调强放疗
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是调强放疗?
调强放疗(intensity modulated radiation therapy,IMRT)即调强适形放射治疗是三维适形放疗的一种,要求辐射野内剂量强度按一定要求进行调节,简称调强放疗。它是在各处辐射野与靶区外形一致的条件下,针对靶区三维形状和要害器官与靶区的具体解剖关系对束强度进行调节,单个辐射野内剂量分布是不均匀的但是整个靶区体积内剂量分布比三维适形治疗更均匀。
严格地说,使用楔形板和常规的表面弯曲补偿器也是调强。但这里我们所说的调强放射治疗是指一种形式的三维适形放射治疗,它使用计算机辅助优化程序不获取单个放射野内非均匀的强度分布以达到某种确定的临床目的。下面要讲的就是这个意义上的调强放射治疗。
编辑本段调强分布的设计
1、正向计划设计调强放疗
在CT影像上勾画好解剖轮廓后,三维适形放射治疗是由计划者根据靶区部位和大小在计划系统上安排照射野的入射方向、大小、形数目并对各个辐射野分配权重然后由计算机系统进行剂量计算,算完后显示射野分布,计划者依据靶区及正常组织所受剂量来评估计划的好坏。如果剂量分布不符合治疗要求,再由计划者改变射野的入射方向和权重,重新计算,如此反复进行,直至满意为止。这种制定计划的方式叫做正向计划设计。
2、调强放疗多采用逆向计划设计方案
调强概念是受了CT成像的逆原理启发:当CT的X射线管发出强度均匀的X射线穿过人体后,其强度分布与组织厚度和组织密度的乘积成反比;那么我们不是可以先确定射线照到靶区及正常组织上产生的剂量分布,然后再由此推算出各个射野应该贡献的束流强度吗?根据调强的概念,首先要依据病变(靶区)与周围重要器官和正常组织的三维解剖特点,以及期望的靶区剂量分布和危及器官(OAR)的剂量耐受极限,由计划者输入优化参数,通过计划系统计算出各个射野方向上需要的强度分布。即在完成勾画轮廓和确定辐射野数目及入射方向后,先确定对CT影像中各个兴趣区的剂量要求。由计划者以数学形式输入这些临床参数(即目标函数),如对靶区剂量范围的要求,对相关危及器官剂量的限制等,然后由计算机通过数学的方法(如迭代法、模拟[font color=#000000]退火[/font]法、蒙特卡洛法等)自动进行优化,在经过几百乃至上千次计算与比较后得出最接近目标函数并能够实现的计划方案。它是常规治疗计划设计的逆过程,所以叫做逆向计划设计。
在患者影像获取、勾画轮廓和确定辐射野数目及方向这些步骤上两者相同,但它们的优化过程是不同的。前者是先计算剂量,看结果如何,不行就人为地改动计划再试,如此反复,直到可以接受为止。后者是先由计划者通过输入目标函数来限定靶区和危及器官主剂量分布,再由计划系统自动反复进行优化计算,反复的次数由病例的复杂程度决定,至少需要一二百次。
编辑本段调强放疗的应用
调强放射治疗中,把每一个辐射野分割成多个细小的野(也叫做线束)。在制定计划时,按照靶区的三维形状和与相关危及器官之间的解剖关系,对这些线束分配以不同的权重,使同一个射野内产生优化的、不均匀的强度分布,以便使通过危及器官的束流通量减少,而靶区其他部分的束流通量增大。
调强放射治疗也不是万能的,在制定调强计划时几乎总是有一些限度,有些度剂量分布(或剂量一体积组合)无法真正实现。例如,一个脑干旁的肿瘤,假如要求给予肿瘤致死剂量而不许照射脑干,即使用调强技术也是无法实现的。而且目前我们关于什么是临床最佳要求以及如何确定调强剂量目标的知识也有限。此外,由于数学公式的限制,或由于计算机速度及时时间的限制,我们往往找不到最好的结果。还有各种各样的不确定性,例如,患者每天相关的治疗位置、内解剖位置的变化、在治疗期间器官的变形及各个分次之间的位移限制了调强的适用范围和功效。传输装置的剂量特性,如通过多叶光栅(MLC)叶片的散射和透射,也对调强放疗的精度及可传输性产生某些限制。目前调强验证手段还不成熟,剂量验证系统(基于胶片)准确度的限制也会降低人们对所传输剂量的信心。另外当前所用的剂量计算模式在精度上都有局限性,有可能在剂量计算上出现误差。另一种可能使调强不成功的重要因素是现在的影像系统还不能充分给出肿瘤的真正范围、肿瘤的扩展方式与放射生物特性以及正常组织的几何范围、剂量响应及功能特性等。对某些部位,例如肝、肺部的肿瘤,因为他们受呼吸影响较大,位置移动较多,在实施调强时要格外小心。
在组织补量的调强放射治疗中使用大分次剂量的结果可能会增大嵌在靶区内或紧邻靶区的正常组织的损伤机会。调强放射治疗的高度适形可能导致病变的地理遗漏(如摆位不准确)和复发,尤其对位置与运动不确定的病变影响更大。
这些局限性和风险表明,在现阶段使用调强技术要格外小心,还要继续研究改进技术并减少误差,这样的研究是调强技术全部潜力的根本。
编辑本段产生调强分布的方法
1、物理补偿法
用于调强的补偿器可以作为射野挡块的一部分放在治疗机挡块托盘架上。由逆向计划系统根据目标函数的要求计算出每个射野的强度分布形状或被补偿的组织厚度分布,并将数据输出到PC机控制的补偿器生成器,就可以制作补偿器了。制作出来的补偿器就可以进行调强补偿用了。这种方法出现在用MLC进行调强以前,目前还在广泛使用,是可靠的物理调强技术。缺点是因为这种技术需要对每个射野都来制作补偿器,费时费力效率低;治疗时每个照射野都需要工作人员进治疗室工作,摆位也不方便;补偿器作为一种滤过器,也会影响原射线的能谱分布。
2)、用常规MLC进行多个固定野调强治疗
加速器中的MLC最初设计目的主要是为了代替射野挡块,随着计算机技术的发展,MLC不仅能在旋转治疗中调节射野形状跟随靶区,而且还可以在计算机控制下实现静态调强和动态调强。
静态和动态调强都是由逆向计划系统先按照目标函数的要求通过优化计算得出射野的强度分布。目标函数参数是由计划者根据具体病例的临床要求
输入到计划系统中的,在治疗计划被认可后,这些强度分布就被转换为叶片位置序列文件,然后传送到加速器的MLC控制系统中,在治疗时由调强控制系统控制叶片运动,实现这些调强分布。
虽然对三维适形而言,MLC的叶片宽度只影响了射野的形状,但对调强而言,叶片宽度却影响到整个层面上的剂量,所以MLC叶片宽度越小越好,但是叶片越薄,制作越困难,成本也就越高。目前国内的MLC一般只有30多对叶片,但国外,已经出现了100对叶片以上的MLC系统。
编辑本段调强放疗的类型
1、静态调强
静态调强是由逆向调强计划系统根据临床数据将各个射野要求的强度分布进行分级,利用MLC将每个照射野分成若干个子野,,每个子野内的强度是均匀的。
优化计算赋予每个子野不同的权重,所有射野的子野都被优化,由此产生期望的治疗计划。
治疗时各个子野分步按顺序进行,在实施治疗过程中,叶片运动到第一个子野规定的位置停下,加速器出束,达到规定mu停下,然后叶片运动到下一个子野的规定位置停下后加速器再出束;如此进行下去,使得每个子野的强度累加,直到完成整个射野,所有子野的束流强度相加形成要求的强度分布。
一般来说,希望尽量减少子野数目、叶片运动次数和MU数以便保证剂量传送的精度,但是子野太少剂量分布就达不到调强的要求。MLC静态调强在每个子野照射结束后必须关断射线才能转到下一个子野,由于加速器射线的开关动作,带来剂量率的稳定问题,从而对AFC系统提出了较高的要求;或者说只有栅控电子枪才能完全实现这种要求!
静态调强剂量验证比较容易,但是需要的治疗时间比较长。
2、MLC动态调强
这种调强是利用MLC相对应的一对叶片的相对运动来实现对射野内强度的调节的。
在每个射野的照射过程中,由计算机系统按照调强计划给出的数据进行控制,在各对叶片作变速运动时,加速器不停地以变化的剂量率出束,由此得到所要求的强度分布。治疗时每对叶片构成一个窗,它们在计算机控制下横扫过靶区。窗的开口和叶片运动速度都按照预定的方案不断调节,以便产生需要的强度分布。这也同样决定于滑窗轨迹之下的治疗区内各点的吸收剂量。在计划过程中计算机用一种算法将叶片位置作为每个射野出束时间的函数,将需要的强度分布转换为叶片位置。
动态调强的技术特点是:一对相对的叶片总是向一个方向运动,并在运动过程中不断形成各种形状的窗口(即子野)扫过靶区。
一般动态调强的每个射野都由上百个子野组成,滑窗开口的设置及每对叶片任何时刻都由一个程序控制。在相对的叶片之间的窗口开到最大时,使用最大的叶片速度,这样可以缩短治疗时间。需要参与射束传输的叶片数目取决于靶区的长度,靶区越长涉及的叶片就越多。