出栈序列与卡特兰数

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

栈是一种常见的数据结构,有许多关于栈的问题,其中之一就是统计元素可能的出栈序列。具体说,就是给定n个元素,依次通过一个栈,求可能的出栈序列的个数。

如果我们用直接模拟的方法,当n较大时会很费时间;

例如动态规划。令f[i,j]表示栈内有i个元素且栈外有j个元素还未进栈,那么以进栈还是出栈为决策就马上得到了转移方程f[i,j]=f[i-1,j]+f[i+1,j-1]。如此一来,很多重复的计算得以免去,效率大幅提高(时间复杂度为指数级,大概为N^2级的算法)。

另一种方法是利用组合数学求出栈序列个数,得到公式

下面我们来看一种图形化的方法证明这个等式,很容易理解的。

我们把对n个元素的n次进栈和n次出栈理解为在一个n * n的方格中向右走n次(代表进栈),向上走n次(代表出栈)。由于出栈次数不能大于进栈次数,我们可以得到这样一个方格:

每次沿着实线走,所以,只要求出从方格左下角到右上角路径的个数即可。

我们把表格补全,考虑每一条不合法的路径,如

在这条路径上,必然有一个地方连续两次向上,即从图上蓝点处开始,而且这个点必然在如图所示的绿线上。我们以这个点为起点,把到左上角整条路经取反,也就是对称上去,得到一条新路径,但是超出了表格。我们知道,这条路径包括n + 1次向上和n – 1次向下,也就是在一个(n + 1) * (n - 1)的方格中。由此我们知道,一条不合法路径必然对应一个(n + 1) * (n - 1)方格中的路径。同样地,对于(n + 1) * (n - 1)方格中任意一条路径,以这条路径与绿线的第一个交点为起点到方格的右上方全部取反,即可得到一个在n * n方格中的不合法路径。

我们通过这样的方法确定了每条不合法路径与一个(n + 1) * (n - 1)方格中路径的一一对应关系,因此,方格中不合法路径总数为C(2n, n - 1),而所有路径总数为C(2n, n),两式相减即为原组合等式。

解二:

出栈次序问题。一个栈(无穷大)的进栈序列为1,2,3,..n,有多少个不同的出栈序列?

分析:对于每一个数来说,必须进栈一次、出栈一次。我们把进栈设为状态‘1’,出栈设为状态‘0’。n个数的所有状态对应n个1和n个0组成的2n位二进制数。由于等待入栈的操作数按照1‥n的顺序排列、入栈的操作数b大于等于出栈的操作数a(a≤b),因此输出序列的总数目=由左而右扫描由n个1和n个0组成的2n位二进制数,1的累计数不小于0的累计数的方案种数。

在2n位二进制数中填入n个1的方案数为c(2n,n),不填1的其余n位自动填0。从中减去不符合要求(由左而右扫描,0的累计数大于1的累计数)的方案数即为所求。

不符合要求的数的特征是由左而右扫描时,必然在某一奇数位2m+1位上首先出现m+1个0的累计数和m个1的累计数,此后的2(n-m)-1位上有n-m个1和n-m-1个0。如若把后面这2(n-m)-1位上的0和1互换,使之成为n-m个0和n-m-1个1,结果得1个由n+1个0和n-1个1组成的2n位数,即一个不合要求的数对应于一个由n+1个0和n-1个1组成的排列。

反过来,任何一个由n+1个0和n-1个1组成的2n位二进制数,由于0的个数多2个,2n为偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面部分0和1互换,使之成为由n个0和n个1组成的2n位数,即n+1个0和n-1个1组成的2n位数必对应一个不符合要求的数。

因而不合要求的2n位数与n+1个0,n-1个1组成的排列一一对应。

显然,不符合要求的方案数为c(2n,n+1)。由此得出输出序列的总数目=c(2n,n)-c(2n,n+1)=1/(n+1)*c(2n,n)

类似题目:

其中有一个类似的题目:有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)

卡塔兰数

卡塔兰数是组合数学中一个常出现在各种计数问题中出现的数列。由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名。

原理:

令h(0)=1,h(1)=1,catalan数满足递归式:

h(n)= h(0)*h(n-1) + h(1)*h(n-2) + + h(n-1)h (0) (其中n>=2)

该递推关系的解为:

卡塔兰数的一般项公式为另类递归式:h(n)=((4*n-2)/(n+1))*h(n-1);

前几项为(OEIS中的数列A000108): 1, 1, 2, 5, 14, 42, 132, 429, 1430, 48

62, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 1296447 90, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343 059613650, 1289904147324, 4861946401452, ...

性质

C n的另一个表达形式为所以,C n是一个自然数;这一点在先前的通项公式中并不显而易见。这个表达形式也是André对前一公式证明的基础。(见下文的第二个证明。)

卡塔兰数满足以下递推关系

它也满足

这提供了一个更快速的方法来计算卡塔兰数。

卡塔兰数的渐近增长为

它的含义是左式除以右式的商趋向于1当n→∞。(这可以用n!的斯特灵公式来证明。)

所有的奇卡塔兰数C n都满足n = 2k−1。所有其他的卡塔兰数都是偶数。

应用

组合数学中有非常多.的组合结构可以用卡塔兰数来计数。在Richard P. Stanley 的Enumerative Combinatorics: Volume 2一书的习题中包括了66个相异的可由卡塔兰数表达的组合结构。以下用C n=3和C n=4举若干例:

▪C n表示长度2n的dyck word的个数。Dyck word是一个有n个X和n个Y组成的字串,且所有的部分字串皆满足X的个数大于等于Y的个数。以下为长度为6的dyck words:

XXXYYY XYXXYY XYXYXY XXYYXY XXYXYY

▪将上例的X换成左括号,Y换成右括号,C n表示所有包含n组括号的合法运算式的个数:

((())) ()(()) ()()() (())() (()())

▪C n表示有n+1个叶子的二叉树的个数。

▪C n表示所有不同构的含n个分枝结点的满二叉树的个数。(一个有根二叉树是满的当且仅当每个结点都有两个子树或没有子树。)

相关文档
最新文档