串口通信原理汇总
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
rs232串口通信原理
串口是计算机上一种非常通用设备通信的协议(不要与通用串行总线Universal Serial Bus或者USB混淆)。大多数计算机包含两个基于RS232的串口。串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS-232口。同时,串口通信协议也可以用于获取远程采集设备的数据。
串口通信的概念非常简单,串口按位(bit)发送和接收字节。尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。它很简单并且能够实现远距离通信。比如IEEE488定义并行通行状态时,规定设备线总长不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。
典型地,串口用于ASCII码字符的传输。通信使用3根线完成:(1)地线,(2)发送,(3)接收。由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。其他线用于握手,但是不是必须的。串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。对于两个进行通行的端口,这些参数必须匹配:
a,波特率:这是一个衡量通信速度的参数。它表示每秒钟传送的bi t的个数。例如300波特表示每秒钟发送300个bit。当我们提到时钟周期时,我们就是指波特率例如如果协议需要4800波特率,那么
时钟是4800Hz。这意味着串口通信在数据线上的采样率为4800Hz。通常电话线的波特率为14400,28800和36600。波特率可以远远大于这些值,但是波特率和距离成反比。高波特率常常用于放置的很近的仪器间的通信,典型的例子就是GPIB设备的通信。
b,数据位:这是衡量通信中实际数据位的参数。当计算机发送一个信息包,实际的数据不会是8位的,标准的值是5、7和8位。如何设置取决于你想传送的信息。比如,标准的ASCII码是0~127(7位)。扩展的ASCII码是0~255(8位)。如果数据使用简单的文本(标准 ASCII码),那么每个数据包使用7位数据。每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。由于实际数据位取决于通信协议的选取,术语“包”指任何通信的情况。
c,停止位:用于表示单个包的最后一位。典型的值为1,1.5和2位。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。
d,奇偶校验位:在串口通信中一种简单的检错方式。有四种检错方式:偶、奇、高和低。当然没有校验位也是可以的。对于偶和奇校验的情况,串口会设置校验位(数据位后面的一位),用一个值确保传输的数据有偶个或者奇个逻辑高位。例如,如果数据是011,那么对于偶校验,校验位为0,保证逻辑高的位数是偶数个。如果是奇校验,
校验位位1,这样就有3个逻辑高位。高位和低位不真正的检查数据,简单置位逻辑高或者逻辑低校验。这样使得接收设备能够知道一个位的状态,有机会判断是否有噪声干扰了通信或者是否传输和接收数据是否不同步.
RS485串口通信电路图
二.VxWorks中基于RS485总线的串口通信协议及实现
摘要:本文介绍了在嵌入式实时操作系统Vxworks下串行设备的驱动架构及实现,提出了一种基于RS-485总线的新型串口通信协议,重点讨论了基于这种协议的应用程序的设计方法,发送时主要采用了总线仲裁机制,接收时主要采用了字符合法性校验、长度校验、内容的CRC校验,提高了系统的通信效率和稳定性。
关键词:VxWorks;RS-485;通信协议;总线仲裁;CRC校验
RS-485总线
RS-485总线接口是一种常用的串口,具有网络连接方便、抗干扰性能好、传输距离远等优点。RS-485收发器采用平衡发送和差分接收,因此具有抑制共模干扰的能力,加上收发器具有高的灵敏度,能检测到低达200mv的电压,可靠通信的传输距离可达数千米。使用RS-485总线组网,只需一对双绞线就可实现多系统联网构成分布式系统、设备简单、价格低廉、通信距离长。
VxWorks中串口驱动的实现
VxWorks 操作系统是美国Wind River公司设计开发的嵌入式实时操作系统(RTOS),是嵌入式开发环境的关键组成部分。Vxworks 操作系统的I/O 系统可以提供简单、统一、与任何设备无关的接口。这些设备包括:面向字符设备、随机块存储设备、虚拟设备、控制和监视设备以及网络设备。Vxworks 的I/O 系统包括基本I/O 系统和缓冲I/O 系统,具有比其他I/O 系统更快速,兼容性更好的特性。这对于实时系统是很重要的。
串口驱动架构
基于vxWorks的串口设备驱动程序架构,对vxWorks的虚拟设备ttyDrv进行封装,向上将TTY设备安装到标准的I/O系统中,上层应用通过标准的I/O 接口完成对硬件设备的操作,向下提供对实际硬件设备的底层设备驱动程序。其软件架构如图1所示。
由图1可知,串口设备驱动由两部分组成,一部分为对ttyDrv进行封装,将串行设备安装到标准的I/O系统中,提供对外的接口;另一部分为串行设备驱动程序,提供对硬件设备的基本操作。
虚拟设备ttyDrv管理着I/O系统和真实驱动程序之间的通信。在I/O 系统方面,虚拟设备ttyDrv作为一个字符型设备存在,它将自身的入口点函数挂在I/O系统上,创建设备描述符并将其加入到设备列表中。当用户有I/O请求包到达I/O系统中时,I/O系统会调用ttyDrv 相应的函数响应请求。同时,ttyDrv管理了缓冲区的互斥和任务的同步操作。另一方面,ttyDrv负责与实际的设备驱动程序交换信息。通过设备驱动程序提供的回调函数及必要的数据结构,ttyDrv将系统的I/O请求作相应的处理后,传递给设备驱动程序,由设备驱动程序完成实际的I/O操作。
驱动初始化
串口设备的初始化xxDevInit流程如图2。
设备驱动的初始化过程首先调用系统函数ttyDrv(),该函数通过调用iosDrvInstall()将ttyOpen()、ttyIoctl()、tyRead()、tyRead、tyWrite安装到系统驱动函数表中,供I/O系统调用。
接着根据用户入参对串口芯片寄存器进行初始化,安装驱动函数指针。
最后调用系统函数ttyDevCreate()创建ttyDrv设备。该函数初始化设备描述符,调用tyDevInit()函数初始化tyLib、初始化select功