∴ab=8,c2=a2+b2-2ab cos C=a2+b2-ab=(a+b)2-3ab=4c2-24.∴c2=8,得c=2错误!.18.(本小题满分12分)已知{a n}是公差不为零的等差数列,{b n}是各项都是正数的等比数列.(1)若a1=1,且a1,a3,a9成等比数列,求数列{a n}的通项公式;(2)若b1=1,且b2,错误!b3,2b1成等差数列,求数列{b n}的通项公式.解(1)由题意可设公差为d,则d≠0.由a1=1,a1,a3,a9成等比数列,得错误!=错误!,解得d=1或d=0(舍去).故数列{a n}的通项公式为a n=1+(n-1)×1=n.(2)由题意可设公比为q,则q>0.由b1=1,且b2,错误!b3,2b1成等差数列,得b3=b2+2b1,∴q2=2+q,解得q=2或q=-1(舍去).故数列{b n}的通项公式为b n=1×2n-1=2n-1.19.(本小题满分12分)已知函数f(x)=ax2-bx+1.(1)是否存在实数a,b使不等式f(x)〉0的解集是{x|3<x<4},若存在,求实数a,b的值,若不存在,请说明理由;(2)若a为整数,b=a+2,且函数f(x)在(-2,-1)上恰有一个零点,求a的值.解(1)∵不等式ax2-bx+1>0的解集是{x|3<x〈4},∴方程ax2-bx+1=0的两根是3和4,∴错误!解得a=错误!,b=错误!.而当a=错误!>0时,不等式ax2-bx+1〉0的解集不可能是{x|3<x〈4},故不存在实数a,b使不等式f(x)〉0的解集是{x|3<x<4}.(2)∵b=a+2,∴f(x)=ax2-(a+2)x+1.∵Δ=(a+2)2-4a=a2+4>0,∴函数f(x)=ax2-(a+2)x+1必有两个零点.又函数f(x)在(-2,-1)上恰有一个零点,∴f(-2)·f(-1)〈0,∴(6a+5)(2a+3)<0,解得-错误!<a〈-错误!.∵a∈Z,∴a=-1.20.(本小题满分12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2c-a =2b cos A.(1)求角B的大小;(2)若b=2错误!,求a+c的最大值.解(1)∵2c-a=2b cos A,∴根据正弦定理,得2sin C-sin A=2sin B cos A,∵A+B=π-C,可得sin C=sin(A+B)=sin B cos A+cos B sin A,∴代入上式,得2sin B cos A=2sin B cos A+2cos B sin A-sin A,化简得(2cos B-1)sin A=0,∵A是三角形的内角,可得sin A>0,∴2cos B-1=0,解得cos B=错误!,∵B∈(0,π),∴B=错误!.(2)由余弦定理b2=a2+c2-2ac cos B,得12=a2+c2-ac.∴(a+c)2-3ac=12,∴12≥(a+c)2-3错误!2,即(a+c)2≤48(当且仅当a=c=2错误!时等号成立),∵a+c>0,∴a+c≤43,∴a+c的最大值为43.21.(本小题满分12分)因发生交通事故,一辆货车上的某种液体泄漏到一池塘中,为了治污,根据环保部门的建议,现决定在池塘中投放一种与污染液体发生化学反应的药剂,已知每投放a(1≤a≤4,a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a·f(x),其中f(x)=错误!若多次投放,则某一时刻水中的药剂浓度为各次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(1)若一次投放4个单位的药剂,则有效治污时间可达几天?(2)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值.(精确到0.1,参考数据:错误!取1.4)解(1)因为a=4,所以y=错误!①当0≤x≤4时,由648-x-4≥4,解得x≥0,所以此时0≤x≤4.②当4<x≤10时,由20-2x≥4,解得x≤8,所以此时4<x≤8.综合得0≤x≤8,即若一次投放4个单位的药剂,则有效治污时间可达8天.(2)当6≤x≤10时,y=2·错误!+a错误!-1=10-x+错误!-a=(14-x)+错误!-a-4,由题意知,y≥4对于x∈[6,10]恒成立.因为14-x∈[4,8],而1≤a≤4,所以4错误!∈[4,8],故当且仅当14-x=4错误!时,y有最小值为8错误!-a-4,令8错误!-a-4≥4,解得24-162≤a≤4,所以a的最小值为24-16错误!.又24-16错误!≈1.6,所以a的最小值约为1.6.22.(本小题满分12分)已知f(x)=错误!sin x·cos x+cos2x,锐角△ABC的三个角A,B,C所对的边分别为a,b,c.(1)求函数f(x)的最小正周期和单调递增区间;(2)若f(C)=1,求m=a2+b2+c2ab的取值范围.解(1)f(x)=错误!sin x·cos x+cos2x=错误!sin2x+错误!cos2x+错误!=sin错误!+错误!.∴函数f(x)的最小正周期T=错误!=π.由2kπ-错误!≤2x+错误!≤2kπ+错误!,解得kπ-错误!≤x≤kπ+错误!.∴函数f(x)的单调递增区间错误!,k∈Z,最小正周期为π.(2)由(1)可得,f(C)=sin错误!+错误!=1,∴sin错误!=错误!,2019-2020学年高中数学人教A版必修5同步作业与测评:综合质量测评(一) Word版含解析∵△ABC是锐角三角形,∴错误!〈2C+错误!<错误!,∴2C+错误!=错误!,即C=错误!.由余弦定理c2=a2+b2-2ab cos C,可得c2=a2+b2-ab,∴m=错误!=错误!-1=2错误!-1.①∵△ABC为锐角三角形,∴错误!∴错误!<A<错误!.由正弦正理得错误!=错误!=错误!=错误!+错误!∈错误!.②由②式设t=错误!,则t∈错误!,那么①式化简为m=2错误!-1.由y=t+错误!≥2,t=1时取等号.∴m≥3.根据对勾函数的性质可得错误!是单调递减,(1,2)是单调递增,∴m<4,故得m=错误!∈[3,4).。

人教A版高中数学必修五-高二年级统练试卷.docx

人教A版高中数学必修五-高二年级统练试卷.docx

& 鑫达捷致力于精品文档 精心制作仅供参考 &鑫达捷绝密 ★ 启用前2009-2010学年度高二年级统练试卷试卷说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试用时120分钟。

一、选择题(每题5分共60分)1.下列有关命题的说法正确的是( ) A .“21x =”是“1=x ”的充分不必要条件。

B .“1x =-”是“2560x x --=”的必要不充分条件。

C .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈, 均有210x x ++<”。

D .命题“若x y =,则sin sin x y =”的逆否命题为真命题。

2.在ABC ∆中,8,60,75a B C ︒︒===,则b =( ) A、、 C、、3233.椭圆2212516x y +=上一点P 到它一个焦点的距离是7,则P 到另一个焦点的距离是 A .17 B .15 C .3 D .1 ( ) 4.在等差数列{}n a 中,有35710133()2()48a a a a a ++++=,则此数列的前13项和为 A.24 B.39 C.52 D.104 5.在ABC ∆中,80,100,45a b A ︒===,则此三角形解的情况是( ) A 、一解 B 、两解 C 、一解或两解 D 、无解 6.在ABC ∆中,若()()3a b c b c a bc +++-=,则A =( )A 、30︒B 、45︒C 、60︒D 、120︒7.已知等比数列{}n a 的公比13q =-,则13572468a a a a a a a a ++++++等于( )A 、13-B 、3-C 、13D 、38.已知不等式250ax x b -+>的解集为{|32}x x -<<,则不等式250bx x a -+>的解集为( )A 、11{|}32x x -<<B 、11{|}32x x x <->或 C 、{|32}x x -<< D 、{|32}x x x <->或 9.已知椭圆2219x y +=的两个焦点分别为12,F F ,点P 在椭圆上且120PF PF ⋅=u u u r u u u u r ,则Δ12PF F 的面积是( )(A )12(B(C(D )110.已知12,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若2ABF ∆是等腰直角三角形,则这个椭圆的离心率是( )A.2C1 D11.定义一种运算“*”:对于自然数n 满足以下运算性质: (i )1*1=1,(ii )(n +1)*1=n *1+1,则n *1等于( ) A .n B .n +1 C .n -1 D .2n12.对于任意实数x ,不等式04)2(2)2(2<----x a x a 恒成立,则实数a 的范围为( )A (]2.∞-B )2.(-∞C )2.2(-D (]2.2-二、填空题(每题5分共20分)13.过椭圆x y F 22136251+=的焦点作直线交椭圆于A 、B 二点,F 2是此椭圆的另一焦点,则∆ABF 2的周长为 ;14. x 、y 满足约束条件:225040y x y x y ≥⎧⎪+-≥⎨⎪+-≤⎩,则y x z +=21的最小值是 .15.已知12=+y x ,则y x 42+的最小值是______________16.已知椭圆221369x y +=的弦被点(4,2)平分,则此弦所在的直线方程 .。

高中数学人教A版必修五 模块综合测评1 Word版含答案

高中数学人教A版必修五 模块综合测评1 Word版含答案

模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a<1,b>1,那么下列命题中正确的是()A.1a>1b B.ba>1C.a2<b2D.ab<a+b 【解析】利用特值法,令a=-2,b=2.则1a<1b,A错;ba<0,B错;a2=b2,C错.【答案】 D2.一个等差数列的第5项a5=10,且a1+a2+a3=3,则有()A.a1=-2,d=3 B.a1=2,d=-3C.a1=-3,d=2 D.a1=3,d=-2【解析】∵a1+a2+a3=3且2a2=a1+a3,∴a2=1.又∵a5=a2+3d=1+3d=10,d=3.∴a1=a2-d=1-3=-2.【答案】 A3.已知△ABC的三个内角之比为A∶B∶C=3∶2∶1,那么对应的三边之比a∶b∶c等于()A.3∶2∶1 B.3∶2∶1C.3∶2∶1 D.2∶3∶1【解析】∵A∶B∶C=3∶2∶1,A+B+C=180°,∴A=90°,B=60°,C=30°.∴a∶b∶c=sin 90°∶sin 60°∶sin 30°=1∶32∶12=2∶3∶1.【答案】 D4.在坐标平面上,不等式组⎩⎨⎧y ≥x -1,y ≤-3|x |+1所表示的平面区域的面积为( )A. 2B.32C.322 D .2【解析】 由题意得,图中阴影部分面积即为所求.B ,C 两点横坐标分别为-1,12.∴S △ABC =12×2×⎪⎪⎪⎪⎪⎪12-(-1)=32. 【答案】 B5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若A =π3,b =1,△ABC 的面积为32,则a 的值为( )A .1B .2 C.32 D. 3【解析】 根据S =12bc sin A =32,可得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =3,故a = 3.【答案】 D6.(2016·龙岩高二检测)等差数列的第二,三,六项顺次成等比数列,且该等差数列不是常数数列,则这个等比数列的公比为( )A .3B .4C .5D .6【解析】 设等差数列的首项为a 1,公差为d , 则a 2=a 1+d ,a 3=a 1+2d ,a 6=a 1+5d ,又∵a 2·a 6=a 23,∴(a 1+2d )2=(a 1+d )(a 1+5d ),∴d =-2a 1,∴q =a 3a 2=3.【答案】 A7.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( )A .0B .-2C .-52 D .-3【解析】 x 2+ax +1≥0在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立⇔ax ≥-x 2-1⇔a ≥⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫x +1x max ,∵x +1x ≥52, ∴-⎝ ⎛⎭⎪⎫x +1x ≤-52,∴a ≥-52.【答案】 C8.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0【解析】 ∵a 3,a 4,a 8成等比数列,∴a 24=a 3a 8,∴(a 1+3d )2=(a 1+2d )(a 1+7d ),展开整理,得-3a 1d =5d 2,即a 1d =-53d 2.∵d ≠0,∴a 1d <0.∵S n =na 1+n (n -1)2d ,∴S 4=4a 1+6d ,dS 4=4a 1d +6d 2=-23d 2<0. 【答案】 B9.在数列{a n }中,a 1=2,a n +1-2a n =0(n ∈N *),b n 是a n 和a n +1的等差中项,设S n 为数列{b n }的前n 项和,则S 6=( )A .189B .186C .180D .192【解析】 由a n +1=2a n ,知{a n }为等比数列, ∴a n =2n . ∴2b n =2n +2n +1, 即b n =3·2n -1,∴S 6=3·1+3·2+…+3·25=189. 【答案】 A10.已知a ,b ,c ∈R ,a +b +c =0,abc >0,T =1a +1b +1c ,则( ) A .T >0 B .T <0 C .T =0 D .T ≥0【解析】 法一 取特殊值,a =2,b =c =-1, 则T =-32<0,排除A ,C ,D ,可知选B.法二 由a +b +c =0,abc >0,知三数中一正两负, 不妨设a >0,b <0,c <0,则T =1a +1b +1c =ab +bc +ca abc =ab +c (b +a )abc=ab -c 2abc .∵ab <0,-c 2<0,abc >0,故T <0,应选B. 【答案】 B11.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =2A ,a =1,b =3,则c =( )A .2 3B .2 C. 2 D .1【解析】 由正弦定理得:a sin A =bsin B , ∵B =2A ,a =1,b =3, ∴1sin A =32sin A cos A .∵A 为三角形的内角,∴sin A ≠0. ∴cos A =32.又0<A <π,∴A =π6,∴B =2A =π3.∴C =π-A -B =π2,∴△ABC 为直角三角形. 由勾股定理得c =12+(3)2=2. 【答案】 B12.一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A .13项B .12项C .11项D .10项【解析】 设该数列的前三项分别为a 1,a 1q ,a 1q 2,后三项分别为a 1q n -3,a 1q n-2,a 1q n -1.所以前三项之积a 31q 3=2,后三项之积a 31q3n -6=4,两式相乘,得a 61q 3(n -1)=8,即a 21qn -1=2.又a 1·a 1q ·a 1q 2·…·a 1qn -1=64,所以a n 1·q n (n -1)2=64,即(a 21q n -1)n=642,即2n =642,所以n =12.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.在△ABC 中,BC =2,B =π3,当△ABC 的面积等于32时,sin C =________. 【导学号:05920086】【解析】 由三角形的面积公式,得S =12AB ·BC sin π3=32,易求得AB =1,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cos π3,得AC =3,再由三角形的面积公式,得S =12AC ·BC sin C =32,即可得出sin C =12.【答案】 1214.(2015·湖北高考)若变量x ,y 满足约束条件⎩⎨⎧x +y ≤4,x -y ≤2,3x -y ≥0,则3x +y 的最大值是________.【解析】 画出可行域,如图阴影部分所示,设z =3x +y ,则y =-3x +z ,平移直线y =-3x 知当直线y =-3x +z 过点A 时,z 取得最大值.由⎩⎨⎧x +y =4,x -y =2,可得A (3,1).故z max =3×3+1=10.【答案】 1015.国家为了加强对烟酒生产的宏观管理,实行征收附加税政策.现知某种酒每瓶70元,不加附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税k 元(叫做税率k %),则每年的产销量将减少10k 万瓶.要使每年在此项经营中所收取附加税金不少于112万元,则k 的取值范围为________.【解析】 设产销量为每年x 万瓶,则销售收入每年70x 万元,从中征收的税金为70x ·k %万元,其中x =100-10k .由题意,得70(100-10k )k %≥112,整理得k 2-10k +16≤0,解得2≤k ≤8.【答案】 [2,8] 16.观察下列等式: 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, …照此规律,第n 个等式可为12-22+32-…+(-1)n -1n 2=________. 【解析】 分n 为奇数、偶数两种情况. 第n 个等式为12-22+32-…+(-1)n -1n 2.当n 为偶数时,分组求和:(12-22)+(32-42)+…+[(n -1)2-n 2]=-(3+7+11+15+…+2n -1)=-n2×(3+2n -1)2=-n (n +1)2.当n 为奇数时,第n 个等式为(12-22)+(32-42)+…+[(n -2)2-(n -1)2]+n 2=-n (n -1)2+n 2=n (n +1)2.综上,第n 个等式为 12-22+32-…+(-1)n -1n 2 =(-1)n+1n (n +1)2.【答案】 (-1)n +1n (n +1)2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若m =(a 2+c 2-b 2,-3a ),n =(tan B ,c ),且m ⊥n ,求∠B 的值.【解】 由m ⊥n 得(a 2+c 2-b 2)·tan B -3a ·c =0,即(a 2+c 2-b 2)tan B =3ac ,得a 2+c 2-b 2=3ac tan B , 所以cos B =a 2+c 2-b 22ac =32tan B , 即tan B cos B =32,即sin B =32, 所以∠B =π3或∠B =2π3.18.(本小题满分12分)在等差数列{a n }中,S 9=-36,S 13=-104,在等比数列{b n }中,b 5=a 5,b 7=a 7, 求b 6. 【导学号:05920087】【解】 ∵S 9=-36=9a 5,∴a 5=-4, ∵S 13=-104=13a 7,∴a 7=-8. ∴b 26=b 5·b 7=a 5 ·a 7=32. ∴b 6=±4 2.19.(本小题满分12分)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 【导学号:05920088】【解】 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0.(1)当a =0时,原不等式化为x +1≤0⇒x ≤-1;(2)当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1; (3)当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.①当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a ;②当2a =-1,即a =-2时,原不等式等价于x =-1; ③当2a <-1,即-2<a <0时,原不等式等价于2a ≤x ≤-1. 综上所述:当a <-2时,原不等式的解集为⎣⎢⎡⎦⎥⎤-1,2a ;当a =-2时,原不等式的解集为{-1};当-2<a <0时,原不等式的解集为⎣⎢⎡⎦⎥⎤2a ,-1;当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞.20.(本小题满分12分)设△ABC 的内角A ,B ,C 所对应的边分别为a ,b ,c ,已知a =1,b =2,cos C =14.(1)求△ABC 的周长; (2)求cos A 的值.【解】 (1)∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4.∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5. (2)∵cos C =14,∴sin C =1-cos 2C =1-⎝ ⎛⎭⎪⎫142=154. ∴sin A =a sin C c =1542=158. ∵a <c ,∴A <C ,故A 为锐角, ∴cos A =1-sin 2A =1-⎝⎛⎭⎪⎫1582=78. 21.(本小题满分12分)(2016·宝鸡模拟)已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2).(1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.【解】 (1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2), ∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n ,则a n +1=-2a n +5×3n , ∴a n +1-3n +1=-2(a n -3n ). 又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列. ∴a n -3n =2×(-2)n -1, 即a n =2×(-2)n -1+3n (n ∈N *).22.(本小题满分12分)某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:(2)每吨B 产品的利润在什么范围变化时,原最优解不变?当超出这个范围时,最优解有何变化?【解】 (1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎨⎧2x +y ≤14,x +3y ≤18,x ≥0,y ≥0,作出可行域如图:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品245 t ,B产品225 t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m ,又k AB =-2,k CB =-13,要使最优解仍为B 点, 则-2≤-5m ≤-13,解得52≤m ≤15,则B 产品的利润在52万元/t 与15万元/t 之间时,原最优解仍为生产A 产品245 t ,B 产品225 t ,若B 产品的利润超过15万元/t ,则最优解为C (0,6),即只生产B 产品6 t ,若B 产品利润低于52万元/t ,则最优解为A (7,0),即只生产A 产品7 t.。

高中数学 模块综合测试(一)(含解析)新人教A版高二选修1-1数学试题

高中数学 模块综合测试(一)(含解析)新人教A版高二选修1-1数学试题

选修1-1模块综合测试(一)(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若命题p :∀x∈R,2x 2+1>0,则¬p 是( ) A .∀x ∈R,2x 2+1≤0 B .∃x ∈R,2x 2+1>0 C .∃x ∈R,2x 2+1<0 D .∃x ∈R,2x 2+1≤0 解析:¬p :∃x ∈R,2x 2+1≤0. 答案:D2.不等式x -1x>0成立的一个充分不必要条件是( )A. -1<x <0或x >1B. x <-1或0<x <1C. x >-1D. x >1解析:本题主要考查充要条件的概念、简单的不等式的解法.画出直线y =x 与双曲线y =1x 的图象,两图象的交点为(1,1)、(-1,-1),依图知x -1x>0⇔-1<x <0或x >1 (*),显然x >1⇒(*);但(*)x >1,故选D.答案:D3.[2014·某某模拟]命题“若a >b ,则a +1>b ”的逆否命题是( ) A .若a +1≤b ,则a >b B .若a +1<b ,则a >b C .若a +1≤b ,则a ≤b D .若a +1<b ,则a <b解析:“若a >b ,则a +1>b ”的逆否命题为“若a +1≤b ,则a ≤b ”,故选C. 答案:C4.[2014·某某省日照一中模考]下列命题中,为真命题的是( ) A. ∀x ∈R ,x 2-x -1>0B. ∀α,β∈R ,sin(α+β)<sin α+sin βC. 函数y =2sin(x +π5)的图象的一条对称轴是x =45πD. 若“∃x 0∈R ,x 20-ax 0+1≤0”为假命题,则a 的取值X 围为(-2,2)解析:本题主要考查命题的判定及其相关知识的理解.因为x 2-x -1=(x -12)2-54,所以A 错误;当α=β=0时,有sin(α+β)=sin α+sin β,所以B 错误;当x =4π5时,y =0,故C 错误;因为“∃x 0∈R ,x 20-ax 0+1≤0”为假命题,所以“∀x ∈R ,x 2-ax +1>0”为真命题,即Δ<0,即a 2-4<0,解得-2<a <2,即a 的取值X 围为(-2,2).故选D.答案:D5.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .12解析:设椭圆的另一焦点为F ,由椭圆的定义知 |BA |+|BF |=23,且|CF |+|AC |=23, 所以△ABC 的周长=|BA |+|BC |+|AC | =|BA |+|BF |+|CF |+|AC |=4 3. 答案:C6.过点(2,-2)与双曲线x 2-2y 2=2有公共渐近线的双曲线方程为( ) A.x 22-y 24=1 B.x 24-y 22=1 C.y 24-x 22=1 D. y 22-x 24=1解析:与双曲线x 22-y 2=1有公共渐近线方程的双曲线方程可设为x 22-y 2=λ,由过点(2,-2),可解得λ=-2. 所以所求的双曲线方程为y 22-x 24=1.答案:D7.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的右支上到原点和右焦点距离相等的点有两个,则双曲线离心率的取值X 围是( )A .e > 2B .1<e < 2C .e >2D .1<e <2解析:由题意,以原点及右焦点为端点的线段的垂直平分线必与右支交于两个点,故c2>a ,∴c a>2.答案:C8.把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱的底面周长与高的比为( )A. 1∶πB. 2∶πC. 1∶2D. 2∶1解析:设圆柱高为x ,底面半径为r ,则r =6-x 2π,圆柱体积V =π(6-x 2π)2x =14π(x 3-12x 2+36x )(0<x <6),V ′=34π(x -2)(x -6). 当x =2时,V 最大.此时底面周长为6-x =4, (6-x )∶x =4∶2=2∶1. 答案:D9.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( )A. 3 B .2 C. 5D. 6解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax ,因为y =x 2+1与渐近线相切,故x2+1±bax =0只有一个实根,∴b 2a 2-4=0,∴c 2-a 2a 2=4, ∴c 2a2=5,∴e = 5. 答案:C10.[2014·某某五校联考]设函数f (x )=e x(sin x -cos x )(0≤x ≤2012π),则函数f (x )的各极小值之和为( )A. -e 2π1-e2012π1-e 2πB. -e 2π1-e1006π1-eπC. -e 2π1-e1006π1-e2πD. -e 2π1-e2010π1-e2π解析:f ′(x )=(e x)′(sin x -cos x )+e x(sin x -cos x )′=2e xsin x ,若f ′(x )<0,则x ∈(π+2k π,2π+2k π),k ∈Z ;若f ′(x )>0,则x ∈(2π+2k π,3π+2k π),k ∈Z .所以当x =2π+2k π,k ∈Z 时,f (x )取得极小值,其极小值为f (2π+2k π)=e2k π+2π[sin(2π+2k π)-cos(2π+2k π)]=e2k π+2π×(0-1)=-e2k π+2π,k ∈Z .因为0≤x ≤2012π,又在两个端点的函数值不是极小值,所以k ∈[0,1004],所以函数f (x )的各极小值构成以-e 2π为首项,以e 2π为公比的等比数列,共有1005项,故函数f (x )的各极小值之和为S 1005=-e 2π-e 4π-…-e2010π=e2π1-e2010π1-e2π.答案:D11.已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|AK |=2|AF |,则△AFK 的面积为( )A .4B .8C .16D .32解析:∵抛物线C :y 2=8x 的焦点为F (2,0),准线为x =-2,∴K (-2,0). 设A (x 0,y 0),如下图所示,过点A 向准线作垂线,垂足为B ,则B (-2,y 0).∵|AK |=2|AF |,又|AF |=|AB |=x 0-(-2)=x 0+2, ∴由|BK |2=|AK |2-|AB |2,得y 20=(x 0+2)2, 即8x 0=(x 0+2)2,解得x 0=2,y 0=±4.∴△AFK 的面积为12|KF |·|y 0|=12×4×4=8,故选B.答案:B12.[2013·某某高考]如图,F 1、F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C. 32D.62解析:本题考查椭圆、双曲线的定义和简单的几何性质.设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0) ①,点A 的坐标为(x 0,y 0).由题意a 2+b 2=3=c 2②,|OA |=|OF 1|=3,∴⎩⎪⎨⎪⎧x 20+y 20=3x 20+4y 20=4,解得x 20=83,y 20=13,又点A 在双曲线C 2上,代入①得,83b 2-13a 2=a 2b2③,联立②③解得a =2,所以e =c a =62,故选D. 答案:D二、填空题(本大题共4小题,每小题5分,共20分)13.函数y =13ax 3-12ax 2(a ≠0)在区间(0,1)上是增函数,则实数a 的取值X 围是________.解析:y ′=ax 2-ax =ax (x -1),∵x ∈(0,1),y ′>0,∴a <0. 答案:a <014.已知命题p :∃x ∈R ,x 2+2ax +a ≤0,若命题p 是假命题,则实数a 的取值X 围是__________.解析:p 是假命题,则¬p 为真命题,¬p 为:∀x ∈R ,x 2+2ax +a >0,所以有Δ=4a 2-4a <0,即0<a <1.答案:(0,1)15.[2014·某某质检]已知a ∈R ,若实数x ,y 满足y =-x 2+3ln x ,则(a -x )2+(a +2-y )2的最小值是________.解析:(a -x )2+(a +2-y )2≥x -a +a +2-y22=x +x 2-3ln x +222.设g (x )=x+x 2-3ln x (x >0),则g ′(x )=1+2x -3x=2x +3x -1x,易知g (x )在(0,1)上为减函数,在(1,+∞)上为增函数,故g (x )≥g (1)=2,(a -x )2+(a +2-y )2≥2+222=8.答案:816.[2013·某某省某某一中月考]F 1、F 2分别是双曲线x 216-y 29=1的左、右焦点,P 为双曲线右支上一点,I 是△PF 1F 2的内心,且S △IPF 2=S △IPF 1-λS △IF 1F 2,则λ=________.解析:本题主要考查双曲线定义及标准方程的应用.设△PF 1F 2内切圆的半径为r ,则S △IPF 2=S △IPF 1-λS △IF 1F 2⇒12×|PF 2|×r =12×|PF 1|×r -12λ×|F 1F 2|×r ⇒|PF 1|-|PF 2|=λ|F 1F 2|,根据双曲线的标准方程知2a =λ·2c ,∴λ=a c =45.答案:45三、解答题(本大题共6小题,共70分)17.(10分)已知全集U =R ,非空集合A ={x |x -2x -3<0},B ={x |(x -a )(x -a 2-2)<0}.命题p :x ∈A ,命题q :x ∈B .(1)当a =12时,p 是q 的什么条件?(2)若q 是p 的必要条件,某某数a 的取值X 围. 解:(1)A ={x |x -2x -3<0}={x |2<x <3}, 当a =12时,B ={x |12<x <94},故p 是q 的既不充分也不必要条件.(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B , 由a 2+2>a ,故B ={a |a <x <a 2+2},∴⎩⎪⎨⎪⎧a ≤2a 2+2≥3,解得a ≤-1或1≤a ≤2.18.(12分)已知c >0,设p :y =c x为减函数;q :函数f (x )=x +1x >1c 在x ∈[12,2]上恒成立,若“p ∨q ”为真命题,“p ∧q ”为假命题,求c 的取值X 围.解:由y =c x为减函数,得0<c <1.当x ∈[12,2]时,由不等式x +1x ≥2(x =1时取等号)知:f (x )=x +1x 在[12,2]上的最小值为2,若q 真,则1c <2,即c >12.若p 真q 假,则0<c <1且c ≤12,所以0<c ≤12.若p 假q 真,则c ≥1且c >12,所以c ≥1.综上:c ∈(0,12]∪[1,+∞).19.(12分)[2014·海淀期末]已知函数f (x )=(x +a )e x,其中a 为常数. (1)若函数f (x )是区间[-3,+∞)上的增函数,某某数a 的取值X 围; (2)若f (x )≥e 2在x ∈[0,2]时恒成立,某某数a 的取值X 围. 解:(1)f ′(x )=(x +a +1)e x,x ∈R .因为函数f (x )是区间[-3,+∞)上的增函数,所以f ′(x )≥0,即x +a +1≥0在[-3,+∞)上恒成立. 因为y =x +a +1是增函数,所以满足题意只需-3+a +1≥0,即a ≥2. (2)令f ′(x )=0,解得x =-a -1,f (x ),f ′(x )的变化情况如下:f (0)≥e 2,解得a ≥e 2,所以此时a ≥e 2;②当0<-a -1<2,即-3<a <-1时,f (x )在[0,2]上的最小值为f (-a -1), 若满足题意只需f (-a -1)≥e 2,求解可得此不等式无解, 所以a 不存在;③当-a -1≥2,即a ≤-3时,f (x )在[0,2]上的最小值为f (2),若满足题意只需f (2)≥e 2,解得a ≥-1,所以此时a 不存在.综上讨论,所某某数a 的取值X 围为[e 2,+∞).20.(12分)已知椭圆x 29+y 25=1,F 1、F 2分别是椭圆的左、右焦点,点A (1,1)为椭圆内一点,点P 为椭圆上一点.求|PA |+|PF 1|的最大值.解:由椭圆的定义知|PF 1|+|PF 2|=2a =6, 所以|PF 1|=6-|PF 2|,这样|PA |+|PF 1|=6+|PA |-|PF 2|.求|PA |+|PF 1|的最大值问题转化为6+|PA |-|PF 2|的最大值问题, 即求|PA |-|PF 2|的最大值问题, 如图在△PAF 2中,两边之差小于第三边,即|PA |-|PF 2|<|AF 2|,连接AF 2并延长交椭圆于P ′点时, 此时|P ′A |-|P ′F 2|=|AF 2|达到最大值, 易求|AF 2|=2,这样|PA |-|PF 2|的最大值为2, 故|PA |+|PF 1|的最大值为6+ 2.21.(12分)已知椭圆M 的对称轴为坐标轴,且抛物线x 2=-42y 的焦点是椭圆M 的一个焦点,又点A (1,2)在椭圆M 上.(1)求椭圆M 的方程;(2)已知直线l 的方向向量为(1,2),若直线l 与椭圆M 交于B 、C 两点,求△ABC 面积的最大值.解:(1)由已知抛物线的焦点为(0,-2),故设椭圆方程为y 2a 2+x 2a 2-2=1.将点A (1,2)代入方程得2a 2+1a 2-2=1,整理得a 4-5a 2+4=0,解得a 2=4或a 2=1(舍去). 故所求椭圆方程为y 24+x 22=1.(2)设直线BC 的方程为y =2x +m , 设B (x 1,y 1),C (x 2,y 2),代入椭圆方程并化简得4x 2+22mx +m 2-4=0, 由Δ=8m 2-16(m 2-4)=8(8-m 2)>0, 可得m 2<8.由x 1+x 2=-22m ,x 1x 2=m 2-44,故|BC |=3|x 1-x 2|=3×16-2m22.又点A 到BC 的距离为d =|m |3,故S △ABC =12|BC |·d =m216-2m24≤142×2m 2+16-2m22= 2.因此△ABC 面积的最大值为 2.22.(12分)[2014·某某质检]已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值;(3)当a =1时,若直线l :y =kx -1与曲线y =f (x )没有公共点,求k 的最大值. 解:(1)由f (x )=x -1+a e x ,得f ′(x )=1-aex ,又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,所以f ′(1)=0,即1-ae =0,解之得a =e.(2)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0,得e x=a ,x =ln a .当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0, 所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增, 故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.(3)当a =1时,f (x )=x -1+1e x .令g (x )=f (x )-(kx -1)=(1-k )x +1ex ,则直线l :y =kx -1与曲线y =f (x )没有公共点,等价于方程g (x )=0在R 上没有实数解.当k >1时,g (0)=1>0,g (1k -1)=-1+1e 1k -1<0, 又函数g (x )的图象在定义域R 上连续,由零点存在定理,可知g (x )=0至少有一实数解,与“方程g (x )=0在R 上没有实数解”矛盾,故k ≤1.当k =1时,g (x )=1e x >0,知方程g (x )=0在R 上没有实数解.所以k 的最大值为1.。

最新高中数学人教A版必修五 模块综合测评1 含答案

最新高中数学人教A版必修五 模块综合测评1 含答案

最新人教版数学精品教学资料模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a<1,b>1,那么下列命题中正确的是()A.1a>1b B.ba>1C.a2<b2D.ab<a+b 【解析】利用特值法,令a=-2,b=2.则1a<1b,A错;ba<0,B错;a2=b2,C错.【答案】 D2.一个等差数列的第5项a5=10,且a1+a2+a3=3,则有()A.a1=-2,d=3 B.a1=2,d=-3C.a1=-3,d=2 D.a1=3,d=-2【解析】∵a1+a2+a3=3且2a2=a1+a3,∴a2=1.又∵a5=a2+3d=1+3d=10,d=3.∴a1=a2-d=1-3=-2.【答案】 A3.已知△ABC的三个内角之比为A∶B∶C=3∶2∶1,那么对应的三边之比a∶b∶c等于()A.3∶2∶1 B.3∶2∶1C.3∶2∶1 D.2∶3∶1【解析】∵A∶B∶C=3∶2∶1,A+B+C=180°,∴A=90°,B=60°,C=30°.∴a∶b∶c=sin 90°∶sin 60°∶sin 30°=1∶32∶12=2∶3∶1.4.在坐标平面上,不等式组⎩⎨⎧y ≥x -1,y ≤-3|x |+1所表示的平面区域的面积为( )A. 2B.32C.322 D .2【解析】 由题意得,图中阴影部分面积即为所求.B ,C 两点横坐标分别为-1,12.∴S △ABC =12×2×⎪⎪⎪⎪⎪⎪12-(-1)=32.【答案】 B5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若A =π3,b =1,△ABC 的面积为32,则a 的值为( )A .1B .2 C.32 D. 3【解析】 根据S =12bc sin A =32,可得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =3,故a = 3.【答案】 D6.(2016·龙岩高二检测)等差数列的第二,三,六项顺次成等比数列,且该等差数列不是常数数列,则这个等比数列的公比为( )A .3B .4C .5D .6【解析】 设等差数列的首项为a 1,公差为d , 则a 2=a 1+d ,a 3=a 1+2d ,a 6=a 1+5d ,又∵a 2·a 6=a 23,∴(a 1+2d )2=(a 1+d )(a 1+5d ),∴d =-2a 1,∴q =a 3a 2=3.7.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( ) A .0 B .-2 C .-52 D .-3【解析】 x 2+ax +1≥0在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立⇔ax ≥-x 2-1⇔a ≥⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫x +1x max,∵x +1x ≥52,∴-⎝ ⎛⎭⎪⎫x +1x ≤-52,∴a ≥-52.【答案】 C8.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0【解析】 ∵a 3,a 4,a 8成等比数列,∴a 24=a 3a 8,∴(a 1+3d )2=(a 1+2d )(a 1+7d ),展开整理,得-3a 1d =5d 2,即a 1d =-53d 2.∵d ≠0,∴a 1d <0.∵S n =na 1+n (n -1)2d ,∴S 4=4a 1+6d ,dS 4=4a 1d +6d 2=-23d 2<0.【答案】 B9.在数列{a n }中,a 1=2,a n +1-2a n =0(n ∈N *),b n 是a n 和a n +1的等差中项,设S n 为数列{b n }的前n 项和,则S 6=( )A .189B .186C .180D .192【解析】 由a n +1=2a n ,知{a n }为等比数列, ∴a n =2n . ∴2b n =2n +2n +1, 即b n =3·2n -1,∴S 6=3·1+3·2+…+3·25=189. 【答案】 A10.已知a ,b ,c ∈R ,a +b +c =0,abc >0,T =1a +1b +1c ,则( )A.T>0 B.T<0 C.T=0 D.T≥0【解析】法一取特殊值,a=2,b=c=-1,则T=-32<0,排除A,C,D,可知选B.法二由a+b+c=0,abc>0,知三数中一正两负,不妨设a>0,b<0,c<0,则T=1a+1b+1c=ab+bc+caabc=ab+c(b+a)abc=ab-c2abc.∵ab<0,-c2<0,abc>0,故T<0,应选B.【答案】 B11.△ABC的内角A,B,C所对的边分别为a,b,c,若B=2A,a=1,b=3,则c=()A.2 3 B.2 C. 2 D.1【解析】由正弦定理得:asin A=bsin B,∵B=2A,a=1,b=3,∴1sin A=32sin A cos A.∵A为三角形的内角,∴sin A≠0.∴cos A=3 2.又0<A<π,∴A=π6,∴B=2A=π3.∴C=π-A-B=π2,∴△ABC为直角三角形.由勾股定理得c=12+(3)2=2.【答案】 B12.一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有()A.13项B.12项C.11项D.10项【解析】设该数列的前三项分别为a1,a1q,a1q2,后三项分别为a1q n-3,a1q n -2,a1q n-1.所以前三项之积a31q3=2,后三项之积a31q3n-6=4,两式相乘,得a61q3(n-1)=8,即a 21qn -1=2.又a 1·a 1q ·a 1q 2·…·a 1qn -1=64,所以a n 1·q n (n -1)2=64,即(a 21q n -1)n=642,即2n =642,所以n =12.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.在△ABC 中,BC =2,B =π3,当△ABC 的面积等于32时,sin C =________. 【导学号:05920086】【解析】 由三角形的面积公式,得S =12AB ·BC sin π3=32,易求得AB =1,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cos π3,得AC =3,再由三角形的面积公式,得S =12AC ·BC sin C =32,即可得出sin C =12.【答案】 1214.(2015·湖北高考)若变量x ,y 满足约束条件⎩⎨⎧x +y ≤4,x -y ≤2,3x -y ≥0,则3x +y 的最大值是________.【解析】 画出可行域,如图阴影部分所示,设z =3x +y ,则y =-3x +z ,平移直线y =-3x 知当直线y =-3x +z 过点A 时,z 取得最大值.由⎩⎨⎧x +y =4,x -y =2,可得A (3,1).故z max =3×3+1=10.【答案】 1015.国家为了加强对烟酒生产的宏观管理,实行征收附加税政策.现知某种酒每瓶70元,不加附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税k 元(叫做税率k %),则每年的产销量将减少10k 万瓶.要使每年在此项经营中所收取附加税金不少于112万元,则k 的取值范围为________.【解析】 设产销量为每年x 万瓶,则销售收入每年70x 万元,从中征收的税金为70x ·k %万元,其中x =100-10k .由题意,得70(100-10k )k %≥112,整理得k 2-10k +16≤0,解得2≤k ≤8.【答案】 [2,8] 16.观察下列等式: 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, …照此规律,第n 个等式可为12-22+32-…+(-1)n -1n 2=________. 【解析】 分n 为奇数、偶数两种情况. 第n 个等式为12-22+32-…+(-1)n -1n 2.当n 为偶数时,分组求和:(12-22)+(32-42)+…+[(n -1)2-n 2]=-(3+7+11+15+…+2n -1)=-n2×(3+2n -1)2=-n (n +1)2.当n 为奇数时,第n 个等式为(12-22)+(32-42)+…+[(n -2)2-(n -1)2]+n 2=-n (n -1)2+n 2=n (n +1)2.综上,第n 个等式为 12-22+32-…+(-1)n -1n 2 =(-1)n +1n (n +1)2.【答案】 (-1)n +1n (n +1)2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若m =(a 2+c 2-b 2,-3a ),n =(tan B ,c ),且m ⊥n ,求∠B 的值.【解】 由m ⊥n 得(a 2+c 2-b 2)·tan B -3a ·c =0,即(a 2+c 2-b 2)tan B =3ac ,得a 2+c 2-b 2=3ac tan B , 所以cos B =a 2+c 2-b 22ac =32tan B , 即tan B cos B =32,即sin B =32, 所以∠B =π3或∠B =2π3.18.(本小题满分12分)在等差数列{a n }中,S 9=-36,S 13=-104,在等比数列{b n }中,b 5=a 5,b 7=a 7, 求b 6. 【导学号:05920087】【解】 ∵S 9=-36=9a 5,∴a 5=-4, ∵S 13=-104=13a 7,∴a 7=-8. ∴b 26=b 5·b 7=a 5 ·a 7=32. ∴b 6=±4 2.19.(本小题满分12分)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 【导学号:05920088】【解】 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0.(1)当a =0时,原不等式化为x +1≤0⇒x ≤-1;(2)当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1;(3)当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.①当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a ; ②当2a =-1,即a =-2时,原不等式等价于x =-1; ③当2a <-1,即-2<a <0时,原不等式等价于2a ≤x ≤-1. 综上所述:当a <-2时,原不等式的解集为⎣⎢⎡⎦⎥⎤-1,2a ;当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎣⎢⎡⎦⎥⎤2a ,-1;当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞.20.(本小题满分12分)设△ABC 的内角A ,B ,C 所对应的边分别为a ,b ,c ,已知a =1,b =2,cos C =14.(1)求△ABC 的周长; (2)求cos A 的值.【解】 (1)∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4. ∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5. (2)∵cos C =14,∴sin C =1-cos 2C =1-⎝ ⎛⎭⎪⎫142=154. ∴sin A =a sin C c =1542=158. ∵a <c ,∴A <C ,故A 为锐角, ∴cos A =1-sin 2A =1-⎝⎛⎭⎪⎫1582=78. 21.(本小题满分12分)(2016·宝鸡模拟)已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2).(1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.【解】 (1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2), ∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列.(2)由(1)得a n +1+2a n =15×3n -1=5×3n , 则a n +1=-2a n +5×3n , ∴a n +1-3n +1=-2(a n -3n ). 又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列. ∴a n -3n =2×(-2)n -1, 即a n =2×(-2)n -1+3n (n ∈N *).22.(本小题满分12分)某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:(2)每吨B 产品的利润在什么范围变化时,原最优解不变?当超出这个范围时,最优解有何变化?【解】 (1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎨⎧2x +y ≤14,x +3y ≤18,x ≥0,y ≥0,作出可行域如图:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品245 t ,B产品225 t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m , 又k AB =-2,k CB =-13,要使最优解仍为B 点, 则-2≤-5m ≤-13,解得52≤m ≤15,则B 产品的利润在52万元/t 与15万元/t 之间时,原最优解仍为生产A 产品245 t ,B 产品225 t ,若B 产品的利润超过15万元/t ,则最优解为C (0,6),即只生产B 产品6 t ,若B 产品利润低于52万元/t ,则最优解为A (7,0),即只生产A 产品7 t.。

[精品]新人教A版必修五高中数学模块综合测评2和答案

[精品]新人教A版必修五高中数学模块综合测评2和答案

模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列1,3,7,15,…的通项a n可能是( )A.2n B.2n+1C.2n-1 D.2n-1【解析】取n=1时,a1=1,排除A、B,取n=2时,a2=3,排除D.【答案】 C2.不等式x2-2x-5>2x的解集是( )A.{x|x≤-1或x≥5}B.{x|x<-1或x>5}C.{x|1<x<5}D.{x|-1≤x≤5}【解析】不等式化为x2-4x-5>0,所以(x-5)(x+1)>0,所以x<-1或x>5.【答案】 B3.在正项等比数列{a n}中,a1和a19为方程x2-10x+16=0的两根,则a8·a10·a12等于( )A.16 B.32C.64 D.256【解析】∵{a n}是等比数列且由题意得a1·a19=16=a210(a n>0),∴a8·a10·a12=a310=64.【答案】 C4.下列不等式一定成立的是( )A .lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 【解析】5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ac =3,且a =3b sin A ,则△ABC 的面积等于( )A.12B.32 C .1D.34【解析】 ∵a =3b sin A ,∴由正弦定理得sin A =3sin B sin A ,∴sin B =13.∵ac =3,∴△ABC 的面积S =12ac sin B =12×3×13=12,故选 A.【答案】 A6.等比数列{a n }前n 项的积为T n ,若a 3a 6a 18是一个确定的常数,那么数列T 10,T 13,T 17,T 25中也是常数的项是( )A .T 10B .T 13C .T 17D .T 25【解析】 由等比数列的性质得a 3a 6a 18=a 6a 10a 11=a 8a 9a 10=a 39,而T 17=a 179,故T 17为常数.【答案】 C7.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b 等于( )A .-3B .1C .-1D .3【解析】 由题意:A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2},由根与系数的关系可知:a =-1,b =-2,∴a +b =-3. 【答案】 A8.古诗云:远望巍巍塔七层,红光点点倍加增.共灯三百八十一,请问尖头几盏灯?( )A .2B .3C .4D .5【解析】 远望巍巍塔七层,说明该数列共有7项,即n =7.红光点点倍加增,说明该数列是公比为2的等比数列.共灯三百八十一,说明7项之和S 7=381.请问尖头几盏灯,就是求塔顶几盏灯,即求首项a 1. 代入公式S n =a 1-q n1-q,即381=a 1-271-2,∴a 1=381127=3.∴此塔顶有3盏灯. 【答案】 B9.若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,则yx的取值范围是( ) A .(0,1) B .(0,1] C .(1,+∞)D .[1,+∞)【解析】 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0的相关区域如图中的阴影部分所示.yx表示阴影部分内的任意一点与坐标原点(0,0)连线的斜率,由图可知,yx的取值范围为(1,+∞).【答案】 C10.在△ABC 中,若c =2b cos A ,则此三角形必是( ) A .等腰三角形B .正三角形C .直角三角形D .有一角为30°的直角三角形【解析】 由正弦定理得sin C =2cos A sin B , ∴sin (A +B )=2cos A sin B ,即sin A cos B +cos A sin B =2cos A sin B , 即sin A cos B -cos A sin B =0, 所以sin (A -B )=0. 又因为-π<A -B <π, 所以A -B =0, 即A =B . 【答案】 A11.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2 【解析】 ∵x >1, ∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+x -+3x -1=x -2+x -+3x -1=x -1+3x -1+2≥23+2.【答案】 A12.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且tan B =2-3a 2-b 2+c 2,BC →·BA →=12,则tan B 等于( ) A.32B.3-1 C .2D .2- 3【解析】 由BC →·BA →=12,得ac cos B =12,∴2ac cos B =1.又由余弦定理,得b 2=a 2+c 2-2ac cos B =a 2+c 2-1, ∴a 2-b 2+c 2=1, ∴tan B =2-31=2- 3.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知点P (1,-2)及其关于原点的对称点均在不等式 2x +by +1>0表示的平面区域内,则b 的取值范围是______. 【导学号:05920089】【解析】 点P (1,-2)关于原点的对称点为点P ′(-1,2).由题意知⎩⎪⎨⎪⎧2×1-2b +1>0,-2+2b +1>0,解得12<b <32.【答案】 ⎝ ⎛⎭⎪⎫12,3214.(2015·江苏高考)设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.【解析】 由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =n -+n2=n 2+n -22.又∵a 1=1, ∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n2(n ∈N *).∴1a n =2n 2+n =2⎝ ⎛⎭⎪⎫1n -1n +1. ∴S 10=2×⎝ ⎛⎭⎪⎫11-12+12-13+…+110-111=2×⎝⎛⎭⎪⎫1-111=2011.【答案】 201115.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.【解析】 ∵a sin A =b sin B =csin C =2R ,a =2,又(2+b )(sin A -sin B )=(c -b )sin C 可化为(a +b )(a -b )=(c -b )·c , ∴a 2-b 2=c 2-bc ,∴b 2+c 2-a 2=bc .∴b 2+c 2-a 22bc =bc 2bc =12=cos A ,∴A =60°.∵在△ABC 中,4=a 2=b 2+c 2-2bc ·cos 60°=b 2+c 2-bc ≥2bc -bc =bc (“=”当且仅当b =c 时取得), ∴S △ABC =12·bc ·sin A ≤12×4×32= 3.【答案】316.若1a <1b<0,已知下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +ab>2;⑤a 2>b 2;⑥2a >2b .其中正确的不等式的序号为______. 【解析】 ∵1a <1b<0,∴b <a <0,故③错;又b <a <0,可得|a |<|b |,a 2<b 2, 故②⑤错,可证①④⑥正确. 【答案】 ①④⑥三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.(1)求公差d 的取值范围;(2)问前几项的和最大,并说明理由.【解】 (1)∵a 3=12,∴a 1=12-2d , ∵S 12>0,S 13<0,∴⎩⎪⎨⎪⎧12a 1+66d >0,13a 1+78d <0,即⎩⎪⎨⎪⎧24+7d >0,3+d <0,∴-247<d <-3.(2)∵S 12>0,S 13<0,∴⎩⎪⎨⎪⎧a 1+a 12>0,a 1+a 13<0,∴⎩⎪⎨⎪⎧a 6+a 7>0,a 7<0,∴a 6>0, 又由(1)知d <0.∴数列前6项为正,从第7项起为负. ∴数列前6项和最大.18.(本小题满分12分)已知α,β是方程x 2+ax +2b =0的两根,且α∈[0,1],β∈[1,2],a ,b ∈R ,求b -3a -1的最大值和最小值.【解】 ∵⎩⎪⎨⎪⎧α+β=-a ,αβ=2b ,∴⎩⎪⎨⎪⎧a =-α+β,b =αβ2,∵0≤α≤1,1≤β≤2,∴1≤α+β≤3,0≤αβ≤2.∴⎩⎪⎨⎪⎧-3≤a ≤-1,0≤b ≤1,建立平面直角坐标系aOb ,则上述不等式组表示的平面区域如下图所示.令k =b -3a -1,可以看成动点P (a ,b )与定点A (1,3)的连线的斜率. 取B (-1,0),C (-3,1), 则k AB =32,k AC =12,∴12≤b -3a -1≤32. 故b -3a -1的最大值是32,最小值是12. 19.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2b -c )cos A -a cos C =0.(1)求角A 的大小;(2)若a =3,试求当△ABC 的面积取最大值时,△ABC 的形状. 【导学号:05920090】【解】 (1)∵(2b -c )cos A -a cos C =0,由余弦定理得(2b -c )·b 2+c 2-a 22bc -a ·a 2+b 2-c 22ab=0,整理得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12, ∵0<A <π,∴A =π3. (2)由(1)得b 2+c 2-bc =3及b 2+c 2≥2bc 得bc ≤3.当且仅当b =c =3时取等号.∴S △ABC =12bc sin A ≤12×3×32=334. 从而当△ABC 的面积最大时,a =b =c = 3.∴当△ABC 的面积取最大值时△ABC 为等边三角形.20.(本小题满分12分)已知函数y =ax 2+2ax +1的定义域为R .(1)求a 的取值范围;(2)解关于x 的不等式x 2-x -a 2+a <0. 【解】 (1)∵函数y =ax 2+2ax +1的定义域为R ,∴ax 2+2ax +1≥0恒成立.①当a =0时,1≥0,不等式恒成立;②当a ≠0时,则⎩⎪⎨⎪⎧ a >0,Δ=4a 2-4a ≤0,解得0<a ≤1.综上可知,a 的取值范围是[0,1].(2)由x 2-x -a 2+a <0,得(x -a )[x -(1-a )]<0.∵0≤a ≤1,∴①当1-a >a , 即0≤a <12时, a <x <1-a ;②当1-a =a ,即a =12时,⎝⎛⎭⎪⎫x -122<0,不等式无解; ③当1-a <a ,即12<a ≤1时, 1-a <x <a .综上,当0≤a <12时,原不等式的解集为(a,1-a ); 当a =12时,原不等式的解集为∅; 当12<a ≤1时,原不等式的解集为(1-a ,a ). 21.(本小题满分12分)若数列{a n }满足a 2n +1-a 2n =d ,其中d 为常数,则称数列{a n }为等方差数列.已知等方差数列{a n }满足a n >0,a 1=1,a 5=3.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a 2n ⎝ ⎛⎭⎪⎫12n 的前n 项和. 【解】 (1)由a 21=1,a 25=9,得a 25-a 21=4d ,∴d =2.a 2n =1+(n -1)×2=2n -1,∵a n >0,∴a n =2n -1.数列{a n }的通项公式为a n =2n -1.(2)a 2n ⎝ ⎛⎭⎪⎫12n =(2n -1)12n , 设S n =1·12+3·122+5·123+…+(2n -1)·12n ,①12S n =1·122+3·123+5·124+…+(2n -1)· 12n +1,② ①-②,得12S n =12+2⎝ ⎛⎭⎪⎫122+123+…+12n -(2n -1)·12n +1 =12+2·14⎝ ⎛⎭⎪⎫1-12n -11-12-(2n -1)·12n +1, 即S n =3-2n +32n , 即数列⎩⎨⎧⎭⎬⎫a 2n ⎝ ⎛⎭⎪⎫12n 的前n 项和为3-2n +32n . 22.(本小题满分12分)如图1所示,某海岛上一观察哨A 上午11时测得一轮船在海岛北偏东60°的C 处,12时20分时测得该轮船在海岛北偏西60°的B 处,12时40分该轮船到达位于海岛正西方且距海岛5千米的E 港口,如果轮船始终匀速直线航行,则船速是多少?(结果保留根号)图1【解】 轮船从点C 到点B 用时80分钟,从点B 到点E 用时20分钟,而船始终匀速航行,由此可见,BC =4EB .设EB =x ,则BC =4x ,由已知得∠BAE =30°,在△AEC 中,由正弦定理得EC sin ∠EAC =AEsin C , 即sin C =AE sin ∠EAC EC =5sin 150°5x =12x, 在△ABC 中,由正弦定理得BC sin ∠BAC =ABsin C, 即AB =BC sin C sin 120°=4x ×12x sin 120°=43=433. 在△ABE 中,由余弦定理得 BE 2=AE 2+AB 2-2AE ·AB cos 30°=25+163-2×5×433×32=313, 所以BE =313(千米). 故轮船的速度为v =313÷2060=93(千米/时).。

(完整)新课标人教A版高中数学必修五第一章《解三角形》单元测试题

(完整)新课标人教A版高中数学必修五第一章《解三角形》单元测试题

(完整)新课标⼈教A版⾼中数学必修五第⼀章《解三⾓形》单元测试题解三⾓形第Ⅰ卷(选择题共60分)⼀、选择题(共12⼩题,每⼩题5分,只有⼀个选项正确):1.在△ABC 中,若∠A =60°,∠B =45°,BC =23,则AC =( ) A .43 B .22 C .3 D .32.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐⾓三⾓形B .直⾓三⾓形C .钝⾓三⾓形D .⾮钝⾓三⾓形 3.在△ABC 中,已知a =11,b =20,A =130°,则此三⾓形( )A .⽆解B .只有⼀解C .有两解D .解的个数不确定4. 海上有A 、B 两个⼩岛相距10海⾥,从A 岛望C 岛和B 岛成60ο的视⾓,从B 岛望C 岛和A岛成75ο视⾓,则B 、C 两岛的距离是()海⾥A. 65B. 35C. 25D. 5 5.边长为3、7、8的三⾓形中,最⼤⾓与最⼩⾓之和为 ( ) A .90° B .120° C .135° D .150°6.如图,设A ,B 两点在河的两岸,⼀测量者在A 的同侧,在所在的河岸边选定的⼀点C ,测出AC 的距离为502m ,45ACB ∠=?,105CAB ∠=?后,就可以计算出A ,B 两点的距离为 ( )A. 100mB. 3mC. 1002mD. 200mB .2 C. 2 D. 38.如图,四边形ABCD中,B=C=120°,AB=4,BC=CD=2,则该四边形的⾯积等于( )A. 3 B.5 3C.6 3 D.7 39.在△ABC中,A=120°,AB=5,BC=7,则sin Bsin C的值为( )A.85B.58C.53D.3510.某海上缉私⼩分队驾驶缉私艇以40 km/h的速度由A处出发,沿北偏东60°⽅向航⾏,进⾏海⾯巡逻,当⾏驶半⼩时到达B处时,发现北偏西45°⽅向有⼀艘船C,若C船位于A处北偏东30°⽅向上,则缉私艇B与船C的距离是( )A.5(6+2) km B.5(6-2) kmC.10(6+2) km D.10(6-2) km11.△ABC 的周长为20,⾯积为A =60°,则BC 的长等于( ) A .5 B.6 C .7D .812.在ABC △中,⾓A B C 、、所对的边分别为,,a b c ,若120,C c ∠=?=,则() A .a b > B .a b <C .a b =D .a 与b 的⼤⼩关系不能确定第Ⅱ卷(⾮选择题共90分)⼆、填空题(共4⼩题,每⼩题5分):13.三⾓形的两边分别是5和3,它们夹⾓的余弦值是⽅程06752=--x x 的根,则此三⾓形的⾯积是。

高中数学单元综合测试卷 第三章 不等式 (人教A版必修5)

高中数学单元综合测试卷 第三章 不等式 (人教A版必修5)

第三章不等式单元综合测试时间:120分钟分值:150分第Ⅰ卷(选择题,共60分)1.不等式x2≥2x的解集是()A.{x|x≥2} B.{x|x≤2}C.{x|0≤x≤2} D.{x|x≤0或x≥2}解析:原不等式化为x2-2x≥0,则x≤0或x≥2.答案:D2.若a、b、c∈R,a>b,则下列不等式成立的是()A.1a<1bB.a2>b2C.ac2+1>bc2+1D.a|c|>b|c|解析:根据不等式的性质,知C正确;若a>0>b,则1a>1b,A不正确;若a=1,b=-2,则B不正确;若c=0,则D不正确,所以选C.答案:C3.若a,b,c是不全相等的正数.给出下列判断:①(a-b)2+(b-c)2+(c-a)2≠0;②a>b与b<a及a=b中至少有一个成立;③a≠c,b≠c,a≠b不能同时成立.其中正确判断的个数为()A.0 B.1C.2 D.3答案:D4.直线3x+2y+5=0把平面分成两个区域,下列各点与原点位于同一区域的是() A.(-3,4) B.(-3,-4)C.(0,-3) D.(-3,2)解析:当x=y=0时,3x+2y+5=5>0,所以原点一侧的平面区域对应的不等式是3x +2y+5>0,可以验证,仅有点(-3,4)的坐标满足3x+2y+5>0.答案:A5.已知m,n∈R+,且m+n=2,则mn有()A .最大值1B .最大值2C .最小值1D .最小值2 解析:∵m ,n ∈R +,∴mn ≤(m +n 2)2=1.答案:A6.设M =2a (a -2)+3,N =(a -1)(a -3),a ∈R ,则有( ) A .M >N B .M ≥N C .M <ND .M ≤N解析:M -N =2a (a -2)+3-(a -1)(a -3)=a 2≥0,所以M ≥N . 答案:B7.若1a <1b<0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +ab >2,其中正确的不等式是( )A .①②B .②③C .①④D .③④解析:由于1a <1b <0,则b <a <0,则③不正确;又a +b <0<ab ,则①正确;b 2-a 2=(b +a )(b-a )>0,所以b 2>a 2,则|b |>|a |,所以②不正确;b a >0,a b >0,且b a ≠a b ,则b a +ab>2,所以④正确.答案:C8.设x ,y >0,且x +2y =3,则1x +1y 的最小值为( )A .2B.32 C .1+223D .3+2 2解析:1x +1y =13(3x +3y )=13(x +2y x +x +2y y )=13(2y x +x y +3)≥13(22+3)=232+1,当且仅当2y x =x y ,即x =32-3,y =3-322时取等号. 答案:C9.若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0x +y ≥0x ≤0,则z =3x +2y 的最小值是( )A .0B .1 C. 3D .9解析:在坐标平面内画出已知不等式组表示的平面区域,此区域是以O (0,0),A (0,1),B (-12,12)为顶点的三角形内部(含边界).当x =y =0时,x +2y 取最小值0,所以z =3x +2y的最小值是1. 答案:B10.不等式ax 2+bx +2>0的解集是(-12,13),则a -b 等于( )A .10B .14C .-4D .-10解析:∵2a =(-12)×13=-16,∴a =-12.又-b a =-12+13=-16,∴b =-2,∴a -b =-10.答案:D11.某人要买房,调查数据显示:随着楼层的升高,上下楼耗费的体力增多,因此不满意度升高,当住第n 层楼时,上下楼造成的不满意度为n ;但高处空气清新,嘈杂音较小,环境较为安静,因此随着楼层的升高,环境不满意度降低,当住第n 层楼时,环境不满意度为8n,则此人应选( ) A .1楼 B .2楼 C .3楼D .4楼解析:只需求不满意度n +8n 的最小值.由均值不等式得n +8n ≥42,当且仅当n =8n ,即n =22≈3时,n +8n取得最小值.答案:C12.设函数f (x )=x 3+x ,x ∈R ,若当0≤θ<π2时,f (m sin θ)+f (1-m )>0恒成立,则实数m的取值范围是( )A .(0,1)B .(-∞,0)C .(-∞,12)D .(-∞,1)解析:∵f (x )=x 3+x ,x ∈R 是奇函数且是增函数,∴f (m sin θ)+f (1-m )>0恒成立,即f (m sin θ)>f (m -1),∴m sin θ>m -1,即m <11-sin θ.∵θ∈[0,π2),∴11-sin θ≥1,∴m <1.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.不等式x -x 2>0的解集是________. 解析:原不等式等价于x 2-x <0,解得0<x <1. 答案:{x |0<x <1}14.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________. 解析:图1如下图1中阴影部分所示,围成的平面区域是Rt △OAB . 可求得A (4,0),B (0,4),则OA =OB =4,AB =42, 所以Rt △OAB 的周长是4+4+42=8+4 2. 答案:8+4 215.某种汽车,购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费第一年是0.2万元,以后逐年递增0.2万元.那么这种汽车使用________年时,它的平均费用最少.解析:设使用x 年平均费用最少,由年维修费第一年是0.2万元,以后逐年递增0.2万元,可知汽车年维修费构成首项为0.2万元,公差为0.2万元的等差数列.因此,汽车使用x 年总的维修费用为0.2+0.2x2x 万元,设汽车的年平均费用为y 万元,则有y =10+0.9x +0.2+0.2x2xx =10+x +0.1x 2x =1+10x +x 10≥1+210x ·x 10=3.当且仅当10x =x10,即x =10时,y 取最小值.答案:1016.若关于x 的不等式4x -2x +1-a ≥0在区间[1,2]上恒成立,则实数a 的取值范围为________.解析:设y =4x -2x +1=(2x )2-2·2x =(2x -1)2-1.由于1≤x ≤2,则2≤2x ≤4,由二次函数性质,知当2x=2,即x =1时y 有最小值0,所以原不等式在区间[1,2]上恒成立,只要a ≤0.答案:(-∞,0]三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(本小题10分)已知a >0,试比较a 与1a的大小.解:a -1a =a 2-1a =(a -1)(a +1)a.因为a >0,所以当a >1时,(a -1)(a +1)a >0,有a >1a ;当a =1时,(a -1)(a +1)a =0,有a =1a ;当0<a <1时,(a -1)(a +1)a <0,有a <1a. 综上,当a >1时,a >1a ;当a =1时,a =1a ;当0<a <1时,a <1a.18.(本小题12分)已知a 、b 、c 为不等正数,且abc =1.求证:a +b +c <1a +1b +1c 解:方法1:∵a 、b 、c 为不等正数,且abc =1,∴a +b +c =1bc +1ca +1ab<1b +1c 2+1c +1a 2+1a +1b 2=1a +1b +1c.故原不等式成立. 方法2:∵a 、b 、c 为不等正数,且abc =1,∴1a +1b +1c =bc +ca +ab =bc +ca 2+ca +ab 2+ab +bc 2>abc 2+a 2bc +ab 2c =a +b +c .故原不等式成立.19.(本小题12分)已知实数x ,a 1,a 2,y 成等差数列,x ,b 1,b 2,y 成等比数列,求(a 1+a 2)2b 1b 2的取值范围.解:因为x ,a 1,a 2,y 成等差数列,所以x +y =a 1+a 2. 因为x ,b 1,b 2,y 成等比数列,所以xy =b 1b 2,且xy ≠0. 所以(a 1+a 2)2b 1b 2=(x +y )2xy x 2+y 2+2xy xy =x 2+y 2xy+2.当x 、y 同号时,x 2+y 2≥2xy ,当且仅当x =y 时,等号成立,又xy ≠0,所以上式≥2xyxy +2=4;当x 、y 异号时,x 2+y 2≥2|xy |,当且仅当|x |=|y |时,等号成立,又xy ≠0,所以上式≤2|xy |xy+2=0.故(a 1+a 2)2b 1b 2的取值范围为(-∞,0]∪[4,+∞).20.(本小题12分)设集合A 、B 分别是函数y =1x 2+2x -8与函数y =lg(6+x -x 2)的定义域,C ={x |x 2-4ax +3a 2<0}.若A ∩B ⊆C ,求实数a 的取值范围.解:由x 2+2x -8>0,得x <-4或x >2,所以A ={x |x <-4或x >2};由6+x -x 2>0,即x 2-x -6<0,得-2<x <3,所以B ={x |-2<x <3}.于是A ∩B ={x |2<x <3}.由x 2-4ax +3a 2<0,得(x -a )(x -3a )<0,当a >0时,C ={x |a <x <3a },由A ∩B ⊆C ,得⎩⎪⎨⎪⎧ a ≤23a ≥3,所以1≤a ≤2;当a =0时,不等式x 2-4ax +3a 2<0即为x 2<0,解集为空集,此时不满足A ∩B ⊆C ;当a <0时,C ={x |3a <x <a },由A ∩B ⊆C ,得⎩⎪⎨⎪⎧3a ≤2a ≥3,此不等式组无解.综上,满足题设条件的实数a 的取值范围为{a |1≤a ≤2}.21.(本小题12分)某工厂生产甲、乙两种产品,其产量分别为45个与55个,所用原料分别为A 、B 两种规格的金属板,每张面积分别为2 m 2与3 m 2.用A 种规格的金属板可造甲种产品3个,乙种产品5个;用B 种规格的金属板可造甲、乙两种产品各6个.问A 、B 两种规格的金属板各取多少张,才能完成计划,并使总的用料面积最省?解:图2设A ,B 两种金属板各取x 张,y 张,用料面积为z ,则约束条件为 ⎩⎪⎨⎪⎧3x +6y ≥45,5x +6y ≥55,x ≥0,y ≥0,目标函数z =2x +3y .作出可行域,如右图2所示的阴影部分.目标函数z =2x +3y 即直线y =-23x +z 3,其斜率为-23,在y 轴上的截距为z3,且随z 变化的一族平行线.由图知,当直线z =2x +3y 过可行域上的点M 时,截距最小,z 最小.解方程组⎩⎪⎨⎪⎧5x +6y =55,3x +6y =45,得M 点的坐标为(5,5),此时z min =2×5+3×5=25(m 2),即两种金属板各取5张时,用料面积最省.图322.(本小题12分)如图3所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知|AB |=3米,|AD |=2米.(1)要使矩形AMPN 的面积大于32平方米,则AN 的长度应在什么范围内? (2)当AN 的长度是多少时,矩形AMPN 的面积最小?并求出最小值.解:设AN 的长为x 米(x >2),由|DN ||AN |=|DC ||AM ||AM |=3x x -2,∴S 矩形AMPN =|AN |·|AM |=3x 2x -2.(1)由S 矩形AMPN >32,得3x 2x -2>32,又x >2,则3x 2-32x +64>0,解得2<x <83或x >8,即AN 长的取值范围为(2,83)∪(8,+∞).(2)y =3x 2x -2=3(x -2)2+12(x -2)+12x -2=3(x -2)+12x -2+12 ≥23(x -2)×12x -2+12=24, 当且仅当3(x -2)=12x -2,即x =4时,取等号,∴当AN 的长度是4米时,矩形AMPN 的面积最小,最小值为24平方米.。

人教A版高中数学必修五高一年级模块结业考试.doc

人教A版高中数学必修五高一年级模块结业考试.doc

高中数学学习材料唐玲出品湖南师大附中高一年级必修五模块结业考试数 学 试 题时量 120分钟 总分100+50分命题:高一数学备课组 审题:高一数学备课组必考Ⅰ部分(满分100分)一、选择题:本大题共10小题,每小题5分,满分50分;在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合{}0322≤--=x x x A ,{}0≥=x x B ,则=B A ( )A.{}31≤≤x xB.{}10≤≤x xC.{}30≤≤x xD.{}103≤≤≥x x x 或 【答案】C2、在三角形ABC 中,若0cos sin ≤B A ,则三角形ABC 为( )A.锐角三角形B.钝角三角形C.直角三角形D.钝角三角形或直角三角形 【答案】D【解析】由0cos sin ≤B A 得0cos ≤B ,则角B 为直角或钝角3、已知数列{}n a ,且nn a n +=21,则数列{}n a 前100项的和等于( ) A.101100 B.10099 C.102101 D.10199 【答案】A4、不可以作为数列: ,0,2,0,2,的通项公式的是( )A. ⎪⎩⎪⎨⎧∈=∈-==++),2(0),12(2N k k n N k k n a n B. 2sin 2πn a n = C. 1)1(+-=nn a D.2)1(cos2π-=n a n 【答案】C5、函数)152lg()(2++-=x x x f 的定义域为( )A.)3,5(-B.)5,3(-C.),5()3,(+∞--∞D.),3()5,(+∞--∞【答案】B 6、在△ABC 中,若cos cos a bB A=,则该三角形一定是 ( ) A .等腰三角形但不是直角三角形 B .直角三角形但不是等腰三角形 C .等腰直角三角形 D .等腰三角形或直角三角形【答案】因为cos cos sin cos sin cos sin2sin2a A b B A A B B A B =⇔=⇔=于是有:222A B A B π=+=或2,故三角形为等腰三角形或直角三角形,选D 7、已知等差数列{}n a 满足02=a ,1086-=+a a ,则=2016a ( )A .2 014B .2 015C .2014-D .2015- 【答案】C 设等差数列{}n a 的公差为d ,则由已知条件可得⎩⎨⎧-=+=+2011122011d a d a ,解得⎩⎨⎧-==111d a 所以数列{}n a 的通项公式为2+-=n a n ,故20142016-=a ,答案:C 8、已知△ABC 的面积为23,AC =2,∠BAC =60°,则BC=( ) A .7 B .3 C .325- D .3 【解析】由已知得1=c ,由余弦定理得3=BC9、某农户计划种植A 和B 两种蔬菜,种植面积不超过50亩,投入资金不超过54万元,假设种植A 和B 的产量、成本和售价如下表:年产量/亩 年种植成本/亩 每吨售价 A 4吨 1.2万元 0.55万元 B6吨0.9万元0.3万元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么A 和B 的种植面积(单位:亩)分别为 ( )A .50,0B .30,20C .20,30D .0,50 【解析】设种植A 蔬菜x 亩,B 蔬菜y 亩,则由题意可知⎩⎪⎨⎪⎧x +y ≤50,1.2x +0.9y ≤54,x ,y ∈N +,求目标函数z =x +0.9y 的最大值,根据题意画可行域如图所示. 当目标函数线l 向右平移,移至点A (30,20)处时,目标函数取得最大值,即当黄瓜种植30亩,韭菜种植20亩时,种植总利润最大.故选B.10、下列说法错误的是( )A.等比数列可以是递增、递减、摆动、常数数列B.等差数列不可能是摆动数列C.既是等差数列又是等比数列的数列有且只有一个D.数列通项公式可能不止一个 【答案】C二、填空题:本大题共3小题,每小题5分,共15分.11、在等比数列{}n a 中,16,142==a a ,则公比为 . 【答案】4或-412、已知,x y 满足约束条件10,230,x y x y --≤⎧⎨--≥⎩当目标函数z ax by =+(0,0)a b >>在该约束条件下取到最小值25时,ab 的最大值为 . 【答案】25 【解析】由已知在点(2,1)处取得最小值,则522=+b a , 由基本不等式有:2522522≤⇒≥=+ab ab b a 也可以消元化为关于a 的二次函数求解13、若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 .【答案】426- 【解析】由C B A sin 2sin 2sin =+及正弦定理有:c b a 22=+,则abab b a ab b b a abcb a C 822232)222(2cos 22222222-+=+-+=-+=42682262-=-≥ab ab ab三、解答题(本题共6个小题,满分75分)14(满分11分)已知点)1,3(),0,0(A O ,点),(y x P 满足220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,求OP OA ⋅的最大值和最小值.. 【解析】【解】作可行域,如图..................4分Ay又y x y x OP OA +=⋅=⋅3),()1,3(,.........6分 设y x z +=3,交点坐标)3,2(),2,0(C B ..............8分 则2,9min max ==z z ............11分15(满分12分)已知{}n a 是递增的等差数列,32,a a 是方程2560x x -+=的根。

2020学年高中数学模块综合检测新人教A版必修5(最新整理)

2020学年高中数学模块综合检测新人教A版必修5(最新整理)

(浙江专用)2019-2020学年高中数学模块综合检测新人教A版必修5 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专用)2019-2020学年高中数学模块综合检测新人教A版必修5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专用)2019-2020学年高中数学模块综合检测新人教A版必修5的全部内容。

模块综合检测(时间120分钟满分150分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系为()A.f(x)〉g(x) B.f(x)=g(x)C.f(x)<g(x) D.随x值变化而变化解析:选A 因为f(x)-g(x)=(3x2-x+1)-(2x2+x-1)=x2-2x+2=(x-1)2+1>0,所以f(x)〉g(x).2.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=错误!,b=错误!,B=60°,那么角A等于( )A.135° B.90°C.45° D.30°解析:选C 由正弦定理知asin A=错误!,∴sin A=错误!=错误!=错误!.又a〈b,B=60°,∴A<60°,∴A=45°.3.若关于x的不等式x2-3ax+2〉0的解集为(-∞,1)∪(m,+∞),则a+m=()A.-1 B.1C.2 D.3解析:选D 由题意,知1,m是方程x2-3ax+2=0的两个根,则由根与系数的关系,得错误!解得错误!所以a+m=3,故选D。

学年高二数学 高中数学模块测试2 新人教A版必修5

学年高二数学 高中数学模块测试2 新人教A版必修5

必修5模块测试2一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。

)1.等差数列{a n }各项都是负数,且a 32+a 82+2a 3a 8=9,则它的前10项和S 10=( ) A .-11 B .-9 C .-15 D .-13[答案] C[解析] ∵a 33+a 82+2a 3a 8=9,∴a 3+a 8=±3; ∵{a n }各项均为负数.∴a 3+a 8=-3, ∴S 10=10 a 1+a 102=5(a 3+a 8)=-15.2.不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )[答案] C[解析] 由f (x )>0的解集为{x |-2<x <1}知,f (x )开口向下,对称轴在y 轴左侧,又y =f (-x )与y =f (x )图象关于y 轴对称.∴f (-x )图象开口向下,对称轴在y 轴右侧,故选C.3.已知Ω={(x ,y )|x +y ≤6,x ≥0,y ≥0},A ={(x ,y )|x ≤4,y ≥0,x -2y ≥0},若向区域Ω内随机投一点P ,则点P 落在区域A 内的概率为( )A.13B.23 C.19 D.29[答案] D[解析] 区域Ω为图中△OCD .区域A 为图中△OBE ,易知B (4,0)、E (4,2)、C (6,0)、D (0,6),由几何概型知,所求概率P =S △OBE S △OCD =12×4×212×6×6=418=29.4.已知集合A ={t |t 2-4≤0},对于满足集合A 的所有实数t ,则使不等式x 2+tx -t >2x -1恒成立的x 的取值范围是( )A .(3,+∞)∪(-∞,-1)B .(3,+∞)∪(-∞,1)C .(-∞,-1)D .(3,+∞)[答案] A[解析] A ={t |-2≤t ≤2},设f (t )=(x -1)t +x 2-2x +1,由条件知f (t )在[-2,2]上恒为正值.∴⎩⎪⎨⎪⎧f -2 >0f 2 >0,∴⎩⎪⎨⎪⎧x 2-4x +3>0x 2-1>0,∴x >3或x <-1.5.已知数列{a n },满足a n +1=11-a n ,若a 1=12,则a 2012=( ) A.12 B .2 C .-1 D .1[答案] B[解析] 易知a 2=2,a 3=-1,a 4=12,a 5=2,∴数列{a n }的周期为3,而2012=670×3+2,∴a 2012=a 2=2.[点评] 数列是特殊的函数,如果数列{a n }对任意n ∈N ,满足a n +T =a n (T ∈N *),则T 为{a n }的周期.6.设O 为坐标原点,点A (1,1),若点B (x ,y )满足⎩⎪⎨⎪⎧x 2+y 2-2x -2y +1≥01≤x ≤21≤y ≤2,则OA →·OB→取得最小值时,点B 的个数是( )A .1B .2C .3D .无数个[答案] B[解析] 根据题意作出满足不等式组的可行域,如图阴影部分所示.∵OA →·OB →=(1,1)·(x ,y )=x +y ,令z =x +y ,则y =-x +z ,z 的几何意义是斜率为-1的直线l 在y 轴上的截距,由可行域可知,当直线l 过点(1,2)或点(2,1)时,z 最小,从而所求的点B 有两个.7.在公差为4的正项等差数列中,a 3与2的算术平均数等于S 3与2的几何平均数,其中S 3表示此数列的前三项和,则a 10为( )A .38B .40C .42D .44[答案] A[解析] 由条件知a 3=a 1+8,S 3=3a 1+12, ∴a 1+8+22=2 3a 1+12 ,解得a 1=2.∴a 10=2+9×4=38.8.不等式组⎩⎪⎨⎪⎧x ≥0y ≥0y ≤-kx +4k(k >1)所表示的平面区域为D ,若D 的面积为S ,则kSk -1的最小值为( )A .30B .32C .34D .36[答案] B[解析] 作出可行域如图中△OAB ,其面积S =12×4×4k =8k .∴kS k -1=8k 2k -1=8k 2-8+8k -1=8(k +1)+8k -1, =8(k -1)+8k -1+16≥32, 等号在8(k -1)=8k -1,即k =2时成立. ∴k =2时,取最小值32.9.圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a >0,b >0)对称,则4a +1b的最小值是( )A .4B .6C .8D .9[答案] D[解析] 由条件知圆心(-1,2)在直线上,∴a +b =1,∴4a +1b =4 a +b a +a +b b =5+4ba+a b≥5+24b a ·a b =9,等号在4b a =ab,即a =2b 时成立.∵a +b =1,∴a =23,b =13,故在a =23,b =13时,4a +1b取到最小值9.10.设a 、b 、c 是一个长方体的长、宽、高,且a +b -c =1,已知此长方体对角线长为1,且b >a ,则高c 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,+∞B.⎝ ⎛⎭⎪⎫13,1C .(0,1) D.⎝ ⎛⎭⎪⎫0,13 [答案] D[解析] 由a +b =1+c 得,a 2+b 2+2ab =c 2+2c +1 ∵a 2+b 2>2ab ,a 2+b 2+c 2=1, ∴2(1-c 2)>c 2+2c +1 ∴-1<c <13,∵c >0,∴0<c <13.11.钝角△ABC 的三边长为连续自然数,则这三边长为( ) A .1,2,3 B .2,3,4 C .3,4,5 D .4,5,6[答案] B[解析] 令三边长为n ,n +1,n +2(n ∈N +),且边长为n +2的边所对的角为θ,则cos θ=n 2+ n +1 2- n +2 22n n +1<0,∴-1<n <3,∵n ∈N +,∴n =1或2.∵三角形任意两边之和大于第三边,∴n =2, ∴三边为2,3,4.12.已知A (3,0),O 是坐标原点,点P (x ,y )的坐标满足⎩⎪⎨⎪⎧x -y ≤0x -3y +2≥0y >0,则OA →·OP →|OP →|的取值范围为( )A .(-3,322]B .[1,322]C .[-2,322]D .[-3,2][答案] A[解析] 作出可行域如图(其中不包括线段OC ).将原式化简可得:OA →·OP →|OP →|=|OA →| |OP →|cos ∠AOP|O P →|=3cos ∠AOP . 由图知π4≤∠AOP <π,所以-1<cos ∠AOP ≤22,故-3<OA →·OP →|OP →|≤322.二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上) 13.等比数列{a n }和等差数列{b n }中,a 5=b 5,2a 5-a 2a 8=0,则b 3+b 7=________. [答案] 4[解析] ∵2a 5-a 2a 8=2a 5-a 52=0,a n ≠0,∴a 5=2, ∴b 3+b 7=2b 5=2a 5=4.14.(2011·四川资阳模拟)在△ABC 中,∠A =π3,BC =3,AB =6,则∠C =________.[答案]π4[解析] 由正弦定理得3sinπ3=6sin C ,∴sin C =22,∵AB <BC ,∴C <A ,∴C =π4.15.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0x +3y -3≥0y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围为________.[答案] ⎝ ⎛⎭⎪⎫12,+∞[解析] 作出可行域如图(包括边界)当直线z =ax +y 经过A 点,位于直线l 1与x +2y -3=0之间时,z 仅在点A (3,0)处取得最大值,∴-a <-12,∴a>12.16.已知a 、b 、c 分别为△ABC 的三个内角A 、B 、C 的对边,向量m =(3,-1),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B =________.[答案]π6[解析] 由m ⊥n 得,3cos A -sin A =0,∴tan A =3,∴A =π3,由正弦定理a cos B +b cos A =c sin C 可变形为 sin A cos B +sin B cos A =sin 2C .∵A +B +C =π,∴sin(A +B )=sin C ,∴sin C =sin 2C , ∴sin C =1,∴C =π2,∴B =π-π3-π2=π6.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,cos B =35,且AB →·BC→=-21.(1)求△ABC 的面积; (2)若a =7,求角C .[解析] (1)AB →·BC →=|A B →|·|B C →|·cos〈AB →·BC →〉=|A B →|·|B C →|·cos(π-B )=-35|A B →|·|B C →|=-21,∴|A B →|·|B C →|=35,又∵sin B =45,∴S △ABC =12|A B →|·|B C →|·sin B=12×35×45=14. (2)由(1)知ac =35,又a =7,∴c =5又b 2=a 2+c 2-2ac cos B =49+25-2×7×5×35=32,∴b =4 2.由正弦定理得b sin B =c sin C ,即4245=5sin C ,∴sin C =22,又∵a >c ,∴C ∈(0,π2),∴C =π4.18.(本小题满分12分)把正整数按下表排列:(1)求200在表中的位置(在第几行第几列);(2)求表中主对角线上的数列:1、3、7、13、21、…的通项公式. [解析] 把表中的各数按下列方式分组: (1),(2,3,4),(5,6,7,8,9),…,(1)由于第n 组含有2n -1个数,所以第n 组的最后一个数是1+3+5+…+(2n -1)=n 2. 因为不等式n 2≥200的最小整数解为n =15,这就是说,200在第15组中,由于142=196,所以第15组中的第一个数是197,这样200就是第15组中的第4个数.所以200在表中从上至下的第4行,从左至右的第15列上.(2)设表中主对角线上的数列为{a n },即1,3,7,13,21,…,则易知a n +1=(a n +2n )即a n +1-a n =2n .∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=[2(n -1)+2(n -2)+…+2×1]+1 =2×n n -12+1=n 2-n +1.19.(本小题满分12分)已知函数f (x )=x 2+3x -a(x ≠a ,a 为非零常数).(1)解不等式f (x )<x ;(2)设x >a 时,f (x )有最小值为6,求a 的值.[解析] (1)f (x )<x ,即x 2+3x -a<x ,化为(ax +3)(x -a )<0.当a >0时,⎝ ⎛⎭⎪⎫x +3a (x -a )<0,-3a<x <a ;当a <0时,⎝⎛⎭⎪⎫x +3a (x -a )>0,x >-3a或x <a .(2)设t =x -a ,则x =t +a (t >0), ∴f (x )= t +a 2+3t =t +a 2+3t+2a≥2t ·a 2+3t+2a =2a 2+3+2a ,当且仅当t =a 2+3t,即t =a 2+3时,f (x )有最小值2a 2+3+2a ,依题意2a 2+3+2a=6,解得a =1.20.(本小题满分12分)和为114的三个数是一个公比不为1的等比数列的连续三项,也是一个等差数列的第1项,第4项,第25项,求这三个数.[解析] 由题意,设这三个数分别是aq ,a ,aq ,且q ≠1,则a q+a +aq =114① 令这个等差数列的公差为d ,则a =a q+(4-1)·d . 则d =13(a -a q),又有aq =a q +24×13×⎝⎛⎭⎪⎫a -a q ②由②得(q -1)(q -7)=0,∵q ≠1,∴q =7 代入①得a =14,则所求三数为2,14,98.21.(本小题满分12分)(2011·山东文,17)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c .已知cos A -2cos C cos B =2c -ab.(1)求sin C sin A的值;(2)若cos B =14,△ABC 的周长为5,求b 的长.[解析] (1)由正弦定理a sin A =b sin B =csin C =2R 知cos A -2cos C cos B =2·2R sin C -2R sin A2R sin B,即cos A sin B -2cos C sin B =2cos B sin C -cos B sin A , 即sin(A +B )=2sin(B +C ),又由A +B +C =π知,sin C =2sin A ,所以sin C sin A =2.(2)由(1)知sin Csin A=2,∴c =2a ,则由余弦定理得b 2=a 2+(2a )2-2·a ·2a cos B =4a 2∴b =2a ,∴a +2a +2a =5,∴a =1,∴b =2.22.(本小题满分14分)预算用不超过2000元购买单价为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌、椅各买多少才行?[解析] 设桌、椅分别买x 、y 张,由题意得⎩⎪⎨⎪⎧x ≥0,y ≥0,x ≤y ,y≤1.5x ,50x +20y ≤2000.(x ,y ∈N *),即⎩⎪⎨⎪⎧x ≥0y ≥0x ≤yy ≤1.5x 5x +2y ≤200目标函数为z =x +y.满足以上不等式组所表示的可行区域是右图中以A 、B 、O 为顶点的三角形区域E (包括边界和内部).由⎩⎪⎨⎪⎧x =y5x +2y =200得,x =y =2007,即A (2007,2007). 由⎩⎪⎨⎪⎧y =1.5x5x +2y =200得,⎩⎪⎨⎪⎧x =25,y =752,即B (25,752).将z =x +y 变形为y =-x +z ,这表示斜率为-1、y 轴上的截距为z 的平行直线系. 当直线x +y =z 经过可行域内点B (25,752)时,z 取最大值,但x ∈Z ,y ∈Z ,故y =37.∴买桌子25张,椅子37张是最优选择.。

高中数学模块综合测评(一)(含解析)新人教A版选修1_2

高中数学模块综合测评(一)(含解析)新人教A版选修1_2

模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2015·湖北高考)i为虚数单位,i607的共轭复数....为( )A.i B.-iC.1 D.-1【解析】因为i607=i4×151+3=i3=-i,所以其共轭复数为i,故选A.【答案】 A2.根据二分法求方程x2-2=0的根得到的程序框图可称为( )A.工序流程图B.程序流程图C.知识结构图D.组织结构图【解析】由于该框图是动态的且可以通过计算机来完成,故该程序框图称为程序流程图.【答案】 B3.利用独立性检测来考查两个分类变量X,Y是否有关系,当随机变量K2的值( )【导学号:19220070】A.越大,“X与Y有关系”成立的可能性越大B.越大,“X与Y有关系”成立的可能性越小C.越小,“X与Y有关系”成立的可能性越大D.与“X与Y有关系”成立的可能性无关【解析】由K2的意义可知,K2越大,说明X与Y有关系的可能性越大.【答案】 A4.(2016·安庆高二检测)用反证法证明命题“a,b∈N,如果ab可被5整除”,那么a,b至少有一个能被5整除.则假设的内容是( )A.a,b都能被5整除B.a,b都不能被5整除C.a不能被5整除D.a,b有一个不能被5整除【解析】“至少有一个”的否定为“一个也没有”,故应假设“a,b都不能被5整除”.【答案】 B5.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误【解析】 一般的演绎推理是三段论推理:大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理对特殊情况作出的判断.此题的推理不符合上述特征,故选C.【答案】 C6.(2015·安徽高考)设i 是虚数单位,则复数2i1-i在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【解析】2i1-i=2i 1+i 1-i 1+i=2i -12=-1+i ,由复数的几何意义知-1+i 在复平面内的对应点为(-1,1),该点位于第二象限,故选B.【答案】 B7.(2016·深圳高二检测)在两个变量的回归分析中,作散点图是为了( ) A .直接求出回归直线方程 B .直接求出回归方程C .根据经验选定回归方程的类型D .估计回归方程的参数【解析】 散点图的作用在于判断两个变量更近似于什么样的函数关系,便于选择合适的函数模型.【答案】 C8.给出下面类比推理:①“若2a <2b ,则a <b ”类比推出“若a 2<b 2,则a <b ”; ②“(a +b )c =ac +bc (c ≠0)”类比推出“a +bc =a c +bc(c ≠0)”; ③“a ,b ∈R ,若a -b =0,则a =b ”类比推出“a ,b ∈C ,若a -b =0,则a =b ”; ④“a ,b ∈R ,若a -b >0,则a >b ”类比推出“a ,b ∈C ,若a -b >0,则a >b (C 为复数集)”.其中结论正确的个数为( ) A .1 B .2 C .3D .4【解析】 ①显然是错误的;因为复数不能比较大小,所以④错误,②③正确,故选B.【答案】 B9.(2015·全国卷Ⅰ)执行如图1的程序框图,如果输入的t =0.01,则输出的n =( )图1A .5B .6C .7D .8【解析】 运行第一次:S =1-12=12=0.5,m =0.25,n =1,S >0.01;运行第二次:S =0.5-0.25=0.25,m =0.125,n =2,S >0.01; 运行第三次:S =0.25-0.125=0.125,m =0.062 5,n =3,S >0.01; 运行第四次:S =0.125-0.062 5=0.062 5,m =0.031 25,n =4,S >0.01; 运行第五次:S =0.031 25,m =0.015 625,n =5,S >0.01; 运行第六次:S =0.015 625,m =0.007 812 5,n =6,S >0.01; 运行第七次:S =0.007 812 5,m =0.003 906 25,n =7,S <0.01. 输出n =7.故选C. 【答案】 C10.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 33为( ) A .3 B .-3 C .6D .-6【解析】 a 1=3,a 2=6,a 3=a 2-a 1=3,a 4=a 3-a 2=-3,a 5=a 4-a 3=-6,a 6=a 5-a 4=-3,a 7=a 6-a 5=3,a 8=a 7-a 6=6,…观察可知{a n }是周期为6的周期数列,故a 33=a 3=3. 【答案】 A11.(2016·青岛高二检测)下列推理合理的是( ) A .f (x )是增函数,则f ′(x )>0B .因为a >b (a ,b ∈R ),则a +2i >b +2i(i 是虚数单位)C .α,β是锐角△ABC 的两个内角,则sin α>cos βD .A 是三角形ABC 的内角,若cos A >0,则此三角形为锐角三角形【解析】 A 不正确,若f (x )是增函数,则f ′(x )≥0;B 不正确,复数不能比较大小;C 正确,∵α+β>π2,∴α>π2-β,∴sin α>cos β;D 不正确,只有cos A >0,cos B >0,cos C >0,才能说明此三角形为锐角三角形.【答案】 C12.有人收集了春节期间平均气温x 与某取暖商品销售额y 的有关数据如下表:根据以上数据,用线性回归的方法,求得销售额y 与平均气温x 之间线性回归方程y ^=b ^x +a ^的系数b ^=-2.4,则预测平均气温为-8℃时该商品销售额为( )A .34.6万元B .35.6万元C .36.6万元D .37.6万元【解析】 x =-2-3-5-64=-4,y =20+23+27+304=25,所以这组数据的样本中心点是(-4,25). 因为b ^=-2.4,把样本中心点代入线性回归方程得a ^=15.4, 所以线性回归方程为y ^=-2.4x +15.4. 当x =-8时,y =34.6.故选A. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.) 13.已知复数z =m 2(1+i)-m (m +i)(m ∈R ),若z 是实数,则m 的值为________.【导学号:19220071】【解析】 z =m 2+m 2i -m 2-m i =(m 2-m )i , ∴m 2-m =0, ∴m =0或1. 【答案】 0或114.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:“否”).【解析】 因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即ba +b =1858,dc +d =2742,两者相差较大,所以经直观分析,收看新闻节目的观众与年龄是有关的.【答案】 是15.(2016·天津一中检测)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________.【解析】 已知等式可改写为:13+23=(1+2)2;13+23+33=(1+2+3)2;13+23+33+43=(1+2+3+4)2,由此可得第五个等式为13+23+33+43+53+63=(1+2+3+4+5+6)2=212. 【答案】 13+23+33+43+53+63=21216.(2016·江西吉安高二检测)已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,会有类似的结论________.【解析】 由等比数列的性质可知,b 1b 30=b 2b 29=…=b 11b 20, ∴10b 11b 12…b 20=30b 1b 2…b 30.【答案】 10b 11b 12…b 20=30b 1b 2…b 30三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)(2016·哈三中模拟)设z =1-4i1+i +2+4i3+4i,求|z |.【解】 z =1+i -4i +4+2+4i 3+4i =7+i 3+4i ,∴|z |=|7+i||3+4i|=525= 2.18.(本小题满分12分)我校学生会有如下部门:文娱部、体育部、宣传部、生活部、学习部.请画出学生会的组织结构图.【解】 学生会的组织结构图如图.19.(本小题满分12分)给出如下列联表:患心脏病 患其他病 总计 高血压 20 10 30 不高血压 30 50 80 总计5060110(参考数据:P (K 2≥6.635)=0.010,P (K 2≥7.879)=0.005) 【解】 由列联表中数据可得 k =110×20×50-10×30230×80×50×60≈7.486.又P (K 2≥6.635)=0.010,所以在犯错误的概率不超过0.010的前提下,认为高血压与患心脏病有关系. 20.(本小题满分12分)已知非零实数a ,b ,c 构成公差不为0的等差数列,求证:1a,1b ,1c不能构成等差数列.【导学号:19220072】【证明】 假设1a ,1b ,1c 能构成等差数列,则2b =1a +1c,因此b (a +c )=2ac .而由于a ,b ,c 构成等差数列,且公差d ≠0,可得2b =a +c , ∴(a +c )2=4ac ,即(a -c )2=0,于是得a =b =c , 这与a ,b ,c 构成公差不为0的等差数列矛盾. 故假设不成立,即1a ,1b ,1c不能构成等差数列.21.(本小题满分12分)已知a 2+b 2=1,x 2+y 2=1,求证:ax +by ≤1(分别用综合法、分析法证明).【证明】 综合法:∵2ax ≤a 2+x 2,2by ≤b 2+y 2, ∴2(ax +by )≤(a 2+b 2)+(x 2+y 2). 又∵a 2+b 2=1,x 2+y 2=1, ∴2(ax +by )≤2,∴ax +by ≤1. 分析法:要证ax +by ≤1成立, 只要证1-(ax +by )≥0, 只要证2-2ax -2by ≥0, 又∵a 2+b 2=1,x 2+y 2=1,∴只要证a 2+b 2+x 2+y 2-2ax -2by ≥0, 即证(a -x )2+(b -y )2≥0,显然成立.22.(本小题满分12分)某班5名学生的数学和物理成绩如下表:(2)求物理成绩y 对数学成绩x 的回归直线方程; (3)一名学生的数学成绩是96,试预测他的物理成绩. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:b ^=∑i =1nx i y i -n x -y-∑i =1nx 2i -n x 2,a ^=y -b ^x -.【解】 (1)散点图如图,(2)x =15×(88+76+73+66+63)=73.2,y =15×(78+65+71+64+61)=67.8.∑i =15x i y i =88×78+76×65+73×71+66×64+63×61=25 054.∑i =15x 2i =882+762+732+662+632=27 174. 所以b ^=∑i =15x i y i -5x -y-∑i =15x 2i -5x -2=25 054-5×73.2×67.827 174-5×73.22≈0.625.a ^=y -b ^x -≈67.8-0.625×73.2=22.05. 所以y 对x 的回归直线方程是y ^=0.625x +22.05.(3)x =96,则y ^=0.625×96+22.05≈82,即可以预测他的物理成绩是82分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学(人教A 版)必修五模块综合测试
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是( ) A.21)1(+-n B.cos 2πn C.cos 2)1(π+n D.cos 2
)2(π+n 2.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.若a 、b 、c 成等比数列,且c=2a,则cosB 等于( ) A.41 B.4
3 C.42 D.32 3.在等比数列{a n }中,a 9+a 10=a(a≠0),a 19+a 20=b,则a 99+a 100等于( ) A.89a b B.(a b )9 C.910a
b D.(a b )10 4.首项为2,公比为3的等比数列,从第n 项到第N 项的和为720,则n,N 的值分别是( )
A.n=2,N=6
B.n=2,N=8
C.n=3,N=6
D.n=3,N >6
5.设α、β是方程x 2-2x+k 2=0的两根,且α,α+β,β成等比数列,则k 为( )
A.2
B.4
C.±4
D.±2
6.等比数列{a n }中,前n 项和S n =3n +r ,则r 等于( )
A.-1
B.0
C.1
D.3
7.若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m,则m 的范围是( )
A.(1,2)
B.(2,+∞)
C.[3,+∞)
D.(3,+∞)
8.设数列{a n }、{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,那么a n +b n 所组成的数列的第37项的值是( )
A.0
B.37
C.100
D.-37
9.数列{a n }中,a n >0且{a n a n+1}是公比为q(q >0)的等比数列,满足a n a n+1+a n+1a n+2>a n +2a n+3(n ∈N *),则公比q 的取值范围是( )
A.0<q <221+
B.0<q <2
51+ C.0<q <221+- D.0<q <251+- 10.在△ABC 中,tanAsin 2B=tanBsin 2A,那么△ABC 一定是( )
A.锐角三角形
B.直角三角形
C.等腰三角形
D.等腰或直角三角形
二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上)
11.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦值是方程5x 2-7x-6=0的根,则此三角形的面积是____________________.
12.数列{a n }的通项公式为a n =2n-49,S n 达到最小时,n 等于_______________.
13.若关于x 的方程x 2-x+a=0和x 2-x+b=0的四个根可组成首项为4
1的等差数列,则a+b 的值是_______________.
14如果一辆汽车每天行驶的路程比原来多19 km ,那么在8天内它的行程就超过2 200 km ,如果
它每天行驶的路程比原来少12 km ,那么它行驶同样的路程得花9天多的时间,这辆汽车原来每天行驶的路程(km)范围是________________.
15.某人从2002年起,每年1月1日到银行新存入a 元(一年定期),若年利率为r 保持不变,且每年到期存款自动转为新的一年定期,到2006年1月1日将所有存款及利息全部取回,他可取回的钱________________ (单位为元)
三、解答题(本大题共6小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤)
16.(12分)在△ABC 中,已知tan(A+B)=1,且最长边为1,tanA >tanB,tanB=3
1,求角C 的大小及△ABC 最短边的长.
17.(12分)写出数列13+2,13+6,13+12,13+20,13+30,…的一个通项公式,并验证2 563是否为数列中的一项.
18.(12分)在△ABC 中,∠B=45°,AC=10,cosC=5
52, (1)求BC 边的长; (2)记AB 的中点为D,求中线CD 的长.
19.(12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n+1=n
n 2 S n (n=1,2,3,…),证明 (1)数列{n
S n }是等比数列; (2)S n+1=4a n .
20.(12分)一个公差不为0的等差数列{a n }共有100项,首项为5,其第1、4、16项分别为正项等比数列{b n }的第1、3、5项.
(1)求{a n }各项的和S ;
(2)记{b n }的末项不大于2
S ,求{b n }项数的最值N ; (3)记{a n }前n 项和为S n ,{b n }前N 项和为T n ,问是否存在自然数m ,使S m =T n .
21.(14分)某工厂生产甲、乙两种产品,已知生产甲种产品1 t 需耗A 种矿石10 t ,B 种矿石5 t ,煤4 t ;生产乙种产品1 t 需耗A 种矿石4 t ,B 种矿石4 t ,煤9 t ;每1 t 甲种产品的利润是600元,每1 t 乙种产品的利润是1 000元,工厂在生产这两种产品的计划中要求消耗A 种矿石不超过3 00 t,B 种矿石不超过200 t ,煤不超过360 t .甲、乙两种产品各生产多少,能使利润总额达到最大?(准确到0.1 t)。

相关文档
最新文档