《复变函数论》试题(D)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《复变函数论》试题(D )
Ⅰ. Cloze Tests (20102=⨯ Points )
1. If n n n n i i z ⎪⎭
⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=1153,then lim =+∞→n n z . 2. If C denotes the circle centered at 0z positively oriented and n is a positive integer ,then )(10=-⎰C
n dz z z . 3. The radius of the power series ∑∞=++13)12(n n z n n
is .
4. The singular points of the function )3(cos )(2+=
z z z z f are . 5. 0 ,)exp(s Re 2=⎪⎭
⎫ ⎝⎛n z z , where n is a positive integer. 6. =)sin (5z e dz
d z . 7. Th
e main argument and the modulus o
f the number i -1 are .
8. The square roots of 1+i are .
9. The definition of z e is .
10. Log )1(i += .
Ⅱ. True or False Questions (1553=⨯ Points)
1. If a function f is differentiable at a point 0z ,then it is analytic at 0z .( )
2. If a point 0z is a pole of order k of f ,then 0z is a zero of order k of f /1.( )
3. A bounded entire function must be a constant.( )
4. A function f is analytic a point 000iy x z += if and only if whose real and imaginary parts are differentiable and the Cauchy Riemann conditions hold in a neighborhood of ),(00y x .( )
5. If a function f is continuous on the plane and
=⎰C dz z f )(0 for every simple
closed contour C , then z e z f z sin )(+ is an entire function. ( )
Ⅲ. Computations (3557=⨯ Points)
1. Find ⎰=-+1||)2)(12(z z z zdz .
2. Find the value of ⎰⎰==-+2231
22)1(sin z z z z dz z dz z z e . 3. Let )
2)(1()(--=z z z z f ,find the Laurent expansion of f on the annulus {}1||0:<<=z z D .
4. Given λλλλd z z f C
⎰-++=142)(2,where {}3|:|==z z C ,find )1(i f +-'. 5. Given )
1)(1(sin )(2+-=z z z z f ,find )1),(Res()1),(Res(-+z f z f . Ⅳ. Proving (30310=⨯ Points)
1. Show that if )(0)()(C z z f m ∈∀≡, then )(z f is a polynomial of order m <.
2. Show that 012
783lim 242=+++⎰+∞→R C R dz z z z , where R C is the circle centered at 0 with radius R .
3. Show that the equation 012524=-+-z z z has just two roots in the unite disk.