催化剂制备与表征
非晶态合金催化剂的制备与表征研究
![非晶态合金催化剂的制备与表征研究](https://img.taocdn.com/s3/m/e44e321e82c4bb4cf7ec4afe04a1b0717ed5b35f.png)
非晶态合金催化剂的制备与表征研究
非晶态合金催化剂是一类新型的催化剂,在催化领域中有广泛的应用。
本文将从制备和表征两个方面,分步骤进行阐述。
制备过程:
1.选材:根据催化剂所需的特性,选择适合制备非晶态合金催化剂的
原料。
2.熔融法:将原料与其他金属原料掺入一定比例的熔剂中,通过高温
熔融,使原料均匀混合。
3.快速冷却:经过熔融后,需要通过快速冷却(比如水淬)使合金迅
速形成非晶态,从而获得高质量的非晶态合金催化剂。
4.干燥和研磨:完成快速冷却后,对合金进行干燥和研磨,使催化剂
的颗粒大小均匀。
表征过程:
1.X射线衍射:将制备好的催化剂样品进行X射线衍射分析,判断催化剂结构和形貌。
2.扫描电镜:利用扫描电子显微镜,对催化剂的表面形貌进行观察和
分析。
3.傅里叶变换红外光谱:通过傅里叶变换红外光谱,分析催化剂的表
面官能团和结构。
4.比表面积分析:通过比表面积分析技术,测定催化剂颗粒之间的间
距和大小,以评估催化剂的特性。
综上所述,非晶态合金催化剂的制备与表征研究,是一项很有挑战性
的研究工作。
其成功与否,不仅取决于原料选材和制备过程,也取决
于科学合理的表征方法。
希望今后在相关领域的研究工作中,能够有更好的发展和应用。
催化剂的制备与表征
![催化剂的制备与表征](https://img.taocdn.com/s3/m/26fe3b6f011ca300a6c390d6.png)
一、催化剂的表面积 一般说,催化剂表面积越大, 其上所含的活性中心越多,催 化剂的活性也越高。
但催化剂表面活性随催化剂表面积增加而提高的关系仅出现在
活性组分均匀分布的情况下。而大多数情况下: 1、催化剂制备过程中活性组分可能不是均匀的分布; 2、催化剂微孔的存在可能影响到传质过程,使表面不能充分 利用; 3、有时催化剂的活性表现是由于反应机理不同,而与表面积 无关。如杂多酸催化剂的还原反应: 以异丁酸(IBA)还原时,遵循体相 还原机理,还原速率正比于催化 剂的重量; 以甲基丙稀醛(MLA)还原时,遵循 表面还原机理,还原速率与催化剂 表面积成正比。
i
i
cx (1 x )( 1 x cx )
s 0 (1 c x )
i0
x = 1时,V = 。当吸附质压力为饱和蒸气压时,即P = P0,将 发生凝聚,V = 。因此,x = 1与P = P0相对应,故x = P/P0,
V Vm (1 c ( P / P0 ) P P0 )( 1 ( c 1 ) P P0 )
在IV型吸附等温线上,在一定相对压力下,脱附支上的吸附量 总是大于对应吸附支上的吸附量。滞后现象的出现与催化剂中 细孔内凝聚有关。
模型一-McBain墨水瓶模型: 假设细孔形状如右图,瓶口处半径rn, 瓶体处半径rb。根据Kelvin方程,瓶口 和瓶体处发生凝聚的蒸气压分别为
Pn P0 exp( Pb P0 exp( ~ 2 V ~ 2 V rb RT rn RT )
墨水瓶模型的 毛细管凝聚
)
因为rb > rn,故Pb > Pn。
模型二-Cohan两端开口的圆柱形模型:在 孔内,气-液间不是形成弯月面,不能直接 用Kelvin方程,而是形成圆筒形液膜,随压 力增加,液膜逐渐增厚。 Cohan给出凝聚所需的压力为 ~ 2 V
高效能催化剂的制备与表征
![高效能催化剂的制备与表征](https://img.taocdn.com/s3/m/7dd734eca48da0116c175f0e7cd184254a351b7f.png)
高效能催化剂的制备与表征催化剂是指能够降低化学反应活化能的物质,其中高效能催化剂是指能够高效、高选择性地催化化学反应,并具有较高的稳定性和重复使用性。
高效能催化剂的制备与表征是催化化学领域的两个关键问题,涉及到化学合成、物理化学表征等多种学科知识,本文将着重介绍高效能催化剂的制备方法及相关表征技术的应用。
一、制备方法高效能催化剂的制备方法较多,常见的方法包括物理法、化学法、生物法等,以下将介绍其中常用的几种方法:1. 物理法物理方法常用于制备载体材料,如高分子材料、氧化铝、二氧化硅等。
其中最常见的制备方法是溶胶-凝胶法、气相沉积法和离子交换法。
其中,溶胶-凝胶法是一种简单易行的方法,将溶液中的前驱体通过水热反应或干燥法制得,常用于制备氧化铝等载体材料;气相沉积法则是将气体中的前驱体沉积在载体表面,常用于制备催化剂薄膜;离子交换法则是将离子交换载体表面,常用于制备具有离子交换能力的载体材料。
2. 化学法化学方法是最常用的高效能催化剂制备方法之一,包括溶液法、共沉淀法、沉积-还原法等。
其中溶液法和共沉淀法是最常见的方法,溶液法是指将溶液中的前驱体通过沉淀或复分解反应制得,常用于制备负载型催化剂;共沉淀法则是将两种或两种以上的前驱体共沉淀在一起,以制备多组分催化剂。
3. 生物法生物法是一种比较新型的催化剂制备方法,利用酶、酵母、葡萄球菌等生物体内的催化作用来制备催化剂。
这种方法制备的催化剂具有更高的特异性和催化活性,但难以控制反应过程,需要在生物培养过程中进行优化。
二、表征技术制备完高效能催化剂后,如何判断催化剂的稳定性、催化活性等性能是催化剂研究中的关键问题,常用的表征方法有:1. X射线衍射X射线衍射是一种常用的催化剂结构表征方法,它可以提供催化剂的晶体结构、相组成、颗粒大小和形状等信息。
催化剂样品经过较高温度煅烧后,利用X射线进行衍射分析,得到结构信息。
2. 电子显微镜电子显微镜是一种高分辨率表征方法,可以提供催化剂的形貌、性质和微观结构信息。
中英文催化剂的制备与表征(catalysis and physical properties)
![中英文催化剂的制备与表征(catalysis and physical properties)](https://img.taocdn.com/s3/m/fa30751f960590c69ec376c5.png)
Introduction to this subject
➢ Preparation, characterization and application of a catalyst is crucial to innovate a novel catalyst.是发明一个新催化剂的关键。
➢ Catalyst is usually not the same with other chemicals, especially pure chemicals.催化剂一般与其他化学品一样,特别是纯化学品。
Definition of Catalyst
➢ Ostwald (德国)的观点 催化剂是一种能够改变化学反应的速度,而它本身又不 参与最终产物的 物质。 (流行)
➢ IUPAC定义: 催化剂能够加速反应速率而不改变反应的标准Gibbs自 有焓变化。
➢ 国内新近定义 催化时加速反应速度、控制反应方向或产物构成,而不 影响化学平衡的一类作用。起这种作用的物质称为催化 剂,它不在主反应的化 学计量式中反映出来,即在反应 中不被消耗。
Ideal surface is not perfect
理想的表面是不完美的
扭结
阶梯空位
阶梯位
台阶吸附的原子 台阶空位
球的堆积模型表示不完美表面
Heterogeneous Catalyst
* Metals (Transition metals, IB metals);金属
Fe Co Ni Ru Rh Cu Ag Au Pd Os Ir Pt
Mechanism for heterogeneous Catalysis
Heterogeneous Catalysis
➢ Heterogeneous mechanism is difficult to investigated in the laboratory. Disappearance of reactants and appearance of products are easily followed, but important features such as the rates and energetic of adsorption, structure of active sites, the nature of active intermediates, require separate experimentation using a constantly changing arsenal of techniques. 非均相机理的实验室研究非常困难。反应物的消耗和产物的生成比 较容易追踪,但许多重要的因素比如速度和吸附能,活性位结构、 活性中间体特点等需要通过大量的单因素实验来得出。
贵金属催化剂的制备与表征
![贵金属催化剂的制备与表征](https://img.taocdn.com/s3/m/82da686a905f804d2b160b4e767f5acfa1c7830b.png)
贵金属催化剂的制备与表征催化剂是一种能够促进化学反应的物质,其中贵金属催化剂具有独特的催化性能。
贵金属催化剂可以催化许多重要的化学反应,如加氢、氧化、脱氢等反应,具有广阔的应用前景。
本文将介绍贵金属催化剂的制备与表征。
一、贵金属催化剂的制备制备贵金属催化剂的方法多种多样,比较常见的有贵金属离子还原法、嵌入法、沉淀法、还原处理后膜法等。
1. 贵金属离子还原法贵金属离子还原法是一种经典的贵金属催化剂制备方法。
该方法使用贵金属盐溶液,将其还原成贵金属纳米粒子。
还原剂通常是还原性较强的物质,如氢气、氯化亚锡、氨水等。
通常,还原剂的数量、还原温度及pH值等因素均会对贵金属催化剂的制备产生影响。
2. 嵌入法嵌入法是一种简单易行的贵金属催化剂制备方法。
该方法通常将贵金属催化剂嵌入到载体中,如炭黑、硅胶等。
嵌入贵金属的原理是将贵金属盐的水溶液与载体溶液混合,然后将混合物固化后,通过热处理或还原处理,将贵金属氧化物还原成纳米粒子。
这种方法制备的贵金属催化剂常常具有高的活性和选择性。
3. 沉淀法沉淀法是一种常见的贵金属催化剂制备方法。
该方法将贵金属盐溶液加入还原剂,制备贵金属纳米粒子。
然后通过离子交换或阳离子吸附等方法,将贵金属纳米粒子沉淀到载体表面,制备贵金属催化剂。
4. 还原处理后膜法还原处理后膜法是一种新型的贵金属催化剂制备方法。
该方法将贵金属盐溶液分散在载体溶液中,制备贵金属纳米粒子。
然后将溶胶涂覆在载体上,通过还原处理制备贵金属催化剂膜。
这种方法制备的贵金属催化剂通常具有较高的催化活性和选择性。
二、贵金属催化剂的表征贵金属催化剂的表征是制备催化剂的过程中十分重要的一环。
正确而准确地表征贵金属催化剂的物理和化学性质,能够为催化反应机理的研究提供有力的支持。
1. 粒径分布粒径分布是一种表征贵金属催化剂粒子大小的方法。
通常,通过透射电镜(TEM)、扫描电子显微镜(SEM)等仪器,观察贵金属粒子的形貌和大小。
贵金属粒子的粒径大小是影响贵金属催化剂催化活性和选择性的重要因素之一。
分子筛催化剂的制备与表征研究
![分子筛催化剂的制备与表征研究](https://img.taocdn.com/s3/m/c8402f8ba0c7aa00b52acfc789eb172ded6399d5.png)
分子筛催化剂的制备与表征研究分子筛催化剂是一种重要的催化材料,具有广泛的应用前景。
它的制备与表征研究对于提高催化剂的活性和选择性具有重要意义。
本文将从分子筛催化剂的制备方法、表征手段以及研究进展等方面进行论述。
一、分子筛催化剂的制备方法分子筛催化剂的制备方法多种多样,常见的有水热法、溶胶-凝胶法、固相合成法等。
水热法是一种常用的制备方法,通过在高温高压下将硅源和铝源与模板分子反应,形成具有特定孔径和结构的分子筛催化剂。
溶胶-凝胶法则是将溶胶中的硅源和铝源与模板分子混合,并通过溶胶凝胶过程形成凝胶,最后经过煅烧得到分子筛催化剂。
固相合成法则是将硅源和铝源与模板分子一起固定在载体上,然后通过煅烧去除模板分子得到分子筛催化剂。
二、分子筛催化剂的表征手段分子筛催化剂的表征是研究其结构和性能的重要手段。
常用的表征手段包括X 射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、氮吸附-脱附等。
XRD可以用来确定分子筛催化剂的晶体结构和晶格常数,SEM和TEM可以观察其形貌和颗粒大小,FTIR可以分析其表面官能团的种类和含量,氮吸附-脱附则可以测定其比表面积和孔径分布。
三、分子筛催化剂制备与表征研究的进展随着催化剂研究的不断深入,分子筛催化剂的制备与表征研究也取得了一系列进展。
在制备方法方面,研究人员不断改进和创新,提出了一些新的制备方法,如溶胶-凝胶-浸渍法、模板离子交换法等。
这些新的制备方法可以更好地控制分子筛催化剂的孔径和结构,进一步提高其催化性能。
在表征手段方面,研究人员也在不断探索和改进,如引入原位表征技术,可以实时观察催化反应过程中分子筛催化剂的结构变化,从而深入理解催化机理。
此外,分子筛催化剂的应用领域也在不断扩展。
除了传统的石油化工领域,如催化裂化和异构化等,分子筛催化剂在环境保护、新能源等领域也有广泛应用。
例如,分子筛催化剂可以用于废水处理和废气净化,通过催化反应将有害物质转化为无害物质,达到环境保护的目的。
单原子催化剂的制备及其性能研究
![单原子催化剂的制备及其性能研究](https://img.taocdn.com/s3/m/711eff529a6648d7c1c708a1284ac850ac020454.png)
单原子催化剂的制备及其性能研究随着人们对环境问题的重视,绿色化学逐渐成为化学领域的研究热点。
单原子催化剂作为一种绿色化学催化剂,因其高效、高选择性,已经逐渐成为许多反应中的新选择。
本文将从单原子催化剂的制备、表征及其性能研究进行阐述。
一、单原子催化剂的制备单原子催化剂的制备可以通过不同的方法,如溶胶-凝胶法、原子沉积法、共价有机框架法等。
这些方法的基本原理和步骤基本相同,主要是通过控制催化剂前体的结构和制备条件,实现单原子分散在载体表面上。
其中,溶胶-凝胶法是常用的一种制备方法。
其基本原理是将金属前体溶解在适当的溶剂中,与载体表面作用,形成溶胶体系。
再通过控制凝胶体系中的结构及加热条件,实现单原子分散在载体表面上。
而原子沉积法,则是将载体表面镀上金属前体,再通过高温还原或氧化处理,形成单原子催化剂。
二、单原子催化剂的表征单原子催化剂的表征主要包括结构、组成、形貌、催化性能等方面。
其中,催化剂的结构是催化剂性能的决定性因素。
传统的表征方法有透射电子显微镜(TEM)、扫描电子显微镜(SEM)、原子力显微镜(AFM)等。
但由于单原子催化剂的粒径较小,这些传统的方法很难直接观察到单原子分散的情况。
因此,现在通常采用高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)等更高级的表征方法来表征单原子催化剂的结构、组分及表面状态等。
三、单原子催化剂的性能研究单原子催化剂的性能研究主要包括催化活性、稳定性、选择性等方面。
其中,催化活性是评价催化剂性能的主要指标之一。
在单原子催化剂中,由于大部分金属原子都处于表面位置,因此催化活性相对传统纳米催化剂要高。
此外,在同一催化剂中,催化活性也可以通过改变催化剂前体和载体的比例、改变前体的配位方式和载体的物理化学性质等方式来实现。
稳定性是另一个需要考虑的性能指标。
相对于传统纳米催化剂,单原子催化剂由于单原子的稳定性差,很容易发生聚集和析出等现象,因此稳定性是很重要的研究方向。
mo催化剂的制备、表征
![mo催化剂的制备、表征](https://img.taocdn.com/s3/m/03d1391c5b8102d276a20029bd64783e09127db7.png)
mo催化剂的制备、表征
mo催化剂是一种重要的催化材料,具有良好的催化性能。
其制备过程主要包括前驱体的制备和还原处理两个步骤。
首先,前驱体通常是由钼酸铵、钼氧化物等钼化合物和载体(如氧化铝、硅胶等)共同反应制备而成。
这个步骤通常使用水热法、共沉淀法、浸渍法等方法进行。
其中,共沉淀法是一种常用的制备方法,它通过同时沉淀含有钼和载体的沉淀物来制备前驱体。
接下来,前驱体需要经过还原处理才能形成活性的mo催化剂。
还原处理通常通过流化床反应器或筒式窑等设备进行。
具体操作步骤包括在氢气环境下升温至高温(300~800°C)并保持一定时间,使前驱体得到还原并转化为活性mo催化剂。
表征mo催化剂通常采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等常见表征方法。
其中,XRD可以确定mo催化剂中的晶体结构和晶格常数,SEM和TEM可以观察到催化剂的形貌和结构特征,并得到相应的表面积、孔径大小等相关信息。
总之,mo催化剂的制备和表征是催化学研究的重要内容,通过有效的制备和表征可以得到高活性、高选择性的mo催化剂,有助于促进催化反应的发展和应用。
具有纳米结构的钒磷氧催化剂的制备、表征及合成机理
![具有纳米结构的钒磷氧催化剂的制备、表征及合成机理](https://img.taocdn.com/s3/m/acc62762657d27284b73f242336c1eb91a3733c6.png)
具有纳米结构的钒磷氧催化剂的制备、表征及合成机理全文共四篇示例,供读者参考第一篇示例:钒磷氧是一种重要的催化剂,广泛应用于有机氧化反应和氧还原反应中。
传统的钒磷氧催化剂存在着比表面积小、催化活性低、稳定性差等问题。
为了克服这些问题,研究人员开始利用纳米技术制备具有纳米结构的钒磷氧催化剂。
具有纳米结构的钒磷氧催化剂由纳米尺度的材料组成,具有更大的比表面积和更高的催化活性。
其制备方法通常包括物理方法和化学方法两种。
物理方法主要是通过机械合成或物理气相沉积等手段制备纳米结构。
化学方法则是在溶液中合成并控制晶体粒度。
一种常见的制备方法是溶胶-凝胶法,首先在溶液中混合某种钒化合物和磷化合物,然后经过溶胶-凝胶过程形成凝胶,最后在合适的条件下进行煅烧得到钒磷氧催化剂。
通过控制煅烧温度和时间可以调控催化剂的晶体结构和形貌。
为了表征钒磷氧催化剂的结构和性能,研究人员通常采用X射线衍射(XRD)、透射电镜(TEM)、扫描电子显微镜(SEM)等表征技术。
通过这些表征手段可以确定催化剂的晶体结构、晶粒尺寸、表面形貌等性质。
钒磷氧催化剂具有优异的催化活性和选择性,主要是因为其纳米结构有利于催化反应的进行。
其催化机理可能涉及钒的氧化还原反应、矿物质相变等过程。
钒磷氧作为催化剂在有机合成和环境保护领域有着广泛的应用前景。
具有纳米结构的钒磷氧催化剂的制备、表征及合成机理是一个值得研究的课题。
通过深入研究和探讨,有望进一步提高催化剂的性能,拓宽其应用领域,并为新型催化剂的设计与制备提供参考。
希望随着科学技术的不断发展,我们能够更好地利用纳米技术开发出更具有活性和选择性的催化剂,为人类社会的可持续发展做出贡献。
第二篇示例:具有纳米结构的钒磷氧催化剂在能源领域中具有重要的应用价值,其制备、表征及合成机理也备受研究者们的关注。
本文将就这些方面进行详细介绍。
一、制备钒磷氧催化剂的制备通常采用溶胶-凝胶法(sol-gel method)、共沉淀法(co-precipitation method)、水热法(hydrothermal method)等方法。
甲醇催化剂的制备与表征的开题报告
![甲醇催化剂的制备与表征的开题报告](https://img.taocdn.com/s3/m/68cbd64ca517866fb84ae45c3b3567ec112ddc71.png)
甲醇催化剂的制备与表征的开题报告
一、选题背景与意义
甲醇作为一种重要的工业原料,在化工、制药、合成材料、能源等领域有着广泛的应用。
而甲醇的制备主要有两种方法,一种是化石燃料甲烷氧化制气后加水转化成
发生合成反应生产甲醇(称为天然气制甲醇),另一种是用木材、农作物秸秆、稻草
等生物质直接制造甲醇(称为生物质制甲醇)。
催化剂是促进化学反应进行的关键,对于甲醇催化剂的制备和表征是提高甲醇制备效率和降低成本的一种重要手段。
因此,研究甲醇催化剂的制备与表征具有重要的
理论和应用价值。
二、研究内容
本研究主要研究甲醇催化剂的制备和表征,其中包括以下内容:
1.催化剂的制备:
本研究将选用一种新型催化剂——氧化物晶体催化剂制备甲醇催化剂。
该催化剂具有高活性、高稳定性和低成本等优点,将在甲醇的制备过程中有着广泛的应用前景。
2.催化剂的表征:
为了研究催化剂在甲醇合成反应中的性能表现,本研究将采用多种表征手段对催化剂进行表征,包括X射线衍射、透射电子显微镜等表征手段,以评价催化剂的晶体
结构、表面形貌和化学成分等。
3.甲醇催化反应:
通过气相色谱-质谱联用技术等手段,研究催化剂在甲醇合成反应中的催化效果,考察催化剂的活性和选择性等性能指标。
三、预期结果和意义
本研究通过对甲醇催化剂的制备和表征,可以探究催化剂晶体结构与性能之间的关系,并深入研究催化剂在甲醇合成反应中的催化机理,从而为提高催化剂的活性和
选择性等性能指标提供理论依据和实践指导。
同时,本研究对于改善我国能源结构和
提高资源利用率,具有重要的意义。
纳米催化剂的制备与表征技巧
![纳米催化剂的制备与表征技巧](https://img.taocdn.com/s3/m/e55c6586ba4cf7ec4afe04a1b0717fd5360cb2e3.png)
纳米催化剂的制备与表征技巧引言:纳米催化剂作为一种重要的化学材料,在催化领域具有广泛的应用前景。
纳米尺寸效应使得纳米催化剂具有更高的比表面积、更活跃的表面结构和更优异的催化性能。
本文将介绍纳米催化剂的制备与表征技巧,包括物理方法和化学方法,并对不同的表征技术进行探讨。
一、物理方法制备纳米催化剂1. 气相沉积法气相沉积法是一种常用的纳米催化剂制备方法,它基于气体在特定条件下的化学反应生成纳米颗粒。
常用的气相沉积法有热蒸发法、激光蒸发法和电子束蒸发法。
这些方法可以通过控制沉积温度和沉积速率来调控纳米催化剂的尺寸和形貌。
2. 溶胶-凝胶法溶胶-凝胶法是一种通过水解和缩聚反应制备纳米催化剂的方法。
该方法的优点是制备工艺简单、成本低,可以得到高质量的纳米催化剂。
溶胶-凝胶法可以通过控制水解和缩聚反应的条件来调节纳米催化剂的形貌和尺寸。
3. 界面重组法界面重组法是一种利用金属原子在固体表面的扩散和重新组合形成纳米颗粒的方法。
该方法可以通过控制金属原子的扩散速率和沉积时间来控制纳米催化剂的尺寸和形貌。
二、化学方法制备纳米催化剂1. 化学共沉淀法化学共沉淀法是一种通过化学反应在溶液中形成纳米颗粒的方法。
通过调控反应物的浓度、PH值和温度等条件,可以调节纳米催化剂的尺寸和形貌。
此外,可以通过改变共沉淀剂的种类和添加表面活性剂来控制纳米颗粒的分散性。
2. 水热法水热法是一种将溶液或混合物放入密封容器中,在高温高压条件下进行催化剂的合成方法。
通过调节反应温度和时间,可以控制纳米催化剂的晶体尺寸、表面结构和比表面积。
此外,还可以调节溶液的pH值和添加助剂来控制纳米颗粒的形貌。
3. 微乳法微乳法是一种利用水和油相互溶解的特性在微乳液中合成纳米催化剂的方法。
通过调节乳化剂的类型、浓度和温度等因素,可以获得纳米尺寸均匀分布的催化剂。
此外,微乳法还可以通过控制反应时间和添加表面活性剂来调节纳米颗粒的尺寸和形貌。
三、纳米催化剂表征技术1. 透射电子显微镜(TEM)TEM是一种高分辨率的电子显微镜技术,可以获得纳米催化剂的形貌和晶体结构信息。
化学催化剂制备与表征技术
![化学催化剂制备与表征技术](https://img.taocdn.com/s3/m/d9341e71b207e87101f69e3143323968011cf41b.png)
化学催化剂制备与表征技术化学催化剂是一种能够加速化学反应、降低反应温度、提高反应选择性和增加反应产物的稳定性和效率的物质。
催化剂应用广泛,在化学、物理、生物、医药、能源、环境保护等领域都有着重要的应用。
制备和表征催化剂的技术也日益成熟,已经成为化学研究领域的重要组成部分。
一、化学催化剂制备技术目前,化学催化剂制备的途径主要有三种:传统化学合成、物理化学方法和生物制备。
其中,传统化学合成指的是利用化学方法合成催化剂的过程,包括溶胶-凝胶,离子交换等方法。
物理化学方法则主要是通过物理-化学变化形成催化剂,如蒸发沉积、球化焙烧等方法。
生物制备则利用生物反应合成催化剂,利用生物酶等技术。
溶胶-凝胶法是制备多种无机物分子筛催化剂的一种主要方法。
泛指的化合物在溶剂中形成了胶体、凝胶后,进一步高温焙烧得到固态催化剂。
制备过程针对催化剂于催化反应中所需的特定表面性质和形貌设计。
离子交换法是以离子交换树脂为载体,在其表面交换活性组分来制备催化剂。
该方法可用于制备无机盐、贵金属以及其他功能化催化剂。
离子交换降低了反应和副反应之间的活化能,从而提高化学反应的效率。
蒸发沉积法是一种在高真空条件下,将溶解的化合物气态化,沉积到高纯、无机基底表面制备催化剂的技术。
该方法可控制得到具有特定形貌和尺寸的催化剂,同时该方法在制备多层复合催化剂中具有重要应用。
以上几种制备方法还都有其各自的特点,具体而言,还应该包括热分解法、共沉淀法、超临界干燥法等等。
二、化学催化剂表征技术制备好催化剂后,就需要对其进行表征,以了解其特性、结构和性能。
催化剂表征主要包括三个方面:化学组成、物相结构和表面化学性质。
从化学组成的角度,常用的手段包括元素分析、FT-IR、X射线荧光等技术,可以用于检测催化剂元素及其下游组合物,确认合成反应完成度。
物相结构方面,选择的技术主要有XRD、TEM、SEM等。
例如,X射线衍射是一种典型的用于鉴别晶体的技术,可以判定催化剂结晶质量、晶格参数等。
双金属氰化物配合物(dmc)催化剂的预备及表征
![双金属氰化物配合物(dmc)催化剂的预备及表征](https://img.taocdn.com/s3/m/1783e7622f3f5727a5e9856a561252d380eb20b5.png)
双金属氰化物配合物(dmc)催化剂的预备及表征双金属氰化物配合物(dmc)作为一种重要的催化剂,在有机化学合成中有着广泛的应用。
本文将具体介绍dmc催化剂的制备及表征过程。
一、催化剂制备过程1、氰化合物的选择铜、镍、铁、钴等与铂、钯等元素均可形成双金属氰化物配合物。
而其中以铜和铂催化活性最高,因此选用铜和铂为实验材料。
2、催化剂配制将铜和铂的氰化物按照1:1摩尔比例称取,加入适量的异丙醇、甲苯等溶剂,搅拌至配合物充分溶解。
3、催化剂的还原将配合物的溶液加入到氢气氛下,通过还原反应,将氰化合物还原为金属态。
还原后,用氮气将空气完全排除,以保证催化剂的存放稳定。
二、催化剂的表征过程1、元素分析使用ICP-OES法对dmc催化剂进行元素分析,确定催化剂中铜和铂的含量。
2、傅里叶变换红外光谱(FT-IR)分析将催化剂粉末样品通过涂敷的方式涂附在KBr片上,进行FT-IR分析,了解催化剂分子中的化学键和分子结构。
3、X射线荧光光谱(XRF)分析通过XRF分析,了解催化剂中有无其它杂质。
4、扫描电子显微镜(SEM)分析对dmc催化剂进行SEM观察,观测样品的形貌、表面形貌、粒径分布情况等。
综上所述,双金属氰化物配合物(dmc)催化剂的制备及表征过程包含了多个环节,其中制备过程的铜和铂的氰化物选择、催化剂配制及还原过程尤为关键,表征过程则主要包括元素分析、FT-IR分析、XRF分析、SEM分析等。
这些分析工具和方法的应用,可以有效地研究和改进催化剂的结构和性质,从而进一步提高dmc催化剂的催化活性和选择性。
催化剂载体的制备方法与性能表征指南
![催化剂载体的制备方法与性能表征指南](https://img.taocdn.com/s3/m/a859345d9a6648d7c1c708a1284ac850ad020493.png)
催化剂载体的制备方法与性能表征指南催化剂是一类广泛应用于化工、环保、能源等领域的关键材料,其性能直接影响着催化反应的效率和选择性。
而催化剂活性的提升往往依赖于催化剂的载体材料。
本文将重点探讨催化剂载体的制备方法与性能表征指南。
一、载体材料的选择与设计催化剂的载体材料应具备高比表面积、良好的热稳定性、调控孔道结构和合适的亲疏水性等特点。
常见的载体材料包括氧化物、碳材料、金属有机骨架材料(MOFs)等。
在选择载体材料时,需综合考虑催化剂活性金属颗粒的分散性与稳定性,并通过调控载体表面组分、孔径大小及分布等来实现。
二、固相法制备催化剂载体固相法是一种常用的催化剂载体制备方法。
该方法通过物理或化学方式将活性组分与载体材料进行混合、热处理和活化,实现催化剂的制备。
其中,热处理过程中的相互作用可以使活性组分均匀负载在载体表面,并促进载体材料孔道的形成。
但固相法制备催化剂载体的过程往往较为繁琐,需要控制热处理温度、时间等参数,并采用合适的还原剂或氧化剂进行活化步骤。
三、溶胶凝胶法制备催化剂载体溶胶凝胶法是一种常用的催化剂载体制备方法,其在溶液中形成溶胶、经过凝胶化后得到载体材料。
在溶胶凝胶过程中,可以通过改变溶胶成分、溶解度等条件,控制载体材料的形貌、比表面积和孔道结构等。
此外,溶胶凝胶法还具有操作简单、制备周期短的优点。
然而,制备催化剂载体的溶胶凝胶法往往需要较高的温度条件,且涉及到多个步骤,需要仔细控制反应参数。
四、性能表征指南对催化剂载体的性能表征可以从物化性质、形貌结构和孔道结构等多个方面进行。
常见的表征方法包括比表面积测定(BET)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)等。
BET技术可以用于测定载体材料的比表面积、孔径分布及孔容;SEM和TEM可以观察载体材料的形貌和孔道结构;FTIR和XRD可以确定载体材料的化学组成和晶体结构。
此外,对于催化剂载体的稳定性和再生性能的评估也是非常重要的。
催化剂载体的制备与表征
![催化剂载体的制备与表征](https://img.taocdn.com/s3/m/bae20dbba1116c175f0e7cd184254b35eefd1a3f.png)
催化剂载体的制备与表征催化剂载体是指催化剂所搭载的材料。
催化剂载体对催化剂的催化活性、选择性和稳定性有着至关重要的影响。
因此,加强对催化剂载体的研究和探索具有重要的意义。
一、常见的催化剂载体常见的催化剂载体有硅胶、氧化铝、氧化锆、氧化钛等。
这些催化剂载体都具有一定的比表面积,因此有助于将催化剂粒子固定在载体表面,并提高催化剂的负载量。
二、制备催化剂载体的方法1. 溶胶-凝胶法溶胶-凝胶法是一种常用的催化剂载体制备方法。
首先,在溶剂中溶解可溶性化合物,然后形成凝胶,在煅烧后得到催化剂载体。
该方法具有制备简单、可控性好等优点。
而且,通过改变溶胶-凝胶法的工艺条件可以调控催化剂载体的比表面积、孔结构和孔径分布等性质。
2. 沉淀法沉淀法是指催化剂离子沉淀在载体表面或内部,通过再次煅烧使其形成催化剂载体。
该方法主要使用无机盐溶液对载体进行浸泡,然后加入催化剂前驱体,通过溶液中的化学反应让催化剂沉淀到载体表面或内部。
这种方法可以用于制备具有特殊性质的载体。
3. 气相沉积法气相沉积法是一种利用气相反应沉积在载体上的催化剂载体制备方法。
该方法需要通过气体反应沉积方法,将金属蒸气沉积在载体表面。
这种方法制备的催化剂载体具有较高的负载量和比表面积。
三、催化剂载体的表征方法1. X射线衍射X射线衍射是一种常用的催化剂载体表征方法。
该方法可以测定催化剂载体中晶线的晶格常数、晶面间距和晶体相等特性。
从而可以了解催化剂载体的晶体结构和物理性质。
2. 氮气吸附法氮气吸附法是一种测定催化剂载体比表面积、孔径和孔径分布的方法。
该方法通过浸泡催化剂载体样品于液态氮中,使其中的氮气吸附在样品表面和孔中。
通过测量样品表面和内部孔的吸附氮气体积,可以计算催化剂载体的比表面积和孔径分布。
3. 透射电镜透射电镜可以观察催化剂载体的微观结构和形貌,从而确定催化剂粒子的大小、形状和催化剂在载体表面的分布等。
四、催化剂载体的应用催化剂载体在催化制药、化学和环境等领域有着广泛的应用。
双金属氰化物配合物(dmc)催化剂的制备及表征
![双金属氰化物配合物(dmc)催化剂的制备及表征](https://img.taocdn.com/s3/m/e3e523010166f5335a8102d276a20029bd64633d.png)
双金属氰化物配合物(dmc)催化剂的制备及表
征
双金属氰化物配合物(dmc)是一种广泛应用于有机合成和材料科学领域的催化剂,在催化加成反应、吸附分离和光催化领域有重要应用。
本文将介绍如何制备和表征双金属氰化物配合物(dmc)催化剂。
一、催化剂的制备
1.准备溶剂
需要用基准溶液来制备催化剂,通常使用氢氧化钠或羟胺盐酸盐来调节溶液pH值。
使用乙醇或水作为溶剂。
2.加入阳离子
将金属离子加入到该溶液中,通常使用镍镉、钴镍、镍钴等金属离子组成的混合物。
3.加入配体
加入“筛子”型有头催化剂中的配体,通常是二氧化碳、四氧化锰和氰化物的混合物。
4.反应
将该混合物反应一段时间,一般在常温下反应24-48小时。
二、催化剂的表征
1.元素分析
用元素分析仪测定催化剂中的主要元素含量。
2.红外光谱
用红外光谱仪测定催化剂的结构和组成。
3.热重分析
用热重分析仪测定催化剂的热稳定性和热分解温度。
4.电化学性能
通过循环伏安法等电化学方法测定催化剂的电化学性能,如电催化反应活性和稳定性等。
5.晶体结构
通过X射线衍射测定催化剂的晶体结构及晶格参数,从而对其催化性能和反应机理进行深入研究。
总之,双金属氰化物配合物(dmc)催化剂的制备和表征都是非常重要的工作。
通过制备和表征,我们可以深入了解该催化剂的结构和性能,为进一步应用和改进提供了重要的基础。
催化剂的制备和表征
![催化剂的制备和表征](https://img.taocdn.com/s3/m/54f91400a22d7375a417866fb84ae45c3a35c25e.png)
催化剂的制备和表征催化剂在化学工业中具有非常重要的作用,它们能够加速化学反应的发生,提高反应的转化率和选择性,从而降低生产成本,提高产率。
催化剂的制备和表征是研究催化剂性能的关键环节,下面我将从这两个方面来分别介绍。
一、催化剂的制备催化剂的制备方式非常多样化,常用的方法包括溶胶-凝胶法、共沉淀法、物理混合法、离子交换法、水热法等等。
这些方法的选择取决于催化剂所需的性质和工业应用的实际需求。
其中,溶胶-凝胶法是一种制备催化剂的重要方法。
这种方法通过溶胶形成的凝胶相应合成所需的催化剂。
凝胶法具有成本低、样品稳定等特点,适用于制备各种金属氧化物、混合氧化物和金属酸碱型催化剂等。
共沉淀法也是制备催化剂的一种常用方法,它能够制备多种金属氧化物、负载型催化剂等。
共沉淀法可同时合成纳米晶体催化剂,具有颗粒分散度好、晶格结构良好的优点。
另外,物理混合法是将两种或多种催化剂材料物理混合而成的新材料。
该方法制备简便,但是混合效果难以保证,因此对催化剂的性能控制较为困难。
催化剂的制备方法选择需要考虑催化剂的性质和工业应用的实际需求,并具体问题具体分析、因材施教。
二、催化剂的表征在催化剂研究中,催化剂的表征是非常重要的环节。
它能够揭示催化剂的物化性质,分析催化剂对化学反应的影响及性能变化的原因,以指导后续的催化剂设计和制备。
常用的催化剂表征方法包括X射线衍射、BET比表面法、透射电子显微镜、扫描电子显微镜及傅里叶变换红外光谱等。
X射线衍射是一种非常重要的催化剂表征方法,它能够分析催化剂晶体结构、晶格参数和催化剂中物质的分布等信息。
BET比表面法主要用于测量催化剂比表面积,透射电子显微镜和扫描电子显微镜则主要用于催化剂的形貌分析。
傅里叶变换红外光谱主要用于分析催化剂表面吸附物种的化学键信息。
这些表征方法可以从不同角度揭示催化剂的物理和化学性质。
具体选择哪种表征方法,需综合考虑催化剂的性质和研究需求。
总结:催化剂是化工领域中不可或缺的东西,其制备和表征是核心所在。
固体催化剂的组成,制备,失活,表征简介
![固体催化剂的组成,制备,失活,表征简介](https://img.taocdn.com/s3/m/dcd99742be1e650e52ea99db.png)
一.固体催化剂的组成:固体催化剂主要有活性组分、助剂和载体三部分组成。
1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。
2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。
3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。
目前催化剂载体的种类目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15,MCM-41、LaP04等系列载体.膜催化剂二.催化剂设计程序:三.固体催化剂的一般制备方法1.沉淀法:将活性组分用酸碱中和以沉淀形式产生氢氧化物沉淀法包括:单组分沉淀法共沉淀法均匀沉淀法导晶沉淀法2.浸渍法: 将载体放进含有活性物质的液体中浸渍包括:过量浸渍法、等体积浸渍法、多次浸渍法3.离子交换法:把载体用离子交换使活性组分进入催化剂中,或除去有害组分利用离子交换作为其主要制备工序的催化剂制备方法利用离子交换的手段把活性组分以阳离子的形式交换吸附到载体上适用于低含量,高利用率的贵金属催化剂用于活性组分高分散,均匀分布大表面的负载型金属催化剂离子交换法的例子:氢型分子筛的制备(H-ZSM-5)4其他方法热分解法:把含有活性组分的盐类化合物,在高温下加热分解熔融法:通过熔融金属生成合金而生成多元金属催化剂四催化剂的成型及工艺1. 催化剂的成型——压片工艺2. 催化剂的成型——挤条工艺3. 催化剂的成型——喷雾工艺4. 催化剂的成型——滚球工艺五催化剂的积碳失活以及影响积碳的因素1. 在使用过程中,因表面逐渐形成碳的沉积物从而使催化剂活性下降的过程。
在工业催化中,尤其涉及烃类反应中,催化剂的表面积碳是一种不可避免的现象。
铂催化剂的制备与表征研究
![铂催化剂的制备与表征研究](https://img.taocdn.com/s3/m/c99c05b7e43a580216fc700abb68a98271feace9.png)
铂催化剂的制备与表征研究近年来,随着科技的不断发展,铂催化剂作为一种重要的催化剂,在各种领域得到广泛应用。
铂催化剂可以用于制氢、汽车尾气净化、电化学反应等方面,其催化效率和稳定性远高于其他催化剂。
因此,铂催化剂的研究和制备具有重要意义。
一、铂催化剂制备方法铂催化剂的制备方法有多种,其中常见的有沉淀法、还原法、溶胶-凝胶法等。
沉淀法是将含铂盐的溶液与一定量的尘土、植物灰等杂质混合,经过沉淀、过滤、干燥而制备出来的。
这种方法简单、易行,但催化剂的结晶度和比表面积较低,制备的催化剂活性较低。
还原法是将含铂盐的溶液与还原剂混合,并在一定的条件下还原,形成粒径较小的铂颗粒。
这种方法制备出的催化剂具有高的比表面积和较好的结晶度,催化活性也较高。
但由于还原后生成粘稠的沉淀,对设备管道的堵塞、清洗等操作带来了一定麻烦。
溶胶-凝胶法是将含铂的溶胶在较低温度下凝胶化形成纳米颗粒。
这种方法制备出的铂催化剂具有颗粒分散性好、稳定性高等优点,同时还可以控制颗粒大小和形状。
但在制备过程中需要加入有机溶剂或过度地凝胶化,形成纳米颗粒的比表面积和活性可能会降低。
二、铂催化剂表征方法铂催化剂的表征方法有多种,包括X射线衍射、扫描电子显微镜、透射电子显微镜、傅里叶变换红外光谱、紫外-可见吸收光谱等。
X射线衍射是通过测量材料衍射光栅的强度和位置来确定材料的晶体结构和晶格常数,从而实现对铂催化剂晶体结构的表征。
扫描电子显微镜和透射电子显微镜可以用来观察铂催化剂的形貌、颗粒大小和分散度等信息。
其中透射电子显微镜可以观察纳米颗粒的结构和形态,了解催化剂的性能。
傅里叶变换红外光谱可以测量物质的红外吸收光谱特征,得出物质结构和组成的信息。
通过对铂催化剂的红外吸收光谱分析,可以了解铂催化剂表面的化学环境和化学吸附性能。
紫外-可见吸收光谱可以用来测定金属表面局域表面等离子体共振(LSPR)的位置。
由于铂的表面等离子体共振峰位于250nm以下,因此通常使用其他金属的共振峰作为参考峰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
催化原理考试复习题一概念离子交换法:利用载体表面存在着可进行离子交换的离子,将活性组分通过离子间的变换而附载在载体上的方法。
化学键合法:通过化学键(离子键、共价键、配位键)把络合物催化剂与高分子载体相结合的过程.吸附法:利用载体对活性组分的吸附作用来制备负载型催化剂的方法。
超均匀共沉淀:是将沉淀分两步进行,首先制备盐溶液的悬浮层,并将这些悬浮层立即混合成为超饱和溶液,然后由超饱和溶液得到均匀沉淀。
二、填空1。
沉淀老化时,颗粒长大方法有:再凝结、凝聚2.正加法加料时,溶液的PH值由低到高3。
竞争吸附时,当反应由外扩散控制时,球形催化剂上活性组分的分布以蛋壳型为益,由动力学控制时,均匀型为益三、简答题1。
固体催化剂制备方法:①原料准备②催化剂(母体)的制备③成型④活化2。
催化剂制备可粗分为:干法和湿法干法包括热熔法、混碾法与喷涂法湿法包括胶凝法、沉淀法(共沉淀法,均匀沉淀法和超均匀沉淀法)、浸渍法、离子交换法、沥滤法.3。
催化剂在工业得到应用满足的条件★催化性能:具有良好的活性,选择性和稳定性★机械性能:有一定的机械强度,合适的形状,颗粒大小和分布★有一定的抗毒性能:最好能活化再生,使用寿命长★催化剂制备方面:要求原料能稳定供应,制备工艺能适合于大规模工业生产,环境友好,最好无”三废”污染。
4。
选择原料的基本原则:A原料中要包括催化剂所需要的全部组分,同时也要考虑到原料中的杂质能适合生产中的要求.B原料中不含对催化剂有害的成分,或对环境有污染的成分C来源充足,价格便宜D使用活性组分含量高,用量少的原料。
5。
催化剂组成的表示方法:固体催化剂…主催化剂,助催化剂,载体配合物催化剂~助催化剂和助催化剂酶催化剂:酶蛋白和辅酶6.金属溶解一般选用稀HNO3原因:★大多数金属(除Au,Pt)可溶解在硝酸中制成硝酸盐★NO3在加热时,能除去,不会使之留在催化剂中。
★节省原料角度,稀硝酸好★溶液制好后,还要加碱中和沉淀,所以过剩酸量越少越好。
7.提高盐类在溶剂中的溶解度措施有:★提高温度★利用生成弱电解质的方法★利用氧化还原法★利用生成络合物的方法8。
提高盐类在溶剂中溶解速度的措施★升高温度★增加颗粒表面积★加强搅拌9 沉淀法制催化剂的工艺过程示意图:10。
沉淀法制备催化剂,沉淀剂满足的条件:★尽可能使用易分离并含易挥发成分的沉淀剂。
★形成的沉淀物便于过滤和洗涤★沉淀剂的溶解度应大一些★形成沉淀剂的溶解度应小些★沉淀剂必须无毒,不应使催化剂中毒或造成环境污染。
★不带入不溶性杂质,以减少后处理的困难.11.晶体成核的好坏与晶核生长速率与晶核长大速率的关系:如果晶核的生长速率大大超过晶核长大的速率,则溶质分子很快聚集为大量的晶核,溶质分子浓度迅速下降,溶液中没有更多的分子聚集到晶核,溶质分子浓度迅速下降,溶液中没有很多的分子聚集到晶核上,于是晶核迅速聚成细小的无定形颗粒,这样就会得到非晶形成沉淀,甚至胶体;反之,如果晶核长大的速率大大超过晶核的生成速率,溶液中最初形成的晶核不是很多,更多的离子以晶核为中心,依次排列长大而生成颗粒较大的晶形沉淀。
12。
晶形沉淀的形成条件:★沉淀应该在适当稀溶液中进行★沉淀时,沉淀剂应该在不断搅拌下均匀而缓慢的加入.★沉淀应在热溶液中进行★沉淀应放置熟化13。
溶解度在10-6—10—12之间的氢氧化物,沉淀物的初始离子大小基本相同?溶解度在10-6—10—12的氢氧化物,溶解度很小,而平常配置溶液的浓度为0.01~1m数量级,大大高于其溶解度,即C-C很大,溶液的过饱和度很大。
所以胶核生o成速度很快,而胶粒生成的控制步骤不是离子在晶体表面的表面反应速度,而是由溶质的扩散速度控制,只要浓度相同,上述许多离子扩散速度都差不多。
因此,他们的初始离子的大小基本一致,都在40+10A°.14.胶体的双电层理论:在胶体溶液中,固液界面处,固体表面由于由于电离或吸附离子而带电。
而在固体表面的周围分布着与它电性相反电荷相等的离子,称为反离子。
由于运动和扩散,最靠近固体表面的离子层浓度大,以后逐渐稀少,在距离固体表面d处,达到溶液的平均浓度。
15。
增液溶胶稳定的原因:★溶胶动力稳定性,胶粒的布朗运动★胶粒带电的稳定作用★溶剂化的稳定作用16。
导致溶胶凝结的措施:★电解质作用 a加入与胶粒电荷相反的离子b 加入相同价数的离子★其他憎液溶液的相互凝结提高胶体浓度提高温度加入高分子化合物17.沉淀老化过程主要发生的现象主要发生颗粒长大,晶型完善,凝胶脱水收缩等现象。
18。
沉淀法制催化剂,带入杂质的原因:★表面吸附★形成混晶★生成共沉淀★机械包藏19沉淀法制备催化剂,加料方式:★正加法★反加法★并流加料20沉淀再凝结和聚结的原理再凝结时沉淀和溶解在母液是动态平衡的过程,生成的晶体不规则,带有许多缺陷,大小颗粒同时存在,由公式ln(C*/C。
)=26M/ρRTr颗粒越小,溶解度越大,大颗粒对小颗粒处于相对饱和,小颗粒逐渐溶解,大颗粒从表面沉淀下来.聚结颗粒相互接触合并长大,因为凹液面上的饱和蒸汽压小于平面的饱和蒸汽压,凹液面半径越小,平衡蒸汽压越小,溶解度越大越易聚结。
21。
对沉淀晶型影响因素:●老化●原料浓度●加料方式●沉淀温度与沉淀时溶液的PH值●加料速度与搅拌强度22.选择浸渍液的要求A 易溶于溶剂B活性组分的盐类对热不稳定,这样在以后的煅烧工序时易分解得到所需要的活性组分。
C在煅烧和还原中,活性组分不挥发,且不残留对催化剂有毒成分D价廉易得23。
活性组分负载量的计算式负载量◆惰性载体上负载的活性组分氧化物的量24浸渍法的原理是什么?25。
竞争吸附时,球形催化剂上活性组分的分布形式?蛋壳型均匀型蛋黄型蛋白型加厚蛋白型26硅酸铝也载体上其质字酸与金属络离子如何进行交换?硅酸铝是SiO2、Al2O3混合物,有很强酸性,质子酸,其质子酸不能直接与金属络离子进行交换,必须先用氨水先与硅酸铝进行铵交换,是氢离子与铵根离子交换,然后就可以进一步与金属离子交换了。
27。
活性炭载体表面如何实现与其交换的?与硅酸铝类似,需先把活性炭预先与浓硝酸煮沸几小时,在C表面生成了可进行交换的羧基,则就可以与金属离子交换了。
28滚涂法:将活性组分放在一个可以摇动的容器中,再将载体布于其上,经过一段时间的滚动,活性组分逐渐粘附在载体上。
喷涂法:喷涂法操作与滚涂法类似,但活性组分不是同载体混在一起,而是用喷枪或其他手段喷附于载体上。
混合法:将几种组分用机械混合的方法制成多组分催化剂。
熔融法:在高温下进行催化剂组分的熔合,使之成为均匀的混合体,合金固溶体或氧化物溶体。
沥滤法:用碱除去不具备催化活性的金属而形成骨架,活性金属原子在其中均匀地分散着,称为骨架催化剂。
过程:将活性组分金属和非活性金属在高温下熔融,做成合金,将合金粉碎后用苛性钠溶解除去非活性金属得骨架催化剂。
29。
干燥对催化剂物化性质的影响:a 凝胶孔结构b 催化剂机械强度c 溶质的迁移30干燥时,溶质在催化剂上的洗出规律:干燥时,如果慢速干燥,在迁移气化的作用下,溶液不断从颗粒内迁移到颗粒表面,并随溶剂的气化,溶质不断从表面析出。
如果快速干燥,溶剂在表面蒸发速率快,孔内弯曲液面在干燥过程中不断下降,当活性组分达到饱和时,活性组分就会在孔壁沉积,形成较均匀分布.31.煅烧过程物理变化:比表面积、粒度、孔结构、表面酸性与活性煅烧过程化学变化:热分解、互溶与固相反应、晶型转变32。
影响还原温度的因素:还原前煅烧温度,还原温度,还原气组成与流速33催化剂成型方法,得到催化剂的特点?压片法,形状一致,大小均匀,表面光滑,机械强度高.挤出成型法,可得到固定直径,长度可在较宽范围变化颗粒,与与压片法相比,其生产能力大得多,强度比压片法低。
转动造粒法,成球形催化剂喷雾干燥成型和油柱成型,(成小球),微球产品,形状规则,表面光滑,具有良好机械强度34。
成型助剂和粘结剂分类成型助剂分为粘结剂,润滑剂,孔结构改性剂粘结剂分基体粘结剂薄膜粘结剂化学粘结剂35.影响成型的因素以及成型对催化剂性质的影响因素:原料粉体粒度,原料粉体性质,成型助剂用量性能影响:a机械强度影响b活性影响c 孔结构影响36。
挤出成型对催化剂性能的影响a 粉体颗粒度b 混捏时间和方式c 水粉比d 助挤剂37.喷雾干燥原理:把浆料高速通过喷头(雾化器)将原浆料液分散成雾滴,并用高温气流干燥微球;油柱成型原理:将溶胶滴入油类中,利用介质和溶液本身的表面张力将物料切割小液滴并收缩成小球38.连续流动搅拌反应器和活塞流动反应器的速率推导:39。
常用实验室反应器分类及特点A 脉冲反应器,用于催化剂筛选,测活性和选择性,也有用于动力学和基理研究的地方体系简单,只需少量催化剂和反应物B无梯度反应器,避免了可能存在的温度梯度和浓度梯度,用于动力学研究C间歇反应器装卸时间短,投资少,主要用于研究高压,高温,用高压釜快速筛选催化剂D管式反应器,不锈钢的,适用于很宽的温度和压力范围40.活性测定需要注意的几个因素:A反应气体严格净化,控制有害物质的含量B根据原料的特征,选用合适的分析方法和流量测量方法C 把催化剂床层内的温度梯度和浓度梯度将到最低,以确保测定是在动力学区内进行D 消除管壁效应四解析与分析1 描述晶核的生成机理和生成速度,提高晶核生成速度的措施有哪些?提高晶核生成速度:A溶液的过饱和度越大,晶核生成速度越大B 固液界面的表面张力越小,晶核生成速度越大C温度D杂质2 描述晶核的长得机理和生成速度,影响晶核长大速度的因素有哪些?影响晶核长大速度的因素:A溶液过饱和度B温度C搅拌D晶种第三四章一、概念物理化学吸附法:通过吸附质对多孔物质进行非选择性吸附来测定比表面积。
化学吸附法:通过吸附质对多组分固体催化剂进行选择吸附而测定各组分的表面积.堆积密度或表观密度:用量筒测量催化剂体积时,所得的密度。
颗粒密度(汞置换):单粒催化剂的质量与其几何体积之比。
真密度(骨架):当测量的体积仅仅是催化剂骨架体积时,得到的密度称为真实密度。
催化剂孔体积:催化剂内所有细孔体积的总和。
比孔体积:每克催化剂颗粒内所有的孔体积总和称为比孔体积。
孔隙率:催化剂的孔体积与整个颗粒体积的比。
抗压碎强度:被测催化剂均匀施加压力直至颗粒粒片被压碎为止前所能承受的最大压力或负荷。
堆积压碎强度:某压力下一定量催化剂的破碎率。
磨损率:一定时间内被磨损掉样品重量与原始重量的比值.磨损强度:一定时间内磨损前后样品重量的比值。
热重法:在程序控制温度下,测量物质的质量与温度关系的一种技术。
差热分析:在程序控温下,测量物质和参比物的温度差与温度关系的一种技术。
差士扫描量热法:DSC,在程序控制温度下,测量输入到物质和参比物的功率差与温度关系的技术。