完整word版,数据包络分析法DEA总结,推荐文档

合集下载

数据包络分析(DEA)方法-推荐下载

数据包络分析(DEA)方法-推荐下载

ur 0, vi 0, r,i.
利用 Charnes 和 Cooper
j 个决策单元 DMU j 的效率评价指数。
(1962)[4]提出的分式规划的 Charnes-Cooper 变换:
r tur , (r 1,, s) , i tvi , (i 1,, m) 变换后我们可以得到如下的线性规划模型:
与作用各不相同,因此,要对 DMU 进行评价,必须对它的投入和产出进行“综合”,即把它们看作只有一 个投入总体和一个产出总体的生产过程,这样就需要赋予每个投入和产出恰当的权重。假设投入、产出
的权向量分别为 v (v1, v2 ,, vm )T 和 u (u1,u2 ,,us )T ,从而就可以获得如下的定义。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

数据包络分析法(DEA模型)

数据包络分析法(DEA模型)

一、 数据包络分析法数据包络分析是一种基于线性规划的用于评价同类型组织(或项目)工作绩效相对有效性的特殊工具手段。

这类组织例如学校、医院、银行的分支机构、超市的各个营业部等,各自具有相同(或相近)的投入和相同的产出。

衡量这类组织之间的绩效高低,通常采用投入产出比这个指标,当各自的投入产出均可折算成同一单位计量时,容易计算出各自的投入产出比并按其大小进行绩效排序。

但当被衡量的同类型组织有多项投入和多项产出,且不能折算成统一单位时,就无法算出投入产出比的数值。

例如,大部分机构的运营单位有多种投入要素,如员工规模、工资数目、运作时间和广告投入,同时也有多种产出要素,如利润、市场份额和成长率。

在这些情况下,很难让经理或董事会知道,当输入量转换为输出量时,哪个运营单位效率高,哪个单位效率低。

1.1数据包络分析法的主要思想一个经济系统或者一个生产过程可以看成一个单元在一定可能范围内,通过投入一定数量的生产要素并产出一定数量的“产品”的活动。

虽然这些活动的具体内容各不相同,但其目的都是尽可能地使这一活动取得最大的“效益”。

由于从“投入”到“产出”需要经过一系列决策才能实现,或者说,由于“产出”是决策的结果,所以这样的单元被称为“决策单元”(Decision Making Units ,DMU )。

可以认为每个DMU 都代表一定的经济含义,它的基本特点是具有一定的输入和输出,并且在将输入转换成输出的过程中,努力实现自身的决策目标。

1.2数据包络分析法的基本模型我们主要介绍DEA 中最基本的一个模型——2C R 模型。

设有n 个决策单元( j = 1,2,…,n ),每个决策单元有相同的 m 项投入(输入),输入向量为()120,1,2,,,,,Tjjj mjj nx xxx=>=每个决策单元有相同的 s 项产出(输出),输出向量为()120,1,2,,,,,Tjjjsjj nyy y y=>=即每个决策单元有m 种类型的“输入”及s 种类型的“输出”。

(完整word版)数据包络分析(DEA)方法

(完整word版)数据包络分析(DEA)方法

二、 数据包络分析(DEA )方法数据包络分析(data envelopment analysis, DEA )是由著名运筹学家Charnes, Cooper 和Rhodes 于1978年提出的,它以相对效率概念为基础,以凸分析和线性规划为工具,计算比较具有相同类型的决策单元(Decision making unit ,DMU)之间的相对效率,依此对评价对象做出评价[.DEA 方法一出现,就以其独特的优势而受到众多学者的青睐,现已被应用于各个领域的绩效评价中[2],[3].在介绍DEA 方法的原理之前,先介绍几个基本概念:1。

决策单元一个经济系统或一个生产过程都可以看成是一个单位(或一个部门)在一定可能范围内,通过投入一定数量的生产要素并产出一定数量的“产品”的活动。

虽然这种活动的具体内容各不相同,但其目的都是尽可能地使这一活动取得最大的“效益"。

由于从“投入”到“产出”需要经过一系列决策才能实现,或者说,由于“产出”是决策的结果,所以这样的单位(或部门)被称为决策单元(DMU).因此,可以认为,每个DMU (第i 个DMU 常记作DMU i )都表现出一定的经济意义,它的基本特点是具有一定的投入和产出,并且将投入转化成产出的过程中,努力实现自身的决策目标。

在许多情况下,我们对多个同类型的DMU 更感兴趣。

所谓同类型的DMU ,是指具有以下三个特征的DMU 集合:具有相同的目标和任务;具有相同的外部环境;具有相同的投入和产出指标。

2. 生产可能集设某个DMU 在一项经济(生产)活动中有m 项投入,写成向量形式为1(,,)T m x x x =;产出有s 项,写成向量形式为1(,,)T s y y y =。

于是我们可以用(,)x y 来表示这个DMU 的整个生产活动。

定义1. 称集合{(,)|T x y y x =产出能用投入生产出来}为所有可能的生产活动构成的生产可能集. 在使用DEA 方法时,一般假设生产可能集T 满足下面四条公理: 公理1(平凡公理): (,),1,2,,j j x y T j n ∈=。

数据包络分析法(DEA)概述

数据包络分析法(DEA)概述

数据包络分析法(DEA)概述(1)数据包络分析法(DEA)概述数据包络分析(Data Envelopment Ana lysis,简称D EA)方法是运用数学工具评价经济系统生产前沿面有效性的非参数方法,它适应用于多投入多产出的多目标决策单元的绩效评价。

这种方法以相对效率为基础,根据多指标投入与多指标产出对相同类型的决策单元进行相对有效性评价。

应用该方法进行绩效评价的另一个特点是,它不需要以参数形式规定生产前沿函数,并且允许生产前沿函数可以因为单位的不同而不同,不需要弄清楚各个评价决策单元的输入与输出之间的关联方式,只需要最终用极值的方法,以相对效益这个变量作为总体上的衡量标准,以决策单元(DM U)各输入输出的权重向量为变量,从最有利于决策的角度进行评价,从而避免了人为因素确定各指标的权重而使得研究结果的客观性收到影响。

这种方法采用数学规划模型,对所有决策单元的输出都“一视同仁”。

这些输入输出的价值设定与虚拟系数有关,有利于找出那些决策单元相对效益偏低的原因。

该方法以经验数据为基础,逻辑上合理,故能够衡量个决策单元由一定量大投入产生预期的输出的能力,并且能够计算在非DEA有效的决策单元中,投入没有发挥作用的程度。

最为重要的是应用该方法还有可能进一步估计某个决策单元达到相对有效时,其产出应该增加多少,输入可以减少多少等。

1978年由著名的运筹学家查恩斯(A.Charnes),库伯(W.W.Cooper)和罗兹(E.Rhodes)首先提出数据包络分析(Data Envelopment Analysis,简称DEA)的方法,DEA有效性的评价是对已有决策单元绩效的比较评价,属于相对评价,它常常被用来评价部门间的相对有效性(又称之为DEA有效)。

他们的第一个数学模型被命名为CCR模型,又称为模型。

从生产函数角度看,这一模型是用来研究具有多项输入、特别是具有多项输出的“生产部门”时衡量其“规模有效”和“技术有效”较为方便而且是卓有成效的一种方法和手段。

DEA数据包络分析方法

DEA数据包络分析方法

j1


j 0, j 1, 2,

, t,
min
t
s s.t.

j 1
jxj

x0

(
D1 C
2
R
)


t
s j y j y0
j 1
j 0, j 1, , t

s, s 0


其中θ无约束。
θ为第i个DMU的技术效率值,满
对应于一组权系数
v (v1, vm )T , u (u1, , un )T
输入矩阵
x x x x ... ...
11
12
1j
1n
x x x x ... ...
21
22
2j
2n
x x x x ... ...
31
32
3j
3n
x x x x ... ...
m1 m2
mj
mn
输出矩阵
y y ... y ... y
vrste考虑规模收益时的技术效率(纯技术效率);
scale考虑规模收益时的规模效率(规模效率),
纯技术效率和规模效率是对综合效率的细分;
最后有一列irs,---,drs,分别表示规模收益递增、不变、 递减。
(2)SUMMARY OF OUTPUT SLACKS、 SUMMARY OF INPUT SLACKS分别表示 产出和投入指标的松弛变量取值,即原模 型中的s值。
数据包络分析(即DEA)可以看作是一种统计分析的 新方法,它是根据一组关于输入-输出的观察值来 估计有效生产前沿面的。在有效性的评价方面,除 了DEA方法以外,还有其它的一些方法,但是那些 方法几乎仅限于单输出的情况。相比之下,DEA方 法处理多输入,特别是多输出的问题的能力是具有 绝对优势的。并且,DEA方法不仅可以用线性规划 来判断决策单元对应的点是否位于有效生产前沿面 上,同时又可获得许多有用的管理信息。因此,它 比其它的一些方法(包括采用统计的方法)优越, 用处也更广泛。

DEA数据包络分析

DEA数据包络分析

S 0,S 0
20.10.2022
17
• 例1:考虑具有4个决策单元;2个输入和1 个输出;相应的输入数据和输出数据由下 表给出:
1
23
4
1
133
4
2
23 1 3
2
1
12
1
1
20.10.2022
18
考察DMU1;取ε=105
min
[
(s1
s
2
s1 )]
s.t 1 32 33 44 s1
• 对具有非阿基米德无穷小量的C2R对偶输入模 型;可以根据以下规则判断DEA有效性:
• 若θ<1;则DMUj0不为弱DEA有效;
• 若θ=1;
^T
e
SeTS
0则DMUj0仅为弱DEA
有效;
• 若θ=1;
^T
e
S
eTS
0则DMUj0为DEA有效;
20.10.2022
21
关于DEA模型的基本定理
• 存在性定理:至少存在一个决策单元;它 是DEA有效的
输入指标:1 年末职工总数单位:人; 2 单位成本单位:元/千人公里; 3 燃料单位消耗单位:升/千人公里; 4 行车责任事故率单位:次/千人公里
输出指标:1 劳动生产率单位:元/人; 2 行车准点率%; 3 群众满意率按问卷调查% 4 车辆服务合格率包括:服务态度 服务措施 车辆设施 等%
相对有效性评价问题举例
数据包络分析概述
• 但当被衡量的同类型组织有多项投入和多项产出;且不能折 算成统一单位时;就无法算出投入产出比的数值 例如;大部 分机构的运营单位有多种投入要素;如员工规模 工资数目 运作时间和广告投入;同时也有多种产出要素;如利润 市场 份额和成长率 在这些情况下;很难让经理或董事会知道;当 输入量转换为输出量时;哪个运营单位效率高;哪个单位效率 低

数据包络分析DEA教程(全)

数据包络分析DEA教程(全)

DEA的起源与发展
金融投资
在金融投资领域,DEA用于评估投资组合的相对效率,为投资者提供决策依据。
环境保护
在环境保护领域,DEA用于评估企业的环保投入与产出的相对效率,促进企业绿色发展。
公共部门
DEA也被广泛应用于公共部门,如政府机构、学校、医院等,用于评估其资源利用效率和改进方向。
运营管理
DEA被广泛应用于运营管理领域,用于评估企业的生产效率、资源配置效率和流程改进等方面。
02
随着DEA的应用范围不断扩大,许多学者对DEA模型进行了改进和发展。例如,Banker、Charnes和Cooper提出的BCC模型,解决了CCR模型中固定规模报酬假设的问题。
03
此外,DEA还与其他方法结合,如Malmquist指数、超效率DEA、方向距离函数等,进一步扩展了DEA的应用领域和评估准确性。
除了比率法和角度法,DEA有效性判定还可以采用其他方法,如SBM模型、全局DEA模型等。
03
CHAPTER
DEA的优化与改进
考虑了不同决策单元(DMU)在不同规模下的效率变化,能够更准确地评估DMU的效率。
总结词
规模报酬可变的DEA模型假设生产过程中可能存在规模效应,即随着生产规模的扩大,生产效率可能会提高。该模型通过调整权重来考虑不同规模下的效率变化,从而更准确地评估DMU的效率。
DEA的应用领域
02
CHAPTER
DEA基本模型
CCR模型
CCR模型(Charnes, Cooper和Rhodes模型)是最早提出的数据包络分析模型,用于评估决策单元(DMU)的相对效率。
02
CCR模型假设所有DMU都具有相同的输入和输出指标,并且规模报酬不变。

DEA数据包络分析

DEA数据包络分析

即有:
n
∑j=1j yrj ≥ yrj0
(r = 1,2,…,s)
n
∑j=1j xij ≤ E xij0
n
∑j=1j = 1
,j ≥0
(i = 1,2,…,m,E<1)
(j = 1,2,…,n)
11/29/20这23阐明 j0 决策单元不处于生产前沿面上。
15
基于上述事实,能够写出如下线性规划旳数学模型:
每个决策单元有相同旳 m 项投入(输入)(i = 1,2,…,m )
每个决策单元有相同旳 s 项产出(输出) (r = 1,2,…,s )
Xij ——第 j 决策单元旳第 i 项投入 yrj ——第 j 决策单元旳第 r 项产出 衡量第 j0 决策单元是否DEA有效
11/29/2023
8
决策单元
投1 入2 项… 目m
用,但是DEA措施显得更有效.
11/29/2023
6
数据包络分析(DEA)模型简介
• DEA是使用数学规划(涉及线性规划、多目旳规划、 具有锥形构造旳广义最优化、半无限规划、随机规划 等)模型,评价具有多种输入、尤其是多种输出旳 “部门”或“单位”(称为“决策单元”,简记DMU) 间旳相对有效性(称为DEA有效)。
• 因而,需采用一种全新旳措施进行绩效比较。这种措施就 是二十世纪七十年代末产生旳数据包络分析(DEA)。 DEA措施处理多输入,尤其是多输出旳问题旳能力是具有 绝对优势旳。
11/29/2023
3
数据包络分析(DEA)源起
1978年,著名运筹学家、美国德克萨斯大学教授 A.Charnes及W.W.Cooper和E.Rhodes刊登了一篇主要论 文:“Measuring the efficiency of decision making units”(决策单元旳有效性度量),刊登在权威旳“欧洲 运筹学杂志”上。正式提出了运筹学旳一种新领域:数据 包络分析,其模型简称 C2R 模型。该模型用以评价部门间 旳相对有效性(所以被称为DEA有效)。

数据包络分析法DEA总结

数据包络分析法DEA总结

DEA(Data Envelopment Analysis)数据包络分析目录一、DEA的起源与发展(参考网络等相关文献) (2)二、基本概念 (2)1.决策单元(Decision Making Unit,DMU) (2)2.生产可能集(Production Possibility Set,PPS) (3)3.生产前沿面(Production Frontier) (3)4.效率(Efficiency) (4)三、模型 (5)R模型 (5)2.BBC模型 (5)3.FG模型 (5)4.ST模型 (5)5.加性模型(additive model,简称ADD) (5)6.基于松弛变量的模型(Slacks-based Measure,简称SBM) (5)7.其他模型 (5)四、指标选取 (6)五、DEA的步骤(参考于网络) (6)六、优缺点(参考一篇博客) (7)七、非期望产出 (7)1.非期望产出的处理方法: (8)2.非期望产出的性质: (8)八、DEA几个注意点 (9)九、DEA相关文献的总结 (9)1.能源环境效率 (9)2.碳减排与经济增长 (10)3.关于工业、制造业、产业的DEA (10)4.关于企业的DEA (11)5.其他 (12)一、DEA的起源与发展(参考网络等相关文献)数据包络分析(DEA)是一种常用的效率评估的方法,用以评价一组具有多个投入、多个产出的决策单元(Decision Making Units,DMUs)之间的相对效率。

1978年,A.Chames(查恩斯),W.Cooper(库伯)和E.Rhodes(罗兹)提出了第一个DEA模型,这个模型被命名为CCR模型。

该模型在评价多投入多产出DMU的规模有效性和技术有效性方面十分有效。

1985年,A.Chames,W.Cooper,B.Golany(格拉尼),L.Seiford(赛福德)和J.Stutz(斯图茨)给出另一个模型,称为C2GS2模型,这一模型用来研究生产部门间的“技术有效性”。

数据包络分析(DEA)

数据包络分析(DEA)

3
未来展望
随着大数据和人工智能技术的不断发展,DEA将 与这些技术结合,进一步提高评估效率和准确性。
02 DEA的基本原理
线性规划模型
线性规划模型是数据包络分析 (DEA)的基础,用于描述决策 单元(DMU)在多输入和多输出
条件下的最优配置。
DEA模型通过构建输入和输 出的权重,使得决策单元的 效率最大化,同时满足一系
列约束条件。
线性规划模型能够处理多输入 和多输出的情况,并且可以比 较不同决策单元之间的效率水
平。
决策单元与输入/输出指标
01 02 03 04
决策单元(DMU)是DEA分析的基本单位,通常代表一个组织、企业或 项目。
输入指标反映决策单元在生产过程中所投入的资源,如人力、物力、 财力等。
输出指标反映决策单元在生产过程中的产出或效益,如产量、销售额 、利润等。
决策单元的数量
无法处理多阶段或多过程生产
DEA方法的准确性在很大程度上取决于决策 单元(DMU)的数量,过少可能导致结果不 准确。
DEA方法主要适用于单阶段或多阶段生产 系统,对于多过程生产系统可能无法准确 评估。
DEA的未来发展方向
考虑不确定性
将不确定性因素纳入DEA模型中,以 提高评估的稳健性和准确性。
政策制定
政府可以利用DEA评估公共部门的效率,制定更有效的政策,优化 公共资源的配置。
DEA的历史与发展
1 2
起源
DEA由美国著名运筹学家Charnes和Cooper等 人于1978年提出,最初用于评估公共部门和营 利组织的效率。
发展
随着DEA理论的不断完善和应用领域的拓展, DEA逐渐被用于金融、医疗、教育等更多领域。
04 DEA的应用案例

数据包络分析法总结

数据包络分析法总结

数据包络分析法总结数据包络分析法(Data Envelopment Analysis,DEA)是一种评价相对效率的方法,通过将多个输入和输出指标结合起来,对不同单位或者决策单元进行效率评估。

下面将对数据包络分析法进行总结。

一、数据包络分析法的基本原理数据包络分析法的基本原理是通过构建一个虚拟的最优参考集,来评估每一个单位的相对效率。

该方法将每一个单位的输入和输出指标作为一个向量,通过线性规划模型来确定每一个单位的相对效率。

具体步骤如下:1. 确定输入和输出指标:首先需要确定评估对象的输入和输出指标,这些指标应该能够全面反映单位的生产过程和产出结果。

2. 构建线性规划模型:将每一个单位的输入和输出指标构建成一个线性规划模型,其中输入指标作为约束条件,输出指标作为目标函数。

3. 求解线性规划模型:通过求解线性规划模型,可以得到每一个单位的相对效率评分。

4. 确定最优参考集:通过比较每一个单位的相对效率评分,可以确定最优参考集,即最高效率的单位。

二、数据包络分析法的优点数据包络分析法具有以下几个优点:1. 能够充分利用多个指标:相比传统的评价方法,数据包络分析法能够综合考虑多个指标,更加全面地评估单位的效率。

2. 能够识别相对效率较高的单位:通过比较每一个单位的相对效率评分,可以准确地确定相对效率较高的单位,为决策提供参考。

3. 无需预先设定权重:数据包络分析法不需要预先设定指标的权重,而是通过线性规划模型自动确定每一个指标的权重。

4. 可以处理多个输入和输出指标的不一致性:数据包络分析法可以处理多个输入和输出指标的不一致性,使评估结果更加准确。

三、数据包络分析法的应用领域数据包络分析法在实际应用中具有广泛的应用领域,包括但不限于以下几个方面:1. 经济效率评估:数据包络分析法可以用于评估企业、行业或者国家的经济效率,匡助发现低效率的领域和改进的空间。

2. 绩效评估:数据包络分析法可以用于评估个人、团队或者组织的绩效,匡助发现绩效较好的个体和改进的方向。

DEA数据包络分析法

DEA数据包络分析法

DEA数据包络分析法数据包络分析法(Data Envelopment Analysis, DEA)是一种管理分析方法,用于评估相对效率和有效性,特别是在多个输入和输出变量之间存在复杂的相互依赖性的情况下。

DEA可以应用于各种不同类型的组织和行业,包括生产企业、公共部门机构和非盈利组织等。

数据包络分析法最早由Charnes、Cooper和Rhodes等人于1978年提出,其核心原理是利用线性规划方法构建一系列包络曲线,衡量各组织单位的相对效率水平。

在DEA方法中,每个单位被视为一个决策单元,其输入和输出变量被用来衡量其绩效和效率。

DEA的主要优势之一是可以处理多个输入和输出变量之间的复杂关系。

在传统的效率评估方法中,通常只考虑一个输入和一个输出变量,而DEA可以同时评估多个输入和输出变量之间的相互关系。

这使得DEA在实际应用中更加灵活和适用。

DEA方法的基本思想是将各决策单元的输入和输出变量通过线性规划模型转化为相对效率值。

在这个模型中,每个决策单元被认为是一个能够最大化输出而最小化输入的理想决策单元。

DEA分析的目标是找到可以最大程度地逼近这个理想决策单元的决策单元。

在DEA方法中,有两种基本的模型类型:CCR模型(Charnes,Cooper and Rhodes Model)和BCC模型(Banker, Charnes and Cooper Model)。

CCR模型假定所有决策单元都处于可变规模生产状态,而BCC模型则假定决策单元的规模是固定的。

这两个模型都可以通过线性规划方法求解,得到每个决策单元的相对效率值和对应的最优权重。

DEA方法的应用范围广泛。

例如,在生产企业中,DEA可以评估不同生产单元的生产效率,并确定可能的改进措施。

在公共部门和非盈利组织中,DEA可以评估不同单位的服务效率,并帮助优化资源配置。

此外,DEA方法还可以用于研究和比较不同国家、地区或行业的效率水平。

然而,DEA方法也存在一些限制。

DEA法的基本原理(可编辑修改word版)

DEA法的基本原理(可编辑修改word版)

j j j DEA 法的基本原理数据包络分析(data envelopment analysis )简称 DEA ,是数学、运筹学、经济学和管理学的一个新的交叉领域。

本文使用的是 DEA方法 C 2R 模型。

在对同类部门或单位进行评价时,评价的依据往往是它们的“输入” 和“输出”数据。

根据输入、输出数据评价同类部门或单位的优劣,也就是评价它们的相对有效性。

DEA 方法是处理此类问题的有力工具, 该方法通过数学规划模型对决策单元群的输入和输出数据进行综合分析后,能够得出每个决策单元(decision making units ,DMU )相对于其他单元综合效率的数量指标,对决策单元间的相对有效性进行排序。

设有 n 个同类型的企业(决策单元),对于每个企业都有 m 种类型的“输入”(表示该单元对“资源”的消耗)以及 s 种类型的“输出” ( 表示该单元在消耗了“资源”之后的产出)。

x j = ( x 1 j , x 2 j ,..., x mj )T 和y j = ( y 1 j , y 2 j ,..., y mj )T 分别表示第 j ( j = 1, 2, ... n ) 个决策单元 DMU 的输入量和输出量; v = (v , v ,..., v )T 和u = (u , u ,..., u )T 分别为 m 种输入和 s 种输 1 2 m 1 2 s出对应的权向量,且v ∈ E m , u ∈ E s 使得决策单元 j (DMU ,1 ≤ j ≤ n ) 的效率评价指数h j = u T y v T x j ≤ 1, j ( j = 1, 2, ... n ) j效率评价指数h 的含义为:在权系数v ∈ E m , u ∈ E s 之下,投入v T x ,产出u T y 时的产出、投入之比。

以 j (1 ≤ j ≤ n ) 决策单元DMU 的相 j 0 0 j 0ju y ⎪ ⎨ j j ⎩ T y 0 T对效率评价指数h j 0 = 0 ≤ 1 为目标,构成如下公式: v T x max h j 0 ⎧ u T y u T y = 0 v T x ⎪h j ⎪ ⎪ = j v T x ≤ 1, j = 0,1, 2, , n T s .t .⎨v = (v 1 , v 2 ,..., v m ) ≥ 0 ⎪u = (u , u ,..., u )T ≥ 0⎪ 1 2 s ⎪ ⎩使用 Chames-Cooper 变换可将分式规划为一个等价的线性规划形式。

数据包络分析法dea模型)

数据包络分析法dea模型)

一、数据包分析法数据包分析是一种基于性划的用于价同型〔或目〕工作效相有效性的特殊工具手段。

例如学校、医院、行的分支机构、超市的各个部等,各自具有相同〔或相近〕的投入和相同的出。

衡量之的效上下,通常采用投入出比个指,当各自的投入出均可折算成同一位量,容易算出各自的投入出比并按其大小行效排序。

但当被衡量的同型有多投入和多出,且不能折算成一位,就无法算出投入出比的数。

例如,大局部机构的运位有多种投入要素,如工模、工数目、运作和广告投入,同也有多种出要素,如利、市份和成率。

在些情况下,很理或董事会知道,当入量出量,哪个运位效率高,哪个位效率低。

数据包分析法的主要思想一个系或者一个生程可以看成一个元在一定可能范内,通投入一定数量的生要素并出一定数量的“品〞的活。

然些活的具体内容各不相同,但其目的都是尽可能地使一活取得最大的“效益〞。

由于从“投入〞到“出〞需要一系列决策才能,或者,由于“出〞是决策的果,所以的元被称“决策元〞〔DecisionMakingUnits ,DMU〕。

可以每个DMU都代表一定的含,它的根本特点是具有一定的入和出,并且在将入成出的程中,努力自身的决策目。

数据包分析法的根本模型我主要介DEA中最根本的一个模型——C2R模型。

m投入〔有n个决策元〔j=1,2,⋯,n〕,每个决策元有相同的入〕,入向量每个决策元有相同的s出〔出〕,出向量即每个决策元有m种型的“入〞及s种型的“出〞。

x ij表示第j个决策元第i种型入的投入量;yij表示第j个决策元第i种型出的出量;了将所有的投入和所有的出行合一,即将个生程看作是一个只有一个投入量和一个出量的生程,我需要每一个入和出行,入和出的向量分:T,uu1,u2,,us T型入的重,u rvv1,v2,,vm。

v i第i 第r型出的重。

,第j个决策元投入的合m sv i x ij,出的合u r y rj,i1r1我定每个决策元DMUj的效率价指数:模型中xij,y ij数〔可由史料或数据得到〕,于是上是确定一最正确的向量 v 和u ,使第j 个决策元的效率 hj 最大。

数据包络分析法DEA总结

数据包络分析法DEA总结

数据包络分析法DEA总结数据包络分析法(Data Envelopment Analysis,DEA)是一种用于评估组织绩效的管理工具。

它的出现主要是为了解决传统评估方法在多个输入和输出因素存在的情况下的不足。

DEA通过构建线性规划模型来评估组织的效率水平,并确定其对应的相对效率。

DEA的基本思想是通过建立输入与输出之间的效率边界,来确定各个组织在效率边界上的效率水平。

具体而言,DEA通过比较各个组织所使用的输入和实现的输出,来确定其输入与输出之间的关系。

在DEA模型中,通过比较不同组织之间的相对效率,可以找到效率边界上的最优组织,并将其他组织的效率相对于最优组织进行评估。

DEA的核心是确定组织的技术效率,即组织在已有技术条件下获取最大产出的能力。

为了确定技术效率,DEA首先建立起输入与输出之间的线性关系,并根据线性规划模型计算每个组织的效率得分。

具体而言,DEA 利用线性规划模型来解决组织效率评估的两个核心问题:输入优化问题和输出最大化问题。

输入优化问题是指在给定输出的条件下,如何选择恰当的输入使得组织的效率最大化。

在DEA中,通过构建线性规划模型,可以确定每个组织的输入权重,从而实现输入优化。

输出最大化问题是指在给定输入的条件下,如何选择恰当的输出使得组织的效率最大化。

在DEA中,通过构建线性规划模型,可以确定每个组织的输出权重,从而实现输出最大化。

DEA的优点主要有以下几个方面。

首先,DEA能够考虑多个输入和输出因素,避免了单指标评价的单一性。

其次,DEA不需要明确建立效用函数和生产函数,能够更加有效地进行绩效评估。

此外,DEA能够对相对有效的组织进行排序和评估,使得评估结果更加科学和客观。

然而,DEA也存在一些不足之处。

首先,DEA只能评估相对效率,无法确定绝对效率的水平。

其次,DEA所得到的评估结果受到输入输出数据的选择和排列顺序的影响,可能会导致评估结果的不稳定性。

此外,DEA 对于输入和输出的权重设定非常敏感,不同的权重选择可能会导致不同的评估结果。

(完整版)数据包络分析法DEA总结

(完整版)数据包络分析法DEA总结

DEA(Data Envelopment Analysis)数据包络分析目录一、DEA的起源与发展(参考网络等相关文献) (2)二、基本概念 (2)1.决策单元(Decision Making Unit,DMU) (2)2.生产可能集(Production Possibility Set,PPS) (3)3.生产前沿面(Production Frontier) (3)4.效率(Efficiency) (4)三、模型 (5)R模型 (5)2.BBC模型 (5)3.FG模型 (5)4.ST模型 (5)5.加性模型(additive model,简称ADD) (5)6.基于松弛变量的模型(Slacks-based Measure,简称SBM) (5)7.其他模型 (5)四、指标选取 (6)五、DEA的步骤(参考于网络) (6)六、优缺点(参考一篇博客) (7)七、非期望产出 (7)1.非期望产出的处理方法: (8)2.非期望产出的性质: (8)八、DEA几个注意点 (9)九、DEA相关文献的总结 (9)1.能源环境效率 (9)2.碳减排与经济增长 (10)3.关于工业、制造业、产业的DEA (10)4.关于企业的DEA (11)5.其他 (12)一、DEA的起源与发展(参考网络等相关文献)数据包络分析(DEA)是一种常用的效率评估的方法,用以评价一组具有多个投入、多个产出的决策单元(Decision Making Units,DMUs)之间的相对效率。

1978年,A.Chames(查恩斯),W.Cooper(库伯)和E.Rhodes(罗兹)提出了第一个DEA模型,这个模型被命名为CCR模型。

该模型在评价多投入多产出DMU的规模有效性和技术有效性方面十分有效。

1985年,A.Chames,W.Cooper,B.Golany(格拉尼),L.Seiford(赛福德)和J.Stutz(斯图茨)给出另一个模型,称为C2GS2模型,这一模型用来研究生产部门间的“技术有效性”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DEA(Data Envelopment Analysis)数据包络分析目录一、DEA的起源与发展(参考网络等相关文献) (2)二、基本概念 (2)1.决策单元(Decision Making Unit,DMU) (2)2.生产可能集(Production Possibility Set,PPS) (3)3.生产前沿面(Production Frontier) (3)4.效率(Efficiency) (4)三、模型 (5)R模型 (5)2.BBC模型 (5)3.FG模型 (5)4.ST模型 (5)5.加性模型(additive model,简称ADD) (5)6.基于松弛变量的模型(Slacks-based Measure,简称SBM) (5)7.其他模型 (5)四、指标选取 (6)五、DEA的步骤(参考于网络) (6)六、优缺点(参考一篇博客) (7)七、非期望产出 (7)1.非期望产出的处理方法: (8)2.非期望产出的性质: (8)八、DEA几个注意点 (9)九、DEA相关文献的总结 (9)1.能源环境效率 (9)2.碳减排与经济增长 (10)3.关于工业、制造业、产业的DEA (10)4.关于企业的DEA (11)5.其他 (12)一、DEA的起源与发展(参考网络等相关文献)数据包络分析(DEA)是一种常用的效率评估的方法,用以评价一组具有多个投入、多个产出的决策单元(Decision Making Units,DMUs)之间的相对效率。

1978年,A.Chames(查恩斯),W.Cooper(库伯)和E.Rhodes(罗兹)提出了第一个DEA模型,这个模型被命名为CCR模型。

该模型在评价多投入多产出DMU的规模有效性和技术有效性方面十分有效。

1985年,A.Chames,W.Cooper,B.Golany(格拉尼),L.Seiford(赛福德)和J.Stutz(斯图茨)给出另一个模型,称为C2GS2模型,这一模型用来研究生产部门间的“技术有效性”。

1987年,A.Chames,W.Cooper,魏权龄和黄志明又得到了称为锥比率的数据包络模型C2WH模型。

这一模型可用来处理具有过多的输入及输出的情况,而且锥的选取可以体现决策者的“偏好”,灵活地应用这一模型,可以将C2R模型中确定出的DEA有效决策单元进行分类或排队。

此后,在国内外学者们的共同努力下,不断有新的DEA模型问世,DEA方法也得以不断完善和发展。

随着理论研究的进一步深入,DEA的应用领域日益广泛,成为社会、经济和管理领域的一种重要而有效的分析工具,并取得了许多应用成果。

二、基本概念主要参考的是这两篇文章:杨国梁,刘文斌,郑海军. 数据包络分析法(DEA)综述[J].系统工程学报,2013,28(6):840-860.罗艳. 基于DEA方法的指标选取和环境效率评价研究[D].中国科学技术大学博士学位论文,2012.1.决策单元(Decision Making Unit,DMU)DMU是效率评价的对象,可以理解为一个将一定“投入”转化为一定“产出”的实体。

每个DMU都在生产过程中将一定数量的生产要素转化成产品,努力实现自身的决策目标,因此他们都表现出一定的经济意义。

DMU的概念是广义的,可以是工厂、银行等盈利性组织,也可以是学校、医院等非营利性组织。

在多数情况下,我们说的DMU指的是同质的(或同类型的)个体,也即具有以下特征的DMU:(1)具有相同的目标;(2)具有相同的外部环境;(3)具有相同的投入和产出指标。

同质性保证了决策单元之间的可比性和评价结果的公平性。

但当我们进一步把“黑箱”打开,深入研究决策单元的内部结构和子单元的生产效率时,有时会涉及非同质决策单元。

例如:隶属于同一公司的若干个分公司,虽然他们具有相同的投入和产出,但由于地理位置的原因而处于不同的外部环境中。

总部在进行绩效考评时,必须釆取合适的方法处理分公司非同质的问题,以刺激内部竞争,从而提高整体效率。

Castelli等人(2001)曾建立DEA-like模型来评价非同质的多个决策单元。

2.生产可能集(Production Possibility Set,PPS)记X、Y为某个DMU在其生产活动中的投入、产出向量,则可以用(X,Y)来表示这个DMU的整个生产活动。

考虑n个DMU单元,单元DMU j(j=1,2,3…,n)有m个投入X ij(i=1,2,3…,m),s个产出Y rj(r=1,2,3…,s)。

定义1:称集合T={(X,Y)|产出Y能用投入X生产出来}为所有可能的生产活动构成的生产可能集合。

根据Banker的研究,生产可能集需要满足四个假设:假设1表明生产可能集T是一个凸集;假设2即若以原投入的k倍进行生产,可以得到原产出k倍的产出;假设3即在原来的生产活动的基础上增加或减少产出的生产总是可能的。

假设2还分为2-1收缩性假设0<k≤1,2-2扩张性假设k ≥1。

在DEA模型中,几种最基本的生产可能集是T CCR,T BBC,T FG,T ST,分别对应于CCR模型,BCC模型,FG模型,ST模型。

T CCR满足假设1-4,T BBC满足假设1、3、4,T FG满足假设1、2-1、3、4,T ST 满足假设1、2-2、3、4。

3.生产前沿面(Production Frontier)定义2:则称L为生产可能集T的弱有效面,称L∩T为生产可能集T的弱生产前沿面。

特别地,若ω>0,μ>0则称L为T的有效面,称L∩T为生产可能集T的生产前沿面(魏权龄,2004)。

在DEA理论中,判断一个DMU是否为DEA有效,实质上就是判断该DMU 是否落在生产可能集的生产前沿面上。

4.效率(Efficiency)在DEA理论中,效率通常包括:技术效率(technical efficiency)、规模效率(scale efficiency)和配置效率(allocation efficiency)。

技术效率指的是在保持决策单元投入不变的前提下,实际产出同理想产出的比值。

技术效率反映了决策单元在给定投入情况下获取最大产出的潜力。

一般情况下,技术效率取值在0和1之间。

若技术效率值等于1,则说明DMU在现有投入水平下实现了产出的最大化,是技术有效的;若技术效率值小于1,则说明DMU的实际产出和理想产出之间还存在差距,没有位于生产前沿面上。

规模效率是在CCR效率和BCC效率的基础上定义的。

在Cooper et al.(2000)的著作中,CCR效率值称为全局技术效率,BCC效率值称为局部纯技术效率,两者的比值称为规模效率,即DMU在规模报酬不变下的技术效率和规模报酬可变下的技术效率的比值。

同样,规模效率值等于1,说明决策单元是规模有效的;规模效率值小于1,说明决策单元是规模无效的。

配置效率指的是在保持决策单元产出不变的前提下,决策单元的总体效率和技术效率的比值(Hartman et al., 2001 )。

其中,总体效率定义为决策单元的最小成本与实际成本的比值。

在计算总体效率时,考虑了所有投入变量的价格信息,总体效率越接近于1,说明决策单元的运营成本越接近理想状态。

当配置效率等于1时,说明决策单元的配置是有效的。

A、B、C三点均在生产前沿面上,其效率值均为1,也即都是技术有效的。

A点为弱有效,B、C点为有效。

三、模型主要参考了这篇文章:罗艳. 基于DEA方法的指标选取和环境效率评价研究[J].中国科学技术大学博士论文,2012.以下部分只是简要列举了各种类型的DEA模型,详细的模型建模及相关公式详见相关参考文献。

R模型CCR模型是第一个DEA模型,也是最基本的DEA模型之一,由Chames,Cooper 和Rhodes于1978年建立。

该模型是以规模收益不变(Constant Returns to Scale, CRS)为前提,对决策单元进行效率评价。

2.BBC模型Banker,Chames 和Cooper (1984)对Chames 等人(1978)的工作进行拓展,建立了BCC模型,将其应用于规模收益可变(Variable Returns to Scale, VRS)情况下的效率评价问题。

3.FG模型FG模型是Rire和Grosskopf (1985)在使用费用方法研究规模收益问题时提出的,用于规模收益非递增情况下的决策单元的效率评价问题。

4.ST模型Seiford和Thrall (1990)提出了ST模型,用于规模收益非递减情况下的决策单元的效率评价问题。

5.加性模型(additive model,简称ADD)以上四种基本模型中,除CCR模型外,其他投入导向和产出导向模型的求解结果并不一定保持一致,因此在计算时需要对导向加以区分,而加性模型(Chames et al., 1985)的好处是能够将两种导向结合在一个模型中。

6.基于松弛变量的模型(Slacks-based Measure,简称SBM)SBM模型(Tone, 2001)是对ADD模型的拓展,解决了投入或产出变量的单位不一致的情况下的效率评价问题,即具有单位不变性(units invariant)。

7.其他模型随着DEA理论体系的不断发展和完善,国内外学者相继提出了一系列DEA 模型,除了以上介绍的几种,还包括:Russell测量模型;保证域模型;考虑偏好的锥比率模型;FDH 模型;超效率模型;交叉效率模型;逆DEA模型;网络DEA 模型;含有不可控变量的DEA模型;含有分类变量的DEA模型;时间序列DEA 模型;随机DEA模型;含有非期望产出的环境效率模型等等。

四、指标选取主要参考的是这篇文章:罗艳. 基于DEA方法的指标选取和环境效率评价研究[D].中国科学技术大学博士学位论文,2012.运用数据包络分析方法对一组决策单元进行效率评价的前提是建立一套合理的评价指标体系。

评价目的不同,选取的评价指标也不同。

即使针对同样的目的,选取的评价指标不同,得到的结果也千差万别。

DEA是一种基于数据的评价方法,所以科学地选择评价指标是效率评价工作的关键,也是保证评价结果合理性的前提。

在指标选取中,需要注意这样几个问题:(1)指标个数要合适。

DEA理论中的拇指法则(rule of thumb)规定,决策单元个数至少要为评价指标个数的两倍。

一旦指标个数较多,违背了拇指法则,将会导致有效决策单元个数较多,大大降低DEA模型的区分度;而指标个数较少,则不利于发现问题,也无法为决策者提供充分的信息以辅助决策。

(2)选取的指标能够真实反映生产过程。

这就要求指标选取要尽量避免任意性和主观性,并能正确定义每一个指标的属性(或为投入变量,或为产出变量1)。

(3)所选指标要易于获取数据。

相关文档
最新文档