对偶理论与灵敏度分析练习题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 对偶理论与灵敏度分析练习题答案
1.判断下列说法是否正确:
(1) 任何线性规划问题存在并具有惟一的对偶问题;(?)
(2) 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解;(?)
(3) 设j ˆ
x ,i ˆy 分别为标准形式的原问题与对偶问题的可行解,*j x ,*i y 分别为其最优解,则恒有n n m m
**j j j j i i i i j 1
j 1
i 1
i 1
ˆˆc x c x b y b y ====≤=≤∑∑∑∑;(?)
(4) 若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优解;(?) (5) 已知*i y 为线性规划的对偶问题的最优解,若*i y 0>,说明在最优生产计划中第i 种资源已完全耗尽;(?)
(6) 已知*i y 为线性规划的对偶问题的最优解,若*i y 0=,说明在最优生产计划中第i 种资源一定有剩余;(?)
(7) 若某种资源的影子价格等于k ,在其他条件不变的情况下,当该种资源增加5个单位时,相应的目标函数值将增大5k ;(?)
(8) 应用对偶单纯形法计算时,若单纯形表中某一基变量i x 0<,又x i 所在行的元素全部大于或等于零,则可以判断其对偶问题具有无界解;(?)
(9) 若线性规划问题中的b i ,c j 值同时发生变化,反映到最终单纯形表中,不会出现原问题与对偶问题均为非可行解的情况;(?) (10)
在线性规划问题的最优解中,如某一变量x j 为非基变量,则在原来问题中,无论改变
它在目标函数中的系数c j 或在各约束中的相应系数a ij ,反映到最终单纯形表中,除该列数字有变化外,将不会引起其他列数字的变化。(?)
2.下表是某一约束条件用“≤”连接的线性规划问题最优单纯形表格,其中x 4、x 5为松弛变量。
要求:(1)解; (3)其它条件不变时,约束条件右端项b 1在何范围内变化,上述最优基不变。(4)若以单价购入第一种资源是否值得,为什么若有人愿意购买第二种资源应要价多少,为什么
答案:
(1)注:该问题得解法非唯一,以下解法只是其中一种(各解法原理相同)。
由题意已知原线性规划问题目标函数为Max (因σj ≤0为最优),且c 4、c 5为0(松弛变量目标函数系数为0)。
根据1j j B j c C B P σ-=-知:2313111
1c c c 4
221
10c c 42610c 23⎧⎛⎫-⋅-⋅=- ⎪⎪⎝⎭⎪⎪⎛⎫-⋅-⋅=-⎨ ⎪⎝⎭⎪
⎪⎛⎫
-⋅=-⎪
⎪⎝⎭⎩
,得:123
c 6c 2c 10=⎧⎪=-⎨⎪=⎩
根据()51122
2
1
511126
3
2010
B A|b 10-⎛⎫=
⎪--⎝⎭,得:()012105A|b 3110110⎛⎫= ⎪-⎝⎭
则原线性规划问题的数学模型为: 12323123123
MaxZ 6x 2x 10x x 2x 53x x x 10s.t.x ,x ,x 0=-++≤⎧
⎪
-+≤⎨⎪≥⎩
其对偶问题的数学模型为:
1221
21212Min 5y 10y 3y 6y y 2s.t.2y y 10y ,y 0
ω=+≥⎧
⎪-≥-⎪⎨+≥⎪⎪≥⎩ (2)直接由表写出对偶问题得最优解为:()*Y 4,2= (3)令原解()()-1i B i i i x X B b b ===,得?b r 的变化范围为:
{}{}i ir ir r i ir ir i
i
Max b /a |a 0b Min b /a |a 0∆->≤≤-<,其中:()1ir ir
a B -=。则:
{}{()}15151
Max b Min 2226
∆-÷≤≤-÷-,即15b 15∆-≤≤,则10b 20≤≤
(4)以单价购入第一种资源是值得的,因其小于该资源“影子价格”(即<4),可盈利;第二种资源应要价至少为2(影子价格),否则不如自己组织生产。