马氏体相变
第四章 马氏体相变
第四章 马氏体相变随着科学技术的发展和人们对材料性能的要求越来越高,材料相变的研究也成为了一个热门的领域。
其中,固态相变是最为基础和广泛的相变形式之一。
在这其中,马氏体相变是一个相对特殊和有意义的相变过程。
一、马氏体相变的定义和分类马氏体相变,是指在含碳钢中,当钢经过一定的热处理过程后,在室温下形成一种具有变形性能的组织结构。
其核心原理是在高温下形成一种奥氏体,然后通过快速冷却过程,在室温下形成一种具有弹性、变形及塑性的马氏体组织结构。
根据马氏体相变的不同起始组织结构,其可以分为两种类型:一类是由完全奥氏体组成的马氏体相变,另一类是由贝氏体(以及在贝氏体上产生马氏体)组成的马氏体相变。
1.完全奥氏体马氏体相变当钢经过高温处理后,在其细小的晶粒中,完全转化为奥氏体组织。
通过钢的快速冷却 (通常在水、油、盐水等介质中进行),奥氏体中的部分碳原子被固溶,在马氏体的组织中重新排列,最终形成一种具有高强度和塑性的马氏体组织结构。
这种马氏体相变过程,称为完全奥氏体马氏体相变。
2.贝氏体马氏体相变贝氏体正常情况下是由冷却慢、回火温度低的钢中形成的。
它是由一种由铁与铁素体间化合物构成的细小晶粒组成的组织,这种组织强度比较低,韧性高,且具有较高的弹性变形和形变能力。
当这种钢经过高温处理后,由于组织发生了相变,大量贝氏体消失,而代替它的则是奥氏体组织。
这样在快速冷却的过程中,就会在奥氏体中形成一定数量的针状马氏体组织结构。
二、马氏体相变的影响因素马氏体相变的过程涉及到多个变量和影响因素,其中最重要的一些因素包括:1.冷却速度作为一种固态相变过程,马氏体相变的核心就是快速冷却过程。
通常来说,冷却速度越快,产生的马氏体组织也就越细小,强度也就越高。
2.合金元素含量合金元素在钢制造中有着重要的作用。
它们可以调节钢的合金成分和钢的性能,使钢的性能得到提升。
其中,加入Cr、Ni、Mn等元素可以有效地提高马氏体相变的开始和结束温度,这有利于得到良好的马氏体组织结构。
《马氏体相变 》课件
2 条件的作用原理是什么?
马氏体相变的条件是实现马氏体相变的必要 前提,它们直接影响马氏体晶体结构和材料 性能的形成和转化。
马氏体相变的过程
1
马氏体相变的步骤和原理
马氏体相变包括两个基本过程——形变和回复过程,当材料由奥氏体转变为马氏 体时,晶体结构发生相应的改变。
2
过程中有哪些需要注意的地方?
马氏体相变的过程会受到多种因素的干扰,如温度、压力、组织性能等,需要注 意这些影响因素对相变的影响。
应用领域
哪些领域得到应用?
马氏体相变广泛应用于机械、电子、材料等领域, 如机械弹簧、手机天线、记忆合金等。
应用的优势和局限是什么?
马氏体相变具有自修复性、快速响应、压电性、形 状记忆等特性,但仍然存在加工困难和应用的局限 性等问题。
结论和展望
总结发现和成果
本课件详细介绍了马氏体相变的背景、条件、过程和应用,使人们更好地了解该领域的发展 现状。
展望未来的发展前景
马氏体相变技术在自动化、能源、环境等领域有广阔的应用前景,我们期待它能在未来发挥 更大的作用。
参考文献
• 李新. 材料科学[M]. 化学工业出版社, 2013. • 关辰. 马氏体相变的研究进展[C]// 2019第五届全国现代材料学术会议论文集. 2019: 254-259. • 郭宝昌, 焦彦龙. 马氏体晶体几何结构及马氏体相变过程的研究进展[J]. 您刊, 2018, 39(05): 57-63.
马氏体晶体结构
晶结构是什么?
马氏体的晶体结构是单斜晶体结构,其单斜晶体形 状由一维位错和孪晶形成。
性质和特点是什么?
马氏体晶体中存在位形、变形、弹性、能量等多种 耦合,与其他晶体类似,但具有独特的特点和性质。
马氏体相变
极快,特点:马氏体降温瞬间形核,瞬间长大,可以认为 马氏体转变速度取决于形核率而与长大速度无关。 马氏体转变量取决于冷却所达到的温度,而与时间无关。
2、等温形成马氏体的动力学
特点:马氏体等温形核,瞬间长大,形核需要孕育期,形核率 随过冷度增大而先增后减,转变量随等温时间延长而增加。等 温转变动力学图呈C字形。
各种马氏体的晶体结构、惯习面、亚结构、位向关系汇总表
2、影响马氏体形态及亚结构的因素
化学成分 马氏体形成温度 奥氏体的层错能 奥氏体与马氏体的强度 主要是化学成分和马氏体形成温度
化学成分:片状马氏体的组织形态随合金成分的变化而改变。
对于碳钢: 1)C%<0.3%时, 板条马氏体; 2)0.3%~1.0%时,板条和透镜片状混合的马氏体; 3)C% >1.0%时, 全部为透镜片状马氏体。并且 随着C%增加,残余奥氏体的含量逐渐增加。 合金元素: 1)缩小γ相区,促进板条马氏体。 2)扩大γ相区,促进透镜片状马氏体。
特征5:转变的非恒温性和不完全性
1. 奥氏体以大于某一临界冷却速度的速度冷却到某一温度(马氏 体转变开始温度Ms),不需孕育,转变立即发生,并且以极大 速度进行,但很快停止,不能进行终了。为使转变继续进行, 必须继续降低温度,所以马氏体转变是在不断降温的条件下才 能进行。当温度降到某一温度之下时,马氏体转变已不能进行, 该温度称为马氏体转变终了点即Mf 。 2. 马氏体转变量是温度的函数,与等温时间无关。马氏体的降温 转变称为马氏体转变的非恒温性。由于多数钢的 Mf 在室温以下, 因此钢快冷到室温时仍有部分未转变奥氏体存在,称为残余奥氏 体,记为Ar。有残余奥氏体存在的现象,称为马氏体转变不完全 性。要使残余奥氏体继续转变为马氏体,可采用冷处理。
不锈钢的马氏体相变
不锈钢的马氏体相变不锈钢是一种在各种环境条件下都具有高度耐腐蚀性的合金。
其名称源于其成分中含有的高比例铬元素,这有助于防止材料在暴露于氧气和其他腐蚀性物质时发生氧化。
不锈钢根据其微观结构,可以分为不同的类型,其中最常见的是奥氏体不锈钢和马氏体不锈钢。
马氏体相变是金属材料的一种重要现象,尤其是不锈钢。
在本文中,我们将深入探讨不锈钢中的马氏体相变,包括其定义、影响因素以及与不锈钢性能的关系。
一、马氏体相变的定义马氏体相变是一种固态相变过程,发生在铁基合金中,特别是在不锈钢中。
当温度降低时,奥氏体不锈钢会通过马氏体相变转变成一种硬且脆的同素异形体,称为马氏体。
这种转变是热力学上的自发过程,通常伴随着体积的膨胀和磁性的改变。
二、马氏体相变的影响因素1. 温度:马氏体相变通常在特定的温度以下发生。
对于大多数不锈钢,这个温度大约在200°C至300°C之间。
2. 合金成分:不同类型的不锈钢具有不同的马氏体相变温度。
这主要取决于其合金成分,特别是碳和其他合金元素的比例。
3. 应力和应变:应力和应变状态也会影响马氏体相变。
例如,淬火可以提高材料的硬度,这是由于马氏体相变和随后的组织结构变化。
三、马氏体相变与不锈钢性能的关系马氏体相变对不锈钢的性能有重要影响,主要包括以下几个方面:1. 机械性能:马氏体相变会导致不锈钢的硬度增加,从而提高其耐磨性和耐腐蚀性。
然而,这也可能导致材料变脆,特别是在较低温度下进行淬火处理时。
2. 耐腐蚀性:马氏体相变对不锈钢的耐腐蚀性有双重影响。
一方面,由于硬度增加,材料更难以被腐蚀;另一方面,淬火处理可能会在材料表面形成微裂纹,从而降低耐腐蚀性。
3. 磁性和热性能:马氏体相变还影响不锈钢的磁性和热性能。
例如,某些类型的马氏体不锈钢具有高磁导率,这在某些应用中是有利的。
此外,马氏体相变也影响不锈钢的热导率和热膨胀系数。
四、不锈钢中马氏体的应用场景由于马氏体相变对不锈钢的性能有显著影响,这种相变在许多应用场景中都得到了利用。
马氏体相变的基本特征
马氏体相变的基本特征一、马氏体相变的概念及基本过程马氏体相变是指在一定条件下,由奥氏体向马氏体的转变。
奥氏体是指碳钢中的一种组织结构,具有良好的塑性和韧性,但强度和硬度较低;而马氏体则是碳钢中另一种组织结构,具有较高的强度和硬度,但韧性较差。
因此,在特定情况下将奥氏体转变为马氏体可以提高材料的强度和硬度。
马氏体相变的基本过程包括两个阶段:淬火和回火。
淬火是指将钢件加热至适宜温度后迅速冷却至室温,使其形成完全马氏体组织;回火是指将淬火后的钢件加热至适宜温度后进行恒温保持一段时间,然后缓慢冷却至室温,使其形成具有良好韧性和适当硬度的马氏体-贝氏体组织。
二、影响马氏体相变的因素1. 淬火介质淬火介质的选择对马氏体相变的影响非常大。
常用的淬火介质包括水、油和空气等。
水冷却速度最快,可以使钢件形成完全马氏体组织,但易产生变形和裂纹;油冷却速度较慢,可以降低变形和裂纹的风险,但易产生不完全马氏体组织;空气冷却速度最慢,可以避免变形和裂纹,但难以形成马氏体组织。
2. 淬火温度淬火温度是指将钢件加热至何种温度后进行淬火。
淬火温度越高,钢件中残留奥氏体的含量越高,从而影响马氏体相变的程度。
一般来说,淬火温度越低,马氏体相变越充分。
3. 回火温度回火温度是指将淬火后的钢件加热至何种温度进行回火处理。
回火温度对马氏体-贝氏体组织的形成有重要影响。
过高或过低的回火温度都会导致组织不均匀或性能下降。
4. 淬火时间淬火时间是指将钢件放入淬火介质中的时间。
淬火时间越长,相变程度越充分,但也容易产生变形和裂纹。
三、马氏体相变的应用马氏体相变广泛应用于制造高强度、高硬度的零部件。
例如汽车发动机凸轮轴、齿轮、摇臂等零部件,以及航空航天领域中的发动机叶片、转子等部件均采用了马氏体相变技术。
此外,马氏体相变还可以用于制造刀具、弹簧等产品。
总之,马氏体相变是一种重要的金属加工技术,在提高材料强度和硬度方面具有重要作用。
了解其基本特征和影响因素有助于更好地掌握该技术,并在实践中取得更好的效果。
马氏体转变
马氏体相变的
分子动力学模拟
200,000 Zr atoms 1024-node Intel Paragon XP/S-150
六. 不同材料中的马氏体转变 1. 有色合金 许多有色合金也存在马氏体转变。 马氏体外形基本上仍属条片状,金相形貌与铁基 马氏体有区别。 马氏体亚结构多为层错和孪晶,极少有位错型。
' '
薄板状马氏体
薄片状马氏体
三. 马氏体转变的热力学 1. 相变驱动力
G
T0为相同成分的马氏 体和奥氏体两相热力学 平衡温度,此时
ΔGγ→α′
ΔGγ→α’ = 0
ΔGγ→α’ 称为马氏体相 变驱动力。 Ms T0 Gα′ Gγ T
自由焓——温度曲线
2. 转变温度Ms和Mf 相变驱动力用来提供切变能 量、亚结构畸变能、膨胀应变 能、共格应变能、界面能等, 所以要有足够大相变驱动力。 Ms为马氏体转变起始温度, 是奥氏体和马氏体两相自由能 之差达到相变所需的最小驱动 力(临界驱动力)时的温度。 Mf为马氏体转变终了温度。 T
(3) 其它形貌马氏体 在高碳钢,高镍Fe-Ni-C合金中, 或在应力诱发作用下,会形成蝶 状马氏体。 呈V形柱状,成片出现。 两翼的惯习面为{225}γ,夹角 为136°,结合面为{100}γ。 位向关系为K-S关系。
蝶状马氏体 {100}γ
晶内亚结构为位错,无孪晶。
136°
蝶状马氏体示意图
(155)
(321) 和 (332) 之间
{111} {133} {8,8,11}β {344}β {344}β {100}β
2. 无机材料 1963年Wolten根据ZrO2中正方相t→单斜相m的转 变具有变温、无扩散及热滞的特征,将这种转变称 为马氏体转变,ZrO2中的t→m相变还表现出表面浮 凸及相变可逆的特点。 在无机和有机化合物、矿物质、陶瓷以及水泥的 一些晶态化合物中也有切变型转变。如压电材料 PbTiO3、BaTiO3、及K(Ta、Nb)O3等钙钛氧化物高 温顺电性立方相→低温铁电性正方相的转变;高温 超导体YBaCu2O7-x高温顺电相→超导立方相的转变 均为马氏体转变。
马氏体转变特点
马氏体转变特点马氏体转变是指钢铁材料在加热或冷却过程中发生的晶体结构变化。
马氏体转变具有以下几个特点。
1. 温度范围:马氏体转变温度范围较宽,通常在200℃到600℃之间。
这个范围内的温度变化会引起钢铁材料的晶体结构发生变化,从而影响材料的力学性能。
2. 马氏体相变:马氏体转变是指钢铁材料从奥氏体结构转变为马氏体结构的过程。
奥氏体是一种面心立方结构,具有较高的韧性和塑性,而马氏体是一种体心立方结构,具有较高的硬度和强度。
3. 形变机制:马氏体转变是通过固溶体的相变来实现的。
在加热过程中,钢铁材料中的固溶体会发生晶体结构的变化,形成马氏体。
在冷却过程中,马氏体会再次转变为固溶体,从而使材料恢复到原来的晶体结构。
4. 转变速率:马氏体转变的速率取决于转变温度和材料的成分。
通常情况下,转变速率较快,可以在几秒钟或几分钟内完成。
然而,在一些特殊情况下,如低温下或含有合金元素的材料中,马氏体转变速率会显著降低。
5. 影响因素:马氏体转变受多种因素的影响,包括材料的成分、冷却速率、加热温度等。
增加合金元素的含量或采用快速冷却方法可以加速马氏体转变的速率。
6. 影响性能:马氏体转变对钢铁材料的力学性能具有显著影响。
马氏体具有较高的硬度和强度,但韧性和塑性较低。
因此,在一些特定的应用场合中,需要控制马氏体转变的程度,以获得适当的力学性能。
7. 相变组织:马氏体转变后的钢铁材料会形成不同的相组织。
常见的相组织包括全马氏体组织、马氏体和残余奥氏体组织、马氏体和贝氏体组织等。
不同的相组织具有不同的力学性能。
马氏体转变是钢铁材料在加热或冷却过程中发生的晶体结构变化,具有温度范围广、转变速率快、影响因素多等特点。
了解和掌握马氏体转变的特点对于钢铁材料的制备和应用具有重要意义。
马氏体相变与形状记忆效应
5
二.形状记忆效应的晶体学机制
• 形状记忆合金有三个特征: – 合金能够发生热弹性马氏体相变; – 母相和马氏体的晶体结构通常均为有序的(所谓有序结构, 即溶质原子在 晶格点阵中有固定位置); – 母相的晶体结构具有较高的对称性,而马氏体的晶体结构具有较低的对 称性.
• 当母相是B2型有序结构时,马氏体的晶体结构可看成是以图4-5 a) 第一行所 示(下页)的密排面为底面沿z方向按一定方式的堆垛. – 为保证密排堆垛结构,堆垛时必须按照以下的规则:若第一层的原点在A, 则第二层的原点可放在B或C . 若第二层的原点在B,则第三层的原点可 放在A或C,以此类推. • 当堆垛的顺序是ABABAB…时是2H结构 . • 当堆垛的顺序是ABCABC…时是3R结构. • 当堆垛的顺序是ABCBCACABABCBCACAB…时是9R结构,如图45b)所示 .
12
因此,记忆合金能够回复的最大变形不能超出马氏体完全再取向后所能贡 献出的相变应变.
• 如果马氏体完全再取向后继续施加外力,马氏体将以滑移和孪生的形式继续 变形,这时发生的变形是不可回复的塑性变形.组织中出现位错、形变孪晶 等晶体缺陷,破坏合金的热弹性马氏体相变,损害形状记忆效应.
三.应力诱发马氏体相变与记忆合金的超弹性
17
• 双程记忆训练:通过各种工艺处理方法在合金内部产生特定的内应力场,使 合金具有双程记忆效应.
• 双程记忆训练方法主要有: (1)SIM法:在母相态对记忆合金元件施加变形. (2)SME法:在马氏体态对记忆合金元件施加变形. (3)SIM+SME法:在母相状态下进行变形,约束其应变,冷却到Mf点以 下;或在马氏体状态下进行变形,约束其应变,加热 到Af点以上.也可将这二者结合起来. (4)约束ห้องสมุดไป่ตู้热法:将试样变形,约束其变形并在合金析出第二相的温度进 的行适当的加热.
马氏体相变的名词解释
马氏体相变的名词解释马氏体相变是固态材料在经历加热后,发生固态相变形成马氏体的一种自发性相变过程。
这个过程是由于固态材料中的结构发生了变化,从而导致其宏观性质发生显著改变。
马氏体相变是一种重要的材料科学研究领域,具有广泛的应用价值,特别是在材料加工、制造以及机械、电子等领域。
马氏体是一种具有特殊晶体结构的金属或合金相。
通过马氏体相变,材料的原子排列发生变化,从立方晶系转变为正交晶系,这种转变导致了材料在微观尺度上的形变。
马氏体相变在材料中的应用包括增加材料的硬度、降低材料的延展性、改变材料的导电性等。
马氏体相变过程可以通过控制材料的组成、冷却速率以及外加应变等手段来实现。
根据不同的材料组成和处理方式,马氏体相变可以分为多种类型,如亚稳的马氏体相变、稳定的马氏体相变等。
亚稳的马氏体相变具有可逆性,即可以通过加热使马氏体再次转变为原有的相,而稳定的马氏体相变则是不可逆的,材料无法通过加热来回复到原有的相。
马氏体相变的研究在金属、合金和陶瓷等材料中广泛进行。
研究者们通过实验和理论模拟等方法,探索材料的晶体结构和其相变机制。
他们研究材料的组成、热处理条件以及外部应力对马氏体相变的影响,并尝试开发新的材料设计和加工方法来改变马氏体相变的性质。
在材料科学领域,马氏体相变被广泛应用于制造高强度材料、形状记忆合金和超弹性材料等。
高强度材料通过马氏体相变提高了材料的硬度和强度,在制造领域具有重要的应用价值。
形状记忆合金则是一种具有记忆效应的特殊合金材料,可以通过马氏体相变来实现形状的记忆和恢复。
超弹性材料具有很高的弹性形变能力,可以通过马氏体相变来实现材料的超大形变。
总结来说,马氏体相变是固态材料在加热过程中发生的一种自发性相变,其通过改变材料的晶体结构和原子排列来实现材料性能的改变。
马氏体相变对于材料科学的发展具有重要的意义,它在材料制造、加工以及电子等领域的应用也呈现出广阔的前景。
研究者们将继续在这一领域进行深入研究,以推动材料科学的发展和创新。
马氏体相变
(1)低碳钢立方马氏体(<0.2%C)
板条马氏体(低碳M、位错M): 体心立方结构。具有高密度位错(约 0.3~0.9×1012cm-2 ) 的 亚 结 构 , 属 位错马氏体。其惯习面原为{111} γ , 现修改为{557} γ 。与母相的位向关系 为K-S关系。
低碳板条状马氏体 0.03C-2Mn
é ¯ Î ² ×Ö Ð Ã û ´ µ × ¬ ´ Æ × ¡ ¬ ´ ªÆ × å õ ´ ©Ì × û ´ µ × ¬ ´ Æ × ¬ ´ Æ × ¡ ¬ ´ ªÆ × ¡ ¬ ´ ªÆ ×
/ /
Fe-Ni-C £ Ni24~35% £ ¨ ¬ C~1.0%£ ©
bcc£ ¦ /£ ¨Á © bct£ ¦ /£ ¨Á ©
时,在瞬间形成大量马氏体,T~f曲线的开始阶段呈垂直上升的势态。 称爆发型马氏体相变。
自促发形核、瞬时长大
(4)弹性马氏体相变
弹性马氏体相变是指马氏 体与母相的界面可以发生 双向可逆移动。分为热弹 性和机械弹性两类。
热弹性马氏体的弹性消长
形状记忆效应
一些形状记忆合金
4.3 马氏体相变热力学
将 G 0 的温度定义为T0
Ms、Mf、As、Af、T0与合金成分的关系
As-Ms可因引入塑性变形而减少。 在Ms点以上对奥氏体进行塑性变 形,可诱发马氏体相变而使Ms点上 升到Md点。相应地,塑性变形可使 As点下降至Ad点。 Md点和Ad点分别称为形变诱发马 氏体相变开始点和形变诱发奥氏体相 变开始点。它们的极限温度均为T0。
马氏体相变
在中、高碳钢, 高镍的 Fe-Ni 合金 中出现,形成温 度较低。
图4-14 片状马氏体示意图
先形成的第一片马氏体横贯整个奥氏体晶粒,使 后形成的马氏体片的大小受到限制。后形成的马氏 体片,则在奥氏体晶粒内进一步分割奥氏透镜状,多数马氏 体片的中间有一条中脊面,相邻马氏体片互不平行, 大小不一,片的周围有一定量的残余奥氏体。
§4.3.4 工业用钢淬火马氏体的金相形态
(1)低碳钢中的马氏体 C%<0.3%的低碳钢、低碳低合金 钢,如 20# 、 15MnVB 钢等,组织为 板条马氏体,具有高强度、高韧性、 低的冷脆转化温度。
(2)中碳结构钢中的马氏体 如45#、40Cr 钢等,淬火后为板条马 氏体+片状马氏体的混合组织。 由于通常选用较低的奥氏体化温度, 淬火后获得的组织极细,光学显微镜较 难分辨。
扁八面体: 长轴为 2a ,短轴为c α-Fe点阵中的这个扁八面体间隙在短轴方向上的 半径仅为0.19埃,而碳原子有效半径为0.77埃, 因此,在平衡状态下,碳在α-Fe中的溶解度极小 (0.006%)。 一般钢中马氏体的碳含量远远超过这个数值,所 以会引起点阵发生严重畸变。 短轴方向的铁原子间距伸长36%,而在另外两个 方向则收缩4%,使体心立方变成体心正方点阵。
(1)化学成分和形成温度的影响
Ms点高 ---- 形成板条马氏体。
Ms点低 ---- 形成片状马氏体。
C%↑ → Ms ↓ 板条M → 板条M+片状M →片状M 位错M → 孪晶M
随碳含量增加及温度降低,马氏体形态由板条状向片状转化
合金元素: 缩小γ相区的元素均促使得到板条马氏体 扩大γ相区的元素均促使得到片状马氏体
亚结构为细小孪晶,一般集中在中脊面附近,片 的边缘为位错。随形成温度下降,孪晶区扩大。 马氏体片互成交角,后形成的马氏体片对先形成 的马氏体片有撞击作用,接触处产生显微裂纹。
马氏体相变及记忆.pptx
体迁移,每个原子移动的距离不超过一个原子间距,且原子之间的相对位
置不发生变化。
•
1、一些具有有序结构的合金发生马氏体转变后有序结构不发生变化;
•
2、Fe-C合金奥氏体向马氏体转变后,C原子的间隙位置保持不变;
•
3、马氏体转变可以在相当低的温度范围内进行,且转变速度极快。
例如:Fe-C、Fe-Ni合金,在-20~-196℃之间一片马氏体形成的时间约
3.马氏体相变的动力学分析 马氏体相变由于其具有转变速度快的特点,研究其动
力学转变特点很困难,可以将马氏体转变的动力学分成 三种情况。
1 马氏体降温形成(降温形核、瞬间长大)
2、等温转变(等温形核、瞬间长大)
3、表面转变
第32页/共52页
1、马氏体降温形成(降温形核、瞬间长大)
特点:
(1)由于降温形成的ΔG 很大,共格关系(势垒低,界面 阻力很小),因此形核率很大,转变速度极快,可认为 与长大速度无关; (2)爆发式转变,总转变量与温度有关 (3)细晶粒爆发量较少,晶界是爆发传递的障碍。
形变诱发马氏体相变热力学条件示意图
第25页/共52页
3、影响Ms点的主要因素
1)化学成分
(1)C%影响
C%的影响最为显,C% 升,Ms 和Mf均下降,马氏体转 变温度区间移向低温,残余奥 氏体量增加。
碳含量对MS、Mf的影响
第26页/共52页
2)合金元素
总体上: ① 除了Co、Al 提高Ms外,合金元素均有降低Ms作用。 ② 强碳化物形成元素加热时溶入奥氏体中很少,对Ms点影响不大。 ③ 合金元素对Ms点的影响表现在影响平衡温度T0和对奥氏体的强化作用。
为均匀切变。 • 造成均匀切变且惯习面为不变平面的应变即为不变平面应变。
马氏体相变的基本特征
马氏体相变的基本特征引言马氏体相变是指固体材料经过快速冷却或机械应力作用后,在普通的冷处理条件下发生的晶体结构相变现象。
马氏体相变具有广泛的应用背景,在材料科学和工程领域具有重要的意义。
本文将从马氏体相变的定义、形成机理、基本特征以及应用方面进行探讨。
马氏体相变的定义马氏体相变是指固体材料在冷却过程中经历组织相变,从高温相变为低温相的过程。
这种相变过程是一种固态相变,属于无序到有序的结构转变,通常发生在低温下。
马氏体相变的特点是快速、均匀和可逆的。
马氏体相变的形成机理马氏体相变的形成机理主要涉及晶格畸变、原子扩散和位错运动等过程。
通常情况下,当固体材料经历冷却过程时,晶格会发生畸变,从而形成新的有序结构。
这种畸变能够通过原子的扩散来进行传播,并且位错运动也会促进马氏体相变的形成。
马氏体相变的基本特征马氏体相变具有以下几个基本特征:1.快速性:马氏体相变是一个快速的相变过程,通常在毫秒至微秒的时间尺度内发生。
这种相变速度快的特点使得马氏体相变在某些应用中具有重要意义,比如形状记忆合金。
2.可逆性:马氏体相变是可逆的,即当加热到一定温度时,马氏体又会重新转变为高温相。
这种可逆性使得马氏体材料可以多次进行相变过程,具有重复使用的特点。
3.形状记忆效应:马氏体相变材料具有形状记忆效应,即在经历应力作用后,材料可以保持其原来的形状。
这种形状记忆效应使得马氏体相变材料在机械领域有广泛的应用,比如医疗器械和航空航天。
4.结构转变:马氏体相变是由无序的高温相向有序的低温相转变的过程。
在相变中,晶格结构会发生改变,从而影响材料的力学性能和磁性能等。
马氏体相变的应用马氏体相变具有广泛的应用背景,主要包括以下方面:1.形状记忆合金:马氏体相变材料在形状记忆合金中有广泛的应用。
形状记忆合金可以通过调控温度或应力来改变其形状,并且具有良好的可逆性和稳定性。
这种特性使得形状记忆合金在医疗器械、汽车工业和航空航天等领域有广泛的应用。
马氏体相变的基本特征
马氏体相变的基本特征马氏体相变是一种低温相变,许多高合金钢的转变温度在℃以下,甚至更低。
在这种低温下,原子无法扩散。
这一点可以通过以下事实证明:马氏体的含碳量与奥氏体的含碳量相同;有些马氏体的有序结构与母相的有序结构相同;有些合金在非常低的温度下发生马氏体相变时,其形成速度仍然很快。
这些都表明,在如此低的温度下,通过单个原子跳动进行的扩散来达到如此高的形成速度是不可能的,因此无扩散性是马氏体相变的基本特征。
尽管有些实验表明,低碳马氏体相变由于形成温度较高,尺寸较小的碳原子可以进行微量的短程扩散,但这并不是相变的控制因素。
实际上,马氏体相变是通过切变方式进行的,相界面处的母相原子协同地集体迁移到马氏体中去,迁移距离不超过一个原子间距,这一点与扩散型相变明显不同。
马氏体相变时除了均匀的体积变化外,还会产生点阵畸变,在经过抛光的样品表面上出现晶面的倾动,并使周围基体产生变形,这种现象称为表面浮凸。
如果在抛光表面上预先画上一条直线刻痕,马氏体相变后,直线刻痕在相界面处出现转折,形成了折线。
这些晶体学特征表明,马氏体相变是通过均匀切变方式进行的,刻痕在表面并未断开,而呈连续的折线,表明相界面没有发生转动,在相变中始终保持为平面。
由于在相界面上的原子始终为两相所共有,马氏体与母相之间的界面为共格界面。
马氏体总是在母相的一定晶面上形成,并且沿一定的晶向生长,这个晶面和晶向分别称为马氏体的惯面和惯方向。
马氏体的惯面是马氏体与母相间的界面,也就是马氏体形成时的切动面,此面在生长过程中既不畸变也不转动,这样的平面称为不变平面,因此马氏体的惯面为不变平面。
马氏体惯面的空间取向并不是完全一致,不同马氏体片的惯面有一定的分散度,会因马氏体片的析出先后和形貌的不同而有所差异。
由于马氏体是以切变方式形成的,这就决定了马氏体与母相间是共格的,它们间存在确定的位向关系。
马氏体的动态相变特征
马氏体的动态相变特征
马氏体是一种具有特殊相变特征的材料,其动态相变过程引人注目。
当马氏体处于高温相(奥氏体)时,它的晶格结构呈现出一种规则的立方晶系。
然而,当温度降低到马氏体的临界温度以下时,它会经历一个非常快速而引人注目的相变过程。
这种相变过程可以被描述为一种自发的、可逆的结构改变。
在这个过程中,马氏体从高温相转变为低温相(马氏体相),并伴随着晶格结构的不可逆性改变。
这种相变是由于奥氏体相中的晶格结构发生了微观位错的重排,形成了一种新的晶格结构。
马氏体的相变过程具有快速性和可逆性的特点,这使得马氏体在材料工程领域具有广泛的应用价值。
例如,马氏体的相变过程可以用于制备形状记忆合金材料。
在这种材料中,马氏体相的形状可以通过改变温度来控制,从而实现材料的自动变形。
马氏体的相变过程还可以用于制备超弹性材料。
在这种材料中,马氏体相的结构改变可以吸收外界应力,并在应力消失后恢复原状,从而实现材料的超弹性行为。
马氏体的动态相变特征不仅在材料工程领域有着重要的应用,还在生物医学领域具有潜在的应用价值。
例如,马氏体相变可以用于制备可控释放药物的微型输送器件。
通过改变马氏体相的结构,可以控制药物的释放速率和释放量,从而实现精确的药物输送。
马氏体的动态相变特征具有广泛的应用价值,并在材料工程和生物医学领域得到了广泛的研究和应用。
通过进一步深入研究马氏体的相变机制和调控方法,我们可以进一步发掘其潜在的应用价值,并为材料科学和生物医学领域的发展做出贡献。
马氏体
一.马氏体的定义马氏体是经无(需)扩散的,原子集体协同位移的晶格改组过程,得到具有严格晶体学关系和惯习面的,相变常产物中伴生极高密度位错,或层错或精细孪晶等晶体缺陷的整体组合。
马氏体相变:原子经无需扩散的集体协同位移,进行晶格改组,得到的相变产物具有严格晶体学位向关系和惯习面,极高密度位错,或层错或精细孪晶等亚结构的整合组织,这种形核----长大的一级相变,称为马氏体相变。
二.马氏体相变的基本特征1.马氏体相变的无扩散性在较低的温度下,碳原子和合金元素的原子均已扩散困难。
这时,系统自组织功能使其进行无需扩散的马氏体相变。
马氏体相变与扩散性形变不同之处在于晶格改组过程中,所有原子集体协同位移,相对位移量小于一个原子间距。
相变后成分不变,即无扩散,它3仅仅是成分改组。
2.位相关系和惯习面马氏体相变的晶体学特点是新相和母相之间存在一定的位向关系。
马氏体相变时,原子不需要扩散,只作有规则的很小距离的移动,新相和母相界面始终保持着共格和半共格连接,因此相变完成之后,两相之间的位相关系仍保持着。
惯习面:马氏体转变时,新相和母相保持一定位向关系,马氏体在母相的一定晶面上形成,此晶面称为惯习面。
通常以母相的晶面指数表示。
钢中马氏体的惯习面随着碳含量和形成温度不同而异。
有色金属中马氏体的惯习面为高指数面。
3.马氏体的精细亚结构马氏体是单向组织,在组织内部出现的精细结构称为亚结构。
低碳马氏体内出现极高密度的位错(可达1012/cm)。
今年来发现板条状的马氏体中存在层错亚结构。
在高碳钢马氏体中主要以大量精细孪晶(孪晶片间距可达30nm)作为亚结构,也存在高密度位错;有的马氏体中亚结构主要是层错。
有色金属马氏体的亚结构是高密度的层错、位错和精细孪晶。
4.相变的可逆性,即新旧相界面可逆向移动有色金属和合金中的马氏体相变多具有可逆性,包括部分铁基合金。
这些合金在冷却时,母相开始形成马氏体的温度称为马氏体点(Ms),转变终了温度标为Mf;之后加热,在As温度逆转变形成高温相,逆相变完成的温度标以Af。
马氏体相变的体积效应
马氏体相变的体积效应
马氏体相变是指,将钢从奥氏体状态快速冷却,使其来不及发生珠光体转变而形成的一种非扩散型相变。
其具有热效应和体积效应,其中体积效应是指马氏体相变过程中,由于晶体结构的变化导致体积发生膨胀。
马氏体相变的体积效应主要包括以下几个方面:
1. 奥氏体和马氏体的晶体结构不同:奥氏体的单个晶胞中含有4个原子,而马氏体的单个晶胞中只含有2个原子。
因此,在转变过程中,一个奥氏体晶胞会转变为两个马氏体晶胞,从而导致体积膨胀。
2. 马氏体是碳溶于α-Fe形成的过饱和间隙固溶体:碳在奥氏体中的最大溶解度为2.11%,在α-Fe中的溶解度为0.0218%。
在马氏体相变过程中,超出α-Fe最大溶解度的碳会把其晶格撑大,形成正方结构,从而导致体积膨胀。
3. 马氏体相变过程中的自协调效应:马氏体变态间的自协调效应会导致相变时体积发生变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不畸变平面的产生
Southwest Petroleum University
如果X、Y、Z三个主应变矢量中有一个为零,则可以产生 一个不畸变平面。
如图,应变时X轴在a点抵 住不动,就可以是OaA和 OaA’两个扇形面的形状完 全相同。即OA在YOZ平面 内扫动,从OA扫动到OA’。 所以两个扇形全等,即整个 平面上原子排布完全相同。 OaA和OaA’就是新旧相之 间的一个无畸变平面。
Southwest Petroleum University
这个模型说明了新旧相存在K-S关系,但是,按此模型,惯 习面应为{111}γ,而实际上Fe-C合金马氏体的惯习面为
{557}γ、{225}γ、{259}γ,它也不能解释马氏体中孪晶、位
错等亚结构、表面浮凸现象、马氏体 组织形貌变化规律。此 模型第1、2切变所需能力达到320KJ/mol,这是相变驱动力 所不及的。
以在新旧相位向关系、惯习面指数、形状变化、亚结构等
晶体参数之间进行推算
不变平面应变
Southwest Petroleum University
不变平面应变:在应变过程中,惯习面始终保持一定 的平面,既不发生应变,也不进行转动 马氏体相变的
唯象学说认为
切变使晶体外 形发生改变, 即在试样表面 产生浮凸。
Southwest Petroleum University
胞(2r,2c)法向的两侧面规则
的分布弗兰克位错,每6个原 子间距排列一条。位错圈主要 是由螺型位错组成,在周边 形成刃位错,即K-D模型
位错圈相界面模型
Southwest Petroleum University
在K-D模型的基础上发展了K-C模型,其物理结构为:设在 (225)γ面上存在一个大的位错圈,位错圈内即为马氏体核 胚。位错圈扩展时,核胚就长大为晶核。K-D模型和K-C模 型都认为该核胚直径有数十纳米,其周围是位错列
Southwest Petroleum University
马氏体相变机制
汇报人:张海川 2018.4.8
马氏体相变机制
Southwest Petroleum University
主要内容
马氏体形核
马氏体切变长大的晶体学经典模型 马氏体相变的唯象学说 马氏体相变切变机制的评价
马氏体形核
Southwest Petroleum University
1949年,Cohen首先设想马氏体在位错处形核,并于
1956年提出K-D位错圈形核模型;
1958年,由位错圈的能量出发,发展为K-C模型; 1972年,进一步精炼为R-C模型。 这些模型假定在母相中预先存在核胚,由位错组成。 20世纪50年代提出层错形核和极轴机制, 60年代提出应变核胚模型, 20世纪60-70年代还提出软模、局部软模、激活缺陷 分布的非均匀形核模型,
不畸变平面的产生
Southwest Petroleum University
相同面指数的无畸变平面的对称位置,如图所示
图表明,如果将应变获得的
椭球体绕X轴整体刚性转动
一个角度,使A’移动到A, 则可以将无畸变面转动回到 原始方位,就获得了即无畸 变、又不转动的平面
马氏体切变长大的 晶体学经典模型
Southwest Petroleum University
相变晶体学是相变机制 的核心内容。它提供 相变时晶体结构变化 的过程,揭示相变产 物的物理本质。一个 世纪以来,马氏体相 变晶体学进行了大量 的研究工作,但未形 成统一成熟的理论, 大多为模型或假说。
20世纪对马氏体相变晶 体学研究经历了三个 阶段:1)1924年Bain 提出了应变模型;2) 从1930年开始,提出 了一系列切变模型, 如K-S模型、西山模型 、G-T模型等;3)20 世纪50年代初,提出 了唯象学说
使底面内角由60°调整到70°32′。此模型缺点同K-S
模型,也与实际不符。
马氏体相变G-T模型
Southwest Petroleum University
马氏体相变G-T模型也是一个具有代表性的模型,
1949年测得Fe-22Ni-0.8C合金的单相奥氏体转变
为马氏体时惯习面为{259}γ,垂直于惯习面的平面
Bain应变不是不变平面应变
Southwest Petroleum University
Bain首先指出了奥氏体fcc→bct马氏体时,两种晶格之间的 对应关系为:将奥氏体中具有的体心四方晶胞视为体心正方 晶胞。
Bain应变不是不变平面应变
Southwest Petroleum University
马氏体形核实验观察
Southwest Petroleum University
这些实验现象揭示了马氏体相变不是均匀形核,马氏体形核 一般在晶粒内部发生。
Fe-1.2C合金
12Cr13
马氏体形核实验观察
Southwest Petroleum University
Fe-30.8Ni合金
Fe-30.8Ni合金
K-S切变模型和西山模型
切变分为三步进行:
Southwest Petroleum University
1)第一切变
2)第二切变
3)必要的线性调整
K-S切变模型和西山模型
Southwest Petroleum University
将原子的迁移情况投影在底面的菱形上,可以看到切变的全 过程
K-S切变模型和西山模型
应变核胚模型
Southwest Petroleum University
该模型认为在母相高应变场中可以形成马氏体核胚。在母相 的应变场中形成马氏体核胚时,核胚的长大使缺陷的弹性自
由焓△GD下降,因此形核过程使体系总的自由焓△GT下降。位
错应力场与马氏体应变场在一定条件下可能产生有利的交互 作用,是bain应变的一个分量被中和,从而减少形核总能量。 位错应变能促进马氏体形核学说的特点:
将形核过程中非均匀切变的晶体学特征和Bain应变及形核
的总应变能三者结合在一起,它说明马氏体形核可以再任意 位错的应变场中出现,而应变能密度在位错中心或接近位错 系列处达到最大,这样又回的了K-C模型,任然与实际不符。
层错形核模型
Southwest Petroleum University
面心立方母相转变为六方马氏体时,形成层错亚结
核有很大作用。
马氏体形核实验观察
Southwest Petroleum University
无扩散相变:当原子在某些条件下难以扩散时, 母相通过自组织,以无扩散方式进行晶格改组的 相变。 在母相中产生随机性的结构涨落和能量涨落,非 线性的正反馈作用把微小的随机性涨落迅速放大, 使得原结构失稳,构建一种新结构,即马氏体晶 体结构。 马氏体相变的起点是结构上的涨落,以层错、位错 等晶体缺陷为起点出现结构上的涨落,在能量涨落 配合下形成马氏体。
Southwest Petroleum University
G-T模型指出,假定沿着惯习面的切变满足倾动角 要求而不满足晶体结构的要求时,可以沿着马氏 体一定的晶面进行第二次切变,以满足两面的要 求,沿着惯习面的第一次切变为主切变,是均匀 切变,而第二次切变是非均匀切变。
马氏体相变的唯象学说
Southwest Petroleum University
从图可见,若沿其长轴方向压缩17%,而在垂直于长轴方 向上均匀膨胀12%,这样的均匀畸变使压缩轴于马氏体的c 轴重合,而垂直于此轴的两个<110>A变成了<100>M。这样 的晶格均匀畸变,实现了奥氏体晶格到马氏体晶格的转变, 碳原子在奥氏体中处于八面体中心位置,转变为马氏体后,
碳原子直接转移到c轴的中心位置,此称为点阵应变模型。
应用马氏体相变晶体学唯象学说研究马氏体相变中马氏体 与母相之间的晶体学关系,即点阵类型、点阵常数、取向 关系、惯习面等。唯象学说不描绘原子在马氏体相变中位 移的具体路径,也不涉及形核及长大的机理,而是研究相 变初始态和终了态之间通过原子的简单位移实现晶格重构 的可能性。在研究方法上,应用矩阵数学描绘晶体结构及 切变过程,计算的基本出发点是假定马氏体相变为一个不 变平面应变。初始态、终了态和过程应变模型设计后就可
K-S切变模型和西山模型
Southwest Petroleum University
1934年,西山通过对Fe-30Ni合金马氏体单晶体的研 究,测得又一种位向关系,即西山关系。 提出一个类似的切变模型,西山模型的切变过程与KS模型的第一切变相同,即切变角为19°28′ ,但不能 进行第二次切变,而是进行晶格参数调整,如使[112]γ轴收缩7.5%,[111]γ收缩1.9%,[1-10]γ膨胀13.3%,
核心在于在不大的驱动力下呈现非均匀形核
马氏体形核学说和模型
Southwest Petroleum University
理论检验
假说的逻辑完备性 逻辑简单性 解释和预见能力
实践检验
实践检验分为直接检验和间接检验
About Electricity 位错圈相界面模型
假想马氏体核胚预先存在母相 中,为扁球状,它与母相的交 界面是位错圈,即一系列位错 圈围绕而成的扁球状核胚。以 {225}γ作为脊面的扁平状位错
马氏体形核实验观察
Southwest Petroleum University
试验研究表明,马氏体形核位置不是任意的,形核位置与母 相中存在的缺陷有关。这些缺陷可能是位错、层错等晶粒内 部的,也可能是晶粒界或相界面。 试验发现: (1)β黄铜中形成马氏体后,当重新冷却时,经可逆转变马 氏体形成的位置与原来的重合。 (2)成份相同的100μm以下的Fe-Ni合金小颗粒,尺寸越小, 转变开始温度越低;尺寸小于100μm时,马氏体转变开始温 度差别很大。 (3)大块的Cu-2.5Fe合金中,富铁沉淀相在室温以下就可 以发生马氏体相变,小颗粒冷却到Mf以下也未出现马氏体。