近似数与有效数字--习题精选有答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近似数与有效数字-有答案

1. 由四舍五入得到的近似数0.600的有效数字是 ( )

A. 1个

B. 2个

C. 3个

D. 4个

2. 用四舍五入法取近似值,

3.1415926精确到百分位的近似值是_________,精确到千分位近似值是________.

3. 用四舍五入法取近似值,0.01249精确到0.001的近似数是_________,保留三个有效数字的近似数是___________.

4. 用四舍五入法取近似值,396.7精确到十位的近似数是______________;保留两个有效数字的近似数是____________.

5. 用四舍五入法得到的近似值0.380精确到_____位,48.68万精确到___位.

答案:1. C 2. 3.14,3.142. 3. 0.012,0.0125. 4. 400,4.0×102.

5. 千分,百.

典型例题

例1 判断下列各数,哪些是准确数,哪些是近似数:

(1)初一(2)班有43名学生,数学期末考试的平均成绩是82.5分;

(2)某歌星在体育馆举办音乐会,大约有一万二千人参加;

(3)通过计算,直径为10cm的圆的周长是31.4cm;

(4)检查一双没洗过的手,发现带有各种细菌80000万个;

(5)1999年我国国民经济增长7.8%.

解:(1)43是准确数.因为43是质数,求平均数时不一定除得尽,所以82.5一般是近似数;

(2)一万二千是近似数;

(3)10是准确数,因为3.14是π的近似值,所以31.4是近似数;

(4)80000万是近似数;

(5)1999是准确数,7.8%是近似数.

说明:1.在近似数的计算中,分清准确数和近似数是很重要的,它是决定我们用近似计算法则进行计算,还是用一般方法进行计算的依据.

2.产生近似数的主要原因:

(1)“计算”产生近似数.如除不尽,有圆周率π参加计算的结果等等;

(2)用测量工具测出的量一般都是近似数,如长度、重量、时间等等;

(3)不容易得到,或不可能得到准确数时,只能得到近似数,如人口普查的结果,就只能是一个近似数;

(4)由于不必要知道准确数而产生近似数.

例2 下列由四舍五入得到的近似数,各精确到哪一位?各有哪几个有效数字?

(1)38200 (2)0.040 (3)20.05000 (4)4×104

分析:对于一个四舍五入得到的近似数,如果是整数,如38200,就精确到个位;如果有一位小数,就精确到十分位;两位小数,就精确到百分位;象0.040有三位小数就精确到千分位;象20.05000就精确到十万分位;而4×104=40000,只有一个有效数字4,则精确到万位.有效数字的个数应按照定义计算.

解:(1)38200精确到个位,有五个有效数字3、8、2、0、0.

(2)0.040精确到千分位(即精确到0.001)有两个有效数字4、0.

(3)20.05000精确到十万分位(即精确到0.00001),有七个有效数字2、0、0、5、0、0、0.

(4)4×104精确到万位,有一个有效数字4.

说明:(1)一个近似数的位数与精确度有关,不能随意添上或去掉末位的零.如20.05000的有效数字是2、0、0、5、0、0、0七个.而20.05的有效数字是2、0、0、5四个.因为20.05000精确到0.00001,而20.05精确到0.01,精确度不一样,有效数字也不同,所以右边的三个0不能随意去掉.

(2)对有效数字,如0.040,4左边的两个0不是有效数字,4右边的0是有效数字.

(3)近似数40000与4×104有区别,40000表示精确到个位,有五个有效数字4、0、0、0、0,而4×104表示精确到万位,有1个有效数字4.

例3 下列由四舍五入得到的近似数,各精确到哪一位?各有几个有效数字?

(1)70万(2)9.03万(3)1.8亿(4)6.40×105

分析:因为这四个数都是近似数,所以

(1)的有效数字是2个:7、0,0不是个位,而是“万”位;

(2)的有效数字是3个:9、0、3,3不是百分位,而是“百”位;

(3)的有效数字是2个:1、8,8不是十分位,而是“千万”位;

(4)的有效数字是3个:6、4、0,0不是百分位,而是“千”位.

解:(1)70万. 精确到万位,有2个有效数字7、0;

(2)9.03万.精确到百位,有3个有效数字9、0、3;

(3)1.8亿.精确到千万位,有2个有效数字1、8;

(4)6.40×105.精确到千位,有3个有效数字6、4、0.

说明:较大的数取近似值时,常用×万,×亿等等来表示,这里的“×”表示这个近似数的有效数字,而它精确到的位数不一定是“万”或“亿”.对于不熟练的学生,应当写出原数之后再判断精确到哪一位,例如9.03万=90300,因为“3”在百位上,所以9.03万精确到百位.

例4 用四舍五入法,按括号里的要求对下列各数取近似值.

(1)1.5982(精确到0.01) (2)0.03049(保留两个有效数字)

(3)3.3074(精确到个位) (4)81.661(保留三个有效数字)

分析:四舍五入是指要精确到的那一位后面紧跟的一位,如果比5小则舍,如果比5大或等于5则进1,与再后面各位数字的大小无关.

(1)1.5982要精确到0.01即百分位,只看它后面的一位即千分位的数字,是8>5,应当进1,所以近似值为1.60.

(2)0.03049保留两个有效数字,3左边的0不算,从3开始,两个有效数字是3、0,再看第三个数字是4<5,应当舍,所以近似值为0.030.

(3)、(4)同上.

解:(1)1.5982≈1.60(2)0.03049≈0.030

(3)3.3074≈3(4)81.661≈81.7

说明:1.60与0.030的最后一个0都不能随便去掉.1.60是表示精确到0.01,而1.6表示精确到0.1.对0.030,最后一个0也是表示精确度的,表示精确到千分位,而0.03只精确到百分位.

相关文档
最新文档