第1章 多元正态分布

合集下载

应用多元统计分析讲稿(朱建平)

应用多元统计分析讲稿(朱建平)

精心整理第一章多元分析概述第一节引言多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法。

近30年来,随着计算机应用技术的发展和科研生产的迫切需要,多元统计分析技术被广泛地应用于地质、气象、水文、医学、工业、农业和经济等许多领域,已经成为解、H.Hotelling 、、许宝騄等人作了一系列得奠基性工作,使多元分析在理论上得到了迅速得发展。

20世纪40年代在心理、教育、生物等方面有不少得应用,但由于计算量大,使其发展受到影响,甚至停滞了相当长得时间。

20世纪50年代中期,随着电子计算机得出现和发展,使多元分析方法在地质、气象、医学、社会学等方面得到广泛得应用。

20世纪60年代通过应用和实践又完善和发展了理论,由于新的理论、新的方法不断涌现又促使它的应用范围更加扩大。

20世纪70年代初期在我国才受到各个领域的极大关注,并在多元统计分析的理论研究和应用上也取得了很多显着成绩,有些研究工作已达到国际水平,并已形成一支科技队伍,活跃在各条战线上。

在20世纪末与本世纪初,人们获得的数据正以前所未有的速度急剧增加,产生了很多超大型数据库,遍及超级市场销售、银行存款、天文学、粒子物理、化学、质学、社会学、考古学、环境保护、军事科学、文学等方面都有广泛的应用,这里我们例举一些实际问题,进一步了解多元统计分析的应用领域,让读者从感性上加深对多元统计分析的认识。

1、城镇居民消费水平通常用八项指标来描述,如人均粮食支出、人均副食支出、人均烟酒茶支出、人均衣着商品支出、人均日用品支出、人均燃料支出、人均非商品支出。

这八项指标存在一定的线性关系。

为了研究城镇居民的消费结构,需要将相关强的指标归并到一起,这实际就是对指标进行聚类分析。

2、在企业经济效益的评价中,涉及到的指标往往很多,如百元固定资产原值实现产值、百元固定资产原值实现利税、百元资金实现利税、百元工业总产值实现利税、百元销售收入实现利税、每吨标准煤实现工业产值、每千瓦时电力实现工业产值、345他们每个人若干项症状指标数据。

第三讲多元正态分布

第三讲多元正态分布

二元正态分布的密度曲面图
2 2 下图是当 1 2 , 0.75 时二元正态分布的钟形密
度曲面图。
多元正态分布性质
(1)、若 X ( X1, X 2 , X p )T ~ N p (, ), 是对角阵, 则 X1, X 2 , X p 相互独立。 (2)、若 X ~ N p (, ) , A 为 s p 阶常数阵,则
•有些现象服从多元正态分布
•许多多元统计分布的抽样分布是近似正态分布
23
多元正态分布
它是一元正态分布的推广
X ~ N p ,
设随机向量 X ( x1 , x2 ,, x p )' 服从P维正态分布,则有,
f ( X ) 2
p 2

1 2
1 1 exp x x 2

12
随机向量的数字特性
随机向量的均值
E ( X 1 ) 1 E( X 2 ) 2 E( X ) E( X ) p p
性质
E ( AX ) AE( X ) E ( AXB) AE( X ) B E ( AX BY ) AE( X ) BE(Y )
15
性质
1)若(x1,x2,…,xp)’ 和(y1,y2,…,yq)’不相关。则
cov(x1 , y1 ) cov(x1 , y2 ) cov(x1 , yq ) cov(x2 , y1 ) cov(x2 , y2 ) cov(x2 , yq ) 0 cov(x , y ) cov(x , y ) cov(x , y ) p 1 p 2 p q
(1) q

第2章-多元线性模型

第2章-多元线性模型

2024/4/29
21
2.3 变量选择
Step: AIC=103.06 y ~ x2 + x3 + x5
Df Sum of Sq RSS AIC
- x5 1 17.40 522.14 102.28
<none>
504.73 103.06
+ x1 1 17.91 486.83 103.76
+ x4 1 0.74 503.99 105.01
2024/4/29
13Biblioteka 例2.1续1(数据文件为eg2.1)
• 建立y关于x1、x2、x3、x4和x5的线性回归方程,并对方程和回归系数 进行显著性检验.
y
x1 x2 x3 x4 x5
y
85 83 86 90 90 76 45
90 92 88 87 92 80 76
78 70 76 73 85 90 88
2024/4/29
6
2.2 多元线性模型
• 2.2.1 模型定义
y 0 1x1 p xp , (2.1)
• 其中x1,…,xp是非随机的自变量, y是随机的因变量, β0是常数项, β1,…, βp是回 归系数, ε是随机误差项.
2024/4/29
7
2.2.1.模型定义
• 模型(2.1)的样本形式
(t) exp{itT μ tT Σt / 2}
2024/4/29
5
2.1多元正态分布
• 2.1.2 多元正态分布的性质
性 质 2.3 ( 均 值 和 协 方 差 阵 ) 设 y ~ N p ( μ, Σ ) , 则
E( y) μ,Cov( y) Σ .
性质 2.4(线性变换)设 y ~ N p (μ, Σ ), z η Ay , η 为 n 维常

多元统计分析_第2章_多元正态分布_s

多元统计分析_第2章_多元正态分布_s

第2章多元正态分布§2.1 多元分布§2.2 多元正态分布的定义及基本性质§2.3 正态分布的条件分布和独立性§2.4 矩阵正态分布§2.5 参数的极大似然估计§2.6 极大似然估计的性质13),21′=p ξξξ (ξ随机向量:pn ij ξξ×=)(随机矩阵:注:随机矩阵拉直后就是随机向量,二者都是由多个随机变量组成,只是摆放形势不同.4一、多元分布函数1212121122122.1.1 (,,,)()(,,,) ()(,,,)(,,,)(,,,)~.p p p p p pp ξξξξξξF x F x x x P ξx ξx ξx x x x x R F ξξ′===≤≤≤′=∈ 定义设是一随机向量,它的多元分布函数的联合分布函数定义为式中,记作512122112(1)(,,,)(1,2,,)(2)0(,,,)1(3)(,,,)(,,,)(,,,)0(4)(,,,)1p i p p p F x x x x i p F x x x F x x F x x F x x F =≤≤−∞=−∞==−∞=+∞+∞+∞= 是每个变量的单调非降右连续函数.多元分布函数的性质:71)( )2( ,0)( )1()(=∈∀≥⋅∫dx x f R x x f R f pR pp 当且仅当随机向量的分布密度,中某个能作为一个多元函数9二、边缘分布.)( 3.1.2)1(的边缘分布的分布称为个分量组成的随机向量的维随机向量,由它为若定义ξξξp q q p <10),,,,,,(),,,,,),,)111111)1()2()1(∞∞∞=∞≤∞≤≤≤=≤≤=≤⎟⎟⎠⎞⎜⎜⎝⎛=+ q p q q q q q u u F u ξu ξP u ξu ξP u ξP ξξξξξξ((((1)的分布函数为,则不妨假设11(1)(1212112111)(,,)(,,)q q u u u p p u u u p q p q P ξu f t t dt dt dt f t t dt dt dt dt ∞∞∞−∞−∞−∞−∞−∞−∞∞∞∞+−∞−∞−∞−∞−∞−∞≤=⎡⎤=⎢⎥⎣⎦∫∫∫∫∫∫∫∫∫∫∫∫ 若ξ有分布密度函数f (x ),则12p q p q q q dt dt t t x x f x x f ξ1111)1(),,,,,(),,(++∞∞−∞∞−∞∞−∫∫∫=的边缘分布密度为(1)13注:(1)有分布密度函数,则它的任何边缘分布也有分布密度函数;(2)若的任何边缘分布有分布密度函数,并不能推出有分布密度.ξξξ两个随机向量独立的充分必要条件:①联合分布函数等于边缘分布函数的乘积;②若随机向量为连续型的,联合分布密度等于边缘分布密度的乘积;③若随机向量为离散型,联合分布列等于边缘分布列的乘积;④联合特征函数等于边缘特征函数的乘积.1621).()(~),(~),(~,)4(t t t t ηηηξηξηξΦΦ+ΦΦξξ则量的随机向是相互独立且维数相同与若).()(),( ,)()(,,)5()2()1()2()1(t t t t t t q p ηξξΦΦ=Φ⇔ΦΦ⎟⎟⎠⎞⎜⎜⎝⎛Φ独立和则的特征函数和分别为和特征函数的表示维随机向量和分别为和若ηξηξηξηξη22(7) .p a ξξ′若为维随机向量,则它的分布由一切形如的分布所唯一决定).()exp()( ,),(~ )6(t A a t i t a A t ′Φ′=Φ+=Φξηξηξ则若ξ23).()exp()])([exp()exp()][exp()exp())]([exp()][exp()(t A a t i t A i E a t i A t i E a t i a A t i E t i E t ′Φ′=′′′=′′=+′=′=Φξηξξξη证明:(6)24.,3,,),()][exp()1( 1)][exp()( )7(:的分布它决定了知由性质的特征函数恰好是的函数把它看成得取的特征函数为证明ξξξξa a a i E t a it E t a a a Φ=′=Φ=′=Φ′′′ξξξξ25五、矩2.1.6 ()(), 1, 2, , ,1, 2, , ,()(), .ij ij ij n p E i n j p E ξξξεξξξ=×=== 定义设为随机矩阵,假定存在且有限记称为随机矩阵的均值)()( ij E ξξε=26,(1) ,,,( )(),()()A B C A B C A B CA A εξεξξεξεξ+=+=若为常数矩阵则特别当为随机向量时有注:以下总假定公式中用到的随机矩阵的矩是存在的.均值的性质:27)]([)]([)] )4()()( , )3()()( ,, )2(ξεξεξξηεξεηξεηεξεηξεA tr A tr A E n p A p n b a b a b a B A B A B A ==××+=++=+[tr()()(则常数矩阵,为随机矩阵,为若为常数,则若则为常数矩阵若注:以上四个性质均体现均值的线性性.28().),,cov()(),cov(])()][([),cov( ),,cov(,)(),), 7.2.1 2121的协方差称为时,记作当即其元素是矩阵定义为一个简称协差阵阵的协方差维随机向量,它们之间维和分别为和设定义ξξξξηξηξηεηξεξεηξηξηηηηξ===′−−=×′=′=D p n p n ξξξj i j i p n ((29() ),cov(),cov( j i ηξηξ=()),cov(),cov(j i ξξξξ=31.])(][)([)())()()( ,)2(.})(){() (),cov(,})(){() (),cov()1(′−−+=′−−=+′−′=′−′=a a D a a D a D a ξεξεξξξεξξξεξεξξεξξηεξεηξεηξ(则为常向量若特别协差阵的性质:32A AD A DB A B A B A ′=′=)()( ),cov(),cov( ,)3(ξξηξηξ特别则为常数矩阵和设协差阵的性质(续)35则记值和协差阵存在的均若随机向量定理 ),( ),( ,),,, 1.1.221ξξεμD ξξξξn =Σ=′= ()()( μμξξA A tr A E ′+Σ=′36μμμμξξξξξξA A tr A tr A Etr A Etr A E ′+Σ=′+Σ=′=′=′)()}({)()()(μμξξεξεξεξξεξ′+Σ=′′−′=) (,})(){() ()(:所以因为证明D。

第1章多元正态分布的参数估计(精)

第1章多元正态分布的参数估计(精)

第一章 多元正态分布的参数估计一、填空题1.设X 、Y 为两个随机向量,对一切的u 、v ,有)v (p )u (p )uv (p =,则称X 与Y 相互独立。

2.多元分析处理的数据一般都属于 横截面 数据。

3.多元正态向量()'=X X X p ,,1 的协方差阵∑是 对角阵 ,则X 的各分量是相互独立的随机变量。

4.一个p 元函数()p x x x f ,,,21 能作为p R 中某个随机向量的密度函数的主要条 件是 p 'p 21p 21R )x ,,x ,x (,0)x ,,x ,x (f ∈∀≥和1dx dx dx )x ,,x ,x (f p 21-p 21-=⎰⎰+∞∞+∞∞ 。

5.若()∑,~i p i n W S ,k i ,,1 =,且相互独立,则~21k S S S S +++= ),n (W k1i i p ∑∑=。

二、判断题1.多元分布函数()x F 是单调不减函数,而且是右连续的。

正确2.设X 是p 维随机向量,则X 服从多元正态分布的充要条件是:它的任何组合()p R X ∈'αα都是一元正态分布。

错误3.μ是一个P 维的均值向量,当A 、B 为常数矩阵时,具有如下性质:(1)E (AX )=AE (X ) (2)E (AXB )=AE (X )B 正确4.若P 个随机变量X 1,…X P 的联合分布等于各自边缘分布的乘积,则称X 1,… X P 是相互独立的。

正确5.一般情况下,对任何随机向量()'=X X X p ,,1 ,协差阵∑是对称阵,也是正定阵。

错误6.多元正态向量()'=X X X p ,,1 的任意线性变换仍然服从多元正态分布。

正确7.多元正态分布的任何边缘分布为正态分布,反之一样。

错误8.多元样本中,不同样品之间的观测值一定是相互独立的。

正确9.多元正态总体参数均值μ的估计量X 具有无偏性、有效性和一致性。

结构方程模型的多元正态分布

结构方程模型的多元正态分布

结构方程模型的多元正态分布多元正态分布是结构方程模型中的一种常见假设。

本文将从多元正态分布的概念、性质和应用等方面进行阐述,旨在为读者提供对该主题的全面了解。

第一部分:多元正态分布的概念多元正态分布是指多个随机变量同时服从正态分布的情况。

在结构方程模型中,我们通常假设观测变量和潜变量都服从多元正态分布。

这种假设使得我们能够对变量之间的关系进行推断和建模。

第二部分:多元正态分布的性质多元正态分布具有许多重要的性质。

首先,多元正态分布的边际分布也是正态分布。

这意味着每个变量的边际分布可以独立地进行分析。

其次,多元正态分布的协方差矩阵可以用来描述变量之间的线性关系。

协方差矩阵可以通过样本数据的协方差矩阵估计得到。

最后,多元正态分布的联合分布可以通过均值向量和协方差矩阵来确定。

第三部分:多元正态分布的应用多元正态分布在许多领域都有广泛的应用。

在社会科学中,多元正态分布可以用来建立结构方程模型,研究变量之间的因果关系。

在金融学中,多元正态分布可以用来建立投资组合模型,评估不同投资资产之间的相关性。

在医学研究中,多元正态分布可以用来分析多个生物标志物之间的关系。

第四部分:多元正态分布的优缺点多元正态分布具有许多优点,如易于推断和建模、具有丰富的数学性质等。

然而,多元正态分布也有一些局限性,如对数据的要求较高、对大样本量的依赖性等。

因此,在应用多元正态分布时,需要考虑这些因素。

第五部分:结论多元正态分布作为结构方程模型的基本假设之一,在数据分析和建模中具有重要的应用。

通过对多元正态分布的概念、性质和应用的介绍,本文希望读者对该主题有更深入的理解。

同时,也提醒读者在实际应用中要考虑到多元正态分布的优缺点,并结合具体情况进行分析和建模。

通过合理的应用和推广,多元正态分布将为各个领域的研究提供有力的工具和方法。

应用多元统计分析.ppt

应用多元统计分析.ppt

多元统计分析研究 的对象就是多 维随机向量.
第一章
§1.1


引言--多元分析的研究对象和内容
研究的内容既包括一元统计学中某 些方法的直接推广,也包括多个随机 变量特有的一些问题。
多元统计分析是一类范围很广 的理论和方法。
第一章
§1.1


引言--多元分析的研究对象和内容
就以学生成绩为例,我们可以研究很多 问题:用各科成绩的总和作为综合指标来 比较学生学习成绩的好坏(如成绩好的与成 绩差的,又如文科成绩好的与理科成绩好 的);研究各科成绩之间的关系(如物理 与数学成绩的关系,文科成绩与理科成绩 的关系);……等等。所有这些都属于多 元统计分析的研究内容。
课程其它事项

教学软件: R 课程主页: 课程评估:

作业 : 期中 : 期末 :
10% 40% 50%

答疑时间: 周二 9:30—11:30
第一章
§1.1

引 言

在实际问题中,很多随机现象涉及到 的变量不止一个,而经常是多个变量,而 且这些变量间又存在一定的联系。我们常 常需要处理多个变量的观测数据。例如考 察学生的学习情况时,就需了解学生在几 个主要科目的考试成绩。 下表给出从某年级随机抽取的12名学 生中5门主要课程期末考试成绩。
0 . 1025 X 0 . 2852 X 4 12 Z1是12个变量的线性组合,且系数都是正数, 数值有大有小。显然数值大的变量对综合指标 (主成分)的贡献大;数值小的变量对综合指 标(主成分)的贡献小。
教育学-主成分分析在学生学习成绩排序中的应用
12个原始变量(课程)提供的信息各为多少?用什 么量来表达?最经典的方法是用变量的方差Var(Xi)为 多少来表达。 如果某课程全班学生的成绩都差不多,比如都是80 分左右,则这门课程在学生成绩的排序中不起什么作 用。这反映在原始变量的线性组合Z1 (第一主成分) 上该变量对应的系数会很小(如0.1025). 如果另一门课程全班学生的成绩相差很大,有的 100分,有的只有30多分,则这门课程在学生成绩的 排序中起的作用很大。这反映在原始变量的线性组合 Z1 (第一主成分)上该变量对应的系数会很大(比如 0.4525).

多元统计分析陈钰芬课后答案

多元统计分析陈钰芬课后答案

多元统计分析陈钰芬课后答案第1章多元正态分布1、在数据处理时,为什么通常要进行标准化处理?第1章多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。

在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。

其中最典型的就是0-1标准化和Z标准化。

2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。

在二维和三维空间中的欧氏距离的就是两点之间的距离。

缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。

每个坐标对欧氏距离的贡献是同等的。

当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。

当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。

它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。

没有考虑到总体变异对距离远近的影响。

马氏距离表示数据的协方差距离。

为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。

优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。

由标准化数据和中心化数据计算出的二点之间的马氏距离相同。

马氏距离还可以排除变量之间的相关性的干扰。

缺点:夸大了变化微小的变量的作用。

受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。

3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。

多元正态分布

多元正态分布
专业课件讲义教材PPT文档 8
另,x1 和
1 x1 1 2 f1 ( x1 ) exp[ ( ) ] 21 2 1 2 1 1 x2 2 f 2 ( x2 ) exp 2 2 2 2 1
x2 的边际密度函数分别是
,其中 u ~ N 2 (0, I ) ,
1 0 ,则 X 的分布就是退化的三元正 A 0 1 1 1
态分布,即 x ~ N3 (0, ) ,其中
1 0 1 0 1 1 0 1 T AA 0 1 0 1 1 0 1 1 1 1 2 1 1
(2 )
p 2

1 2
1 T 1 exp (x ) (x ) 2
专业课件讲义教材PPT文档 4
设随机向量 u ~ N P (0, I ) , 为 p 维常 数向量, A 是一个 p q 常数矩阵,则称 x Au 的分布为多元正态分布,仍记 T X ~ N ( , ) 作 ,其中 AA 。 P
专业课件讲义教材PPT文档 1
u 的均值和协方差矩阵分别为
E (u) E (u1 ),, E (u p )
V (u) E (uuT )


T
0
u12 u1u2 u1u p 1 0 0 2 u2u1 u2 u2u p 0 1 0 E I u u u u u2 0 0 1 p 2 p p 1 u 的分布称为均值为 0 ,协方差矩阵为 I 的多元正态分布,记作 u ~ N P (0, I )
第三章
第一节
多元正态分布
多元正态分布的定义

多元正态分布

多元正态分布
欧氏距离还有一个缺点,这就是当各个分量 为不同性质的量时,“距离”的大小竟然与指 标的单位有关。
2020/4/8
目录 上页 下页 返回 结束
20
§1.2 统计距离和马氏距离
例如,横轴 代表重量(以kg为单位),纵轴 代表长度(以cm为单位)。有四个点A、B、C、D见 图1.1,它们的坐标如图1.1所示
§1.1.4 随机向量的数字特征
2、随机向量 自协方差阵
称它为 维随机向量 的协方差阵,简称为 的协
方差阵。称
为 的广义方差,它是协差阵的行
列式之值。
2020/4/8
13
目录 上页 下页 返回 结束
§1.1.4 随机向量的数字特征
3、随机向量X 和Y 的协差阵

分别为 维和
维随机向量,它们之间的协方差阵定义为一个 矩
证明参见文献[4],p.33。
2、多元正态分布随机向量X的任何一个分量子集的分布(称为X的
边缘分布)仍然遵从正态分布。而反之,若一个随机向量的任何边缘分
布均为正态,并不能导出它是多元正态分布。
例如,设
有分布密度
容易验证, 正态分布。
2020/4/8
,但
显然不是
34
目录 上页 下页 返回 结束
§ 1.3.2 多元正态分布的性质
于1936年引入的距离,称为“马氏距离”。
2020/4/8
目录 上页 下页 返回 结束
23
§1.2 统计距离和马氏距离
下面先用一个一维的例子说明欧氏距离与马氏距离在概 率上的差异。
设有两个一维正态总体
G1
:
(1
,
2 1
)和G2
:
(2
,

多元统计分析第二章多元正态分布

多元统计分析第二章多元正态分布

多元统计分析第二章多元正态分布多元正态分布(Multivariate Normal Distribution),是指多个随机变量服从正态分布的情况。

在统计学中,多元正态分布是一个重要的概率分布,广泛应用于多个领域,如经济学、金融学、生物学、工程等。

多元正态分布的概率密度函数可以表示为:f(x;μ,Σ) = (2π)^(-k/2) ,Σ,^(-1/2) exp(-(x-μ)'Σ^(-1)(x-μ)/2)其中,x表示一个k维向量(k个随机变量),μ是一个k维向量,表示均值向量,Σ是一个k*k维协方差矩阵,Σ,表示协方差矩阵的行列式,'表示向量的转置,Σ^(-1)表示协方差矩阵的逆矩阵,exp表示指数函数。

多元正态分布具有以下特点:1.对称性:多元正态分布的密度函数是关于均值向量对称的。

2.线性组合:多元正态分布的线性组合仍然服从正态分布。

3.条件分布:给定其他变量的取值,多元正态分布的边缘分布和条件分布仍然服从正态分布。

4.独立性:多元正态分布的随机变量之间相互独立的充要条件是它们的协方差矩阵为对角矩阵。

对于多元正态分布,可以使用协方差矩阵来描述不同随机变量之间的相关程度。

协方差矩阵的对角线元素表示各个随机变量的方差,非对角线元素表示各个随机变量之间的协方差。

多元正态分布的参数估计也是统计学中一个重要的问题。

通常可以使用最大似然估计方法来估计均值向量和协方差矩阵。

在实际应用中,多元正态分布可以用来描述多个相关变量的联合分布。

例如,在金融学中,可以使用多元正态分布来建模多个股票的收益率。

在生物学中,可以使用多元正态分布来建模多个基因的表达水平。

除了多元正态分布,还存在其他的多元分布,如多元t分布、多元卡方分布等。

这些分布可以用来处理更一般的随机变量,具有更广泛的应用领域。

总之,多元正态分布是统计学中一个重要的概率分布,具有许多重要的性质和应用。

通过对多元正态分布的研究,可以更好地理解和分析多个相关变量的联合分布,推断和预测相关变量的取值,并为实际问题提供可靠的解决方案。

《正态分布》说课稿

《正态分布》说课稿

《正态分布》说课稿引言概述:正态分布是概率统计学中重要的一种概率分布,也被称为高斯分布。

它在自然界和社会科学中的应用非常广泛,被广泛用于描述各种随机变量的分布情况。

本文将从五个方面详细介绍正态分布的概念、性质、应用以及计算方法。

一、正态分布的概念1.1 正态分布的定义:正态分布是一种连续型的概率分布,其概率密度函数呈钟形曲线,摆布对称,以均值μ为中心,标准差σ决定曲线的宽窄。

1.2 正态分布的特点:正态分布具有惟一的均值和标准差,均值决定了曲线的位置,标准差决定了曲线的形状。

1.3 正态分布的标准化:通过标准化可以将正态分布转化为标准正态分布,使得计算更加方便。

二、正态分布的性质2.1 正态分布的对称性:正态分布的概率密度函数在均值处对称,即摆布两侧的曲线形状彻底相同。

2.2 正态分布的稳定性:正态分布具有稳定性,即多个独立的正态分布的和仍然服从正态分布。

2.3 正态分布的中心极限定理:根据中心极限定理,当样本容量足够大时,样本均值的分布将近似服从正态分布。

三、正态分布的应用3.1 统计判断:正态分布在统计判断中起到重要的作用,例如通过样本均值的正态分布来判断总体均值的置信区间。

3.2 质量控制:正态分布在质量控制中被广泛应用,例如通过控制图来判断产品质量是否稳定。

3.3 金融领域:正态分布在金融领域中的应用也非常广泛,例如股票收益率的分布通常被假设为正态分布。

四、正态分布的计算方法4.1 正态分布的概率计算:可以使用标准正态分布表或者计算机软件来计算正态分布的概率。

4.2 正态分布的参数估计:可以使用最大似然估计或者最小二乘法来估计正态分布的参数。

4.3 正态分布的抽样方法:可以使用随机抽样方法来获取符合正态分布的样本。

五、结语正态分布作为概率统计学中重要的一种分布,具有丰富的性质和广泛的应用。

通过深入了解正态分布的概念、性质、应用以及计算方法,我们可以更好地应用正态分布进行数据分析和判断,为各个领域的决策提供科学依据。

《多元统计分析(第5版)》课后习题答案

《多元统计分析(第5版)》课后习题答案
第 1 章 P20 1. 在数据处理时,为什么通常要进行标准化处理?
对数据进行标准化处理主要为了消除变量的量纲以及量纲差别较大时所带 来的影响,尤其当变量间的单位不同且量级差别特别大时,使用不做任何处理的 数据进行计算,可能会得到极不合理的结果。
2. 欧氏距离与马氏距离的优缺点是什么? 欧氏距离是计算点与点之间距离的常用方法,其缺点是坐标的各维度对计算
则y12的密度函数为:
������(������)
=
2ϕ(√������)

1 2√������
=
2 √2������
exp
(−
������ 2)

1 2√������
=
1 √2������������
exp
(−
������ 2)
,
������ ≥ 0

������(������)
=
{
1 √2������������
证 明 : 不 妨 设 Σ = diag(������12, … , ���������2��� ),X 的 均 值 向 量 为 μ = (������1, … , ������������) , 则
X~N(μ, Σ). X的概率密度函数为:
��������������)
因此,X的分量是相互独立的随机变量。
5. y1与y2是相互独立的随机变量,且y1~N(0,1),y2~N(3,4)。 (a)求y12的分布。
(b)如果y = [(y2-y31)/2],写出y′y关于y1与y2的表达式,并写出y′y的分布。 (c)如果y = [yy12]且y~N(μ, Σ),写出y′Σ−1y关于y1与y2的表达式,并写出y′Σ−1y 的分布。

多元统计分析1-3章

多元统计分析1-3章

第一章绪论§1.1 什么是多元统计分析在工业、农业、医学、气象、环境以及经济、管理等诸多领域中,常常需要同时观测多个指标。

例如,要衡量一个地区的经济发展,需要观测的指标有:总产值、利润、效益、劳动生产率、万元生产值能耗、固定资产、流动资金周转率、物价、信贷、税收等等;要了解一种岩石,需观测或化验的指标也很多,如:颜色、硬度、含碳量、含硫量等等;要了解一个国家经济发展的类型也需观测很多指标,如:人均国民收入,人均工农业产值、人均消费水平等等。

在医学诊断中,要判断某人是有病还是无病,也需要做多项指标的体检,如:血压、心脏脉搏跳动的次数、白血球、体温等等。

总之,在科研、生产和日常生活中,受多种指标共同作用和影响的现象是大量存在的,举不胜举。

上述指标,在数学上通常称为变量,由于每次观测的指标值是不能预先确定的,因此每个指标可用随机变量来表示。

如何同时对多个随机变量的观测数据进行有效的统计分析和研究呢?一种做法是把多个随机变量分开分析,一次处理一个去分析研究;另一种做法是同时进行分析研究。

显然前者做法有时是有效的,但一般来说,由于变量多,避免不了变量之间有相关性,如果分开处理不仅会丢失很多信息,往往也不容易取得好的研究结果。

而后一种做法通常可以用多元统计分析方法来解决,通过对多个随机变量观测数据的分析,来研究变量之间的相互关系以及揭示这些变量内在的变化规律,如果说一元统计分析是研究一个随机变量统计规律的学科,那么多元统计分析则是研究多个随机变量之间相互依赖关系以及内在统计规律性的一门统计学科,同时,利用多元分析中不同的方法还可以对研究对象进行分类(如指标分类或样品分类)和简化(如把相互依赖的变量变成独立的或降低复杂集合的维数等等)。

在当前科技和经济迅速发展的今天,在国民经济许多领域中特别对社会经济现象的分析,只停留在定性分析上往往是不够的。

为提高科学性、可靠性,通常需要定性与定量分析相结合。

实践证明,多元分析是实现做定量分析的有效工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在农业科学研究中,经常通过多元统计寻求多维随机变量的 统计规律,即多指标问题。如,自然因子对作物产量和品质的作 用、育种中选择性状对目标性状的影响、疾病的多指标诊断、土 壤成分分析、气象预报、样品的归属等,都属于多指标的统计问 题。这些指标间千丝万缕、交叉影响,存在着极其复杂的统计规 律。在这种情况下,用我们所熟知的一元统计知识去孤立地分析 各个指标,就难免顾此失彼,使整体结论失真。因而多指标、多 因素问题只有选择相应的多元统计方法来处理,才能使其规律得 以正确的表达。 多元统计分析的理论主要建立在多元正态分布总体基础上的。 在实际问题中,所遇到的多元总体多是多元正态分布总体或近似 多元正态分布,有时不是多元正态分布总体,但当样本容量足够 大时,其平均值将近似服从多元正态分布。 1.2.1多元正态分布的定义 设某品种小麦的产量(x1)、每亩穗数 (x2) 、每穗粒数 (x3) 、 千粒重 (x4)均服从正态分布:
xi.
N ( 1 i2 ),
p/2
i=1,2,3,4
1/ 2
(1.2.1)
其中i与 i2分别为Xi的均值和方差。其概率密度函数为 f ( xi ) (2 )
exp 1/ 2( x )1 ( x ) (1.2.4)
其中X ( x1 , x2 ,..., x p )T , xi , i 1, 2,..., p
上一张 下一张 主 页 退 出
1 T f ( X ) (2 ) exp X X (1.2.5) 2 1.2.2 多元正态分布的性质
p 2

多元正态分布的性质在实际应用中起着重要的作用: 1、若X∽N(μ ,Σ ),则
d 2 为定值,X变化,则它为一椭球, 是X密度函数的等高面。 若X给定,则 d 2 为X到的定值马哈拉诺比斯距 离。 2. 若X ∽ Np( , ), 则它的任一 K(K p)维子向量服从 K维
d 2 Байду номын сангаас X )T 1 ( X ) ~ 2 ( P) (1.2.6)
正态分布,其均值向量 由子向量各分量的均值 向量组成, 其协方差阵由子向量各 分量的方差及协方差组 成。 由性质2知,X的任一分向量 X i ∽ N (i , i2 )。
3. 若X ∽ Np( , ), 若将X分割成两个列向量 Y1和Y2 , 即X (Y1 Y2 )T , 其均值向量也分割为相 应的两个 T 。Y1和Y2的协方差阵分别为 11 列向量 (1, 2) , Y1与Y2间的协方差阵 cov(Y1 , Y2 ) 12 ,而 22。 cov(Y2 , Y1 ) 21 , T , 则 Y 与 Y 相互独立的充要 21 1 2 12 条件是 12 0。 在生物科学中, X的各个分量之间存在复 杂的相关关系 。有时X可以分为若干个低维子 向量,它们各自代表着 不同 的功能性状组。性质 3为我们提供了解决此类 问题的方向。 3. 若X ~ Np( , ),C为相应的两个 q p阶非零常数 矩阵, b为q维常数列向量,则 Y CX b ~ Ng (C b, C C T ) (1.2.7) 它表明多元正态分布经 过线性变换仍为正态分 布。特别 地,当 q 1, b 0时, Y为X的各分量的线性组合 ,它服从一元正态分布 ,即
上一张 下一张主 页 退 出
SP (x i x )( yi y ) xy
2
( xi )( yi ) n
SS ( x i x ) x
2 i
( xi ) n
2
xi.
N ( 1 i2 ),
i =1,2,3,4
(1.2.1)
其中i与 i2分别为Xi的均值和方差。其概率密度函数为 f ( xi )
Y Ci X i ∽ N Ci X i , Ci C j ij
i 1 i 1 i 1 j 1
p
p
p p
这为我们研究多个变量 与多个变量之间的关系 带来了极大的方便。
5. 若X ~ Np( , ),对X的各个分量作标准变换 X i i Yi , i 1,2, , p 则Y Y1 , Y2 , , Y p ~ N p (0, ), 即服从 p维正态分布, 其中0为p维0列向量, 为X的相关阵:
( 1 , 2 ,..., p )T ,
12 12 1 p 2 2 2p 21 ,其行列式 〉 0 2 p2 p p1 这时称X 服从p元正态分布,记作X N P ( , )
在式(1.2.4)中,µ 为均值向量。E为期望算子,有 E(X)= µ ,µ 的分量µ i(i=1,2,…,p)为X的分量Xi的数学期望,即 E(Xi)= µ i,∑称为X的协方差阵。V为方差算子,即V(X)= ∑, ∑中的元素δii为X的分量Xi的方差,即V(Xi)= δi2= δii,而δij为Xi 与Xj间的协方差, δij= δji。在(1.2.4)中,要求ᅵ∑ᅵ〉0,即 ∑不但对称而且正定,这时∑的逆∑-1一定存在,且∑的特征根 大于0。正态分布参数的这些性质农林科研中具有特定的实际 意义。
1 1 exp 2 ( xi i ) 2 2 2 i 1 1 1 2 2 2 (2 ) ( i ) exp ( xi i )( i2 ) 1 ( xi i ) , X i (1.2.2) 2

那么4个性状所组成的4维列向量X=[X1,X2,X3,X4]T就服从四元正态 分布。 一般地,对于每一个分量都服从正态分布的p维随机向量 X=[X1,X2,…,Xp]T (1.2.3) 具有和一元正态分布相似的概率密度函数
相关文档
最新文档