优秀论文摘要

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年C题

输油管的布置

摘要

本文讨论了输油管线最佳布置方案及最少费用问题,即最优化问题。通过分类讨论、图形求解,以及构建非线性规划的目标函数和约束条件,编写程序,然后借助lingo软件,分别给出了三个问题的解决方案。建立了三个模型,求出了三种情况下的最优管线铺设方案和最少费用。

针对问题一的情形,我们采用分类讨论的方法,细分了三种情况:没有共用管线、有共用管线且共用管线费用与非共用管线费用相同、有共用管线但共用管线费用与非共用管线费用不同。

没有共用管线时,我们根据初等几何中“求直线上一点,到直线一侧的两定点距离之和最短”的知识,利用图形求解,得到了使得铺设管线费用最少的车站建设点。

对于后两种情况,参考了文献[1]中对“费尔马点”问题的推广,即“求一点,使得它到定直线和直线一侧两定点距离之和最短”问题的讨论,结合具体问题进行改进,得到了使得费用最少的管线铺设方案,并求出了最少费用,具体结果见正文。

问题二的情形更复杂,城区管线增加了附加费用。我们按车站建设在城区或郊区,分成两种情况讨论,然后再比较这两种情况下各自的最优方案,优中选优。这样,使得解决问题的思路变得清晰。

首先对于三家公司的估计数据,我们根据其资质等级设立权重,得到较合理的一个数据。

然后,以铺设管线的总费用作为目标函数,结合几何知识进行推理分析,得到约束条件,转化为非线性规划问题。

最后,编写程序,利用lingo软件得到关键点的坐标,进而得到最优的管线铺设方案和最少花费。我们发现,最优方案中,车站应建在郊区,而在城、郊界限处应有一个管线的转折点,具体结果见正文。

问题三与问题二相比,只是A厂和B厂所用管线的费用不同了,所以我们类似问题二的分析,稍作修改就得到了最优方案。我们发现,此时车站也应建在郊区,而在城、郊界限处也应有一个管线的转折点,具体结果见正文。

本文给出了大量图形,条分缕析,虽直观易懂,但推理严谨,深入浅出,结果准确。模型可操作性强,推广应用起来也很方便。

关键词:分类讨论图形求解“费尔马点”问题推广非线性规划权重

2010年D题

对学生宿舍设计方案的评价

摘要:本文研究的是四种典型学生宿舍设计方案的综合量化评价和比较问题。主要运用的方法是模糊综合评判和层次分析法。

在建立数学模型时,首先利用模糊综合评判中的二级评判模型把宿舍的经济性、舒适性、安全性问题作为第一级因素集,把经济性、舒适性、安全性问题中的子因素作为第二级因素集。在用模糊综合评判方法时,确定评估数据(评判矩阵)和权重分配是两项关键性的工作,求权重分配时,我们从第一调查网和中国调查网得到数据后用层次分析法计算出二级权重和一级权重;对于评判矩阵,我们通过该题附件方案图纸上的数据和我们所在地区的收费标准为依据进行统计分析求得。

最终,我们得出的综合量化比较结果是四种典型学生宿舍设计方案由好到差依次为方案二、方案四、方案三、方案一。

关键词:层次分析法;模糊综合评判;统计分析

2012年C题

脑卒中发病环境因素分析及干预

摘要

本文主要讨论脑卒中发病环境因素分析及干预问题。根据题中所给出的数据,利用SPSS20 软件进行相关性统计分析,分别对各气象因素进行单因素分析,进而建立后退法线性回归分析模型,得到脑卒中与气压、气温、相对湿度之间的关系。同时在广泛收集各种资料并综合考虑环境因素,对脑卒中高危人群提出预警和干预的建议方案。

首先,利用SPSS20软件,从患病人群的性别、年龄、职业进行统计分析,得到2007-2010年男性患病人数高于女性,且男性所占比例有逐年下降趋势,女性则有上升趋势,因此,性别比例呈减小趋势。分析不同年龄段患病人数,得到患病高峰期为75-77岁之间,且青少年比例逐年呈增长趋势,可见患病比例趋于年轻化。同时在不同的职业中,农民发病人数最多,教师,渔民,医务人员,职工,离退人员的发病人数较少。

其次,由题中所给数据先进行单因素分析,剔除对脑卒中影响不显著的因素,得出气温、气压、相对湿度对脑卒中的影响程度大小,进而采用后退法线性回归分析建立模型,利用SPSS20对数据进行分析,求得脑卒中发病率与气温、气压、相对湿度之间的关系。即发病率与平均温度成正相关,与最高温度成负相关,发病率与平均气压成正相关,与最低气压成负相关,与平均相对湿度成负相关,与最小相对湿度成正相关。

最后,通过查找资料发现,影响脑卒中的因素有两类,一类是不可干预因素,如年龄、性别、家族史,另一类是可干预因素,如高血压、高血脂、糖尿病、肥胖、抽烟、酗酒等因素。分析这些因素,建立双变量因素分析模型,并结合问题1和问题2,对高危人群提出预警和干预的建议方案。

关键词脑卒中单因素分析后退法线性回归分析双变量因素分析

2012年D题

机器人避障问题

摘要

本文主要是对机器人在一个平面区域内的通过不同障碍物到指定目标点进行研究,首先通过机器人与障碍物的最小安全距离对不同障碍物的禁区进行了划分见图1,把障碍物划分为有顶点和无顶点两大类。然后证明了机器人在障碍物顶点处转弯路径最优,转弯半径最小路径最优,转弯圆心在障碍物顶点处(圆行障碍物在圆心)路径最优。

问题一对于起点和目标点的的路线先用拉绳子的方法确定了可能的最短路线,然后用穷举法确定最佳路径。机器人的行进又分单目标点和多目标点两种情况。

针对单目标点问题,先对只进行一次转弯的过程建立了基本线圆组合结构的解法即模型一。然后对多次转弯问题中的直线路径与圆弧路径的不同的位置关系推导出了计算模型即模型二。对O-A是基本的线圆组合,直接用模型一求解得到0-A的最短路径长为471.0372个单位,所用时间为96.0178秒具体情况见文中表1。对O-B和O-C都是先用模型二对路线进行基本分割,然后用模型一进行求解得到O-B最短路径长为853.7127个单位,所用总时间为179.0851秒,具体见表2。得到O-C最短路径长为1087.6个单位,所用时间为221.9秒,具体见表3。

针对多目标点问题,由于机器人不能直线转向,所以在经过目标点时,应该提前转向,且中间目标点应该在转弯弧上。因此先建立优化模型(模型三)对进行中间目标点处转弯圆弧圆心搜索求解。求出中间目标点转弯圆心后,用把中间目标点的圆心看做“障碍物”的办法把问题转化为单目标点问题。然后利用模型二和模型一进行求解,解得

O-A-B-C-O的最短路径长为2812.52个单位,所用时间为585.6712秒,具体见附表1。

对于问题二,在问题一求出的最短路的基础上,根据转弯半径和速度的关系,在问题一求出的最短路径的模型的基础上,进行路线优化,建立以最短时间为目标的非线性规划模型,求解得最短时间为94.22825秒,转弯半径为12.9886个单位,转弯圆心坐标为(82.1414,207.1387),具体结果见表5。

关键词:基本线圆组合拉绳子法穷举法非线性规划中间目标点转弯圆心

相关文档
最新文档