反应等离子喷涂的发展及其应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反应等离子喷涂的发展及其使用
摘要:反应等离子喷涂试自蔓延高温合成(SHS)同等离子喷涂技术结合而发展起来的新技术。本文综述了反应等离子喷涂的特点,涂层的种类以及涂层使用的领域。并提出了需要研究的问题,展示了反应等离子喷涂的使用前景。
关键词:反应等离子喷涂;涂层种类;使用领域
0 前言
传统等离子喷涂具有焰流温度高,能量集中,粒子飞行速度快等特点[1]。自蔓延合成(SHS)也称燃烧合成(CS),是利用化学反应自身放热制备材料的新技术,在常规制备方法中难以得到的陶瓷、金属间化合物等高熔点、高性能的材料方面显示出巨大的优越性[2]。将等离子喷涂和自蔓延高温合成相结合,充分发挥两种工艺的特点,逐渐发展成为反应等离子喷涂[3]。
1 反应等离子喷涂的特点
反应等离子喷涂是基于一定的燃烧合成反应实现的,将等离子喷涂和燃烧合成结合,充分发挥两种工艺的各自优点,利用等离子焰流来控制燃烧合成的反应程度。反应等离子喷涂有两种,一种是S-S反应,这种反应所用粉末一般为高放热反应体系的复合粉末,另一种是S-G反应。在喷涂过程中,喷涂材料在飞行过程中和反应气体发生反应,最终反应产物沉积到基体上形成涂层。利用等离子焰流作为热源,引发所喷涂粉末发生燃烧合成反应,反应放出的热量使反应产物迅速升温,从而在焰流中合成所需产物,并以极高的速度喷出,沉积到基体上形成涂层。由于产物的合成以及涂层的形成几乎同步完成,因此,反应等离子喷涂具有很高的生产效率。反应等离子喷涂不仅可以用于制备氮化物和硼化物陶瓷涂层,还可制备原位合成的金属/陶瓷复合涂层,能够显著改善单一陶瓷涂层韧性差的缺点,提高涂层的机械性能。
反应等离子喷涂涂层呈波浪式堆叠在一起的典型的层状组织结构,硬质相和基体相变形粒子互相交错。合成反应热和等离子弧热叠加,有利于高熔点硬质相的熔化,克服了传统等离子喷涂金属-硬质相粉末时硬质相分布不均匀、组织粗大、熔化不完全等缺点[2]。
2 反应等离子喷涂的研究
2.1 粉末反应等离子喷涂
以高放热反应组元为喷涂粉末,在喷涂过程中完成相的合成和涂层沉积。其原理如图1所示。利用粉末反应等离子喷涂技术可制备Ti-TiC、Ti-B4C、AlSi-SiO2[4]、Fe-TiB2、Fe-TiC、Cu-TiB2等涂层。
图1 粉末反应等离子喷涂示意图
2.1.1 Fe-TiC涂层
TiC 颗粒增强金属复合涂层是一种具有广泛工业使用前景的金属陶瓷复合耐磨涂层,因为其具有低摩擦因数、高硬度、低密度以及良好的高温稳定性等优点。
文献[5]中作者采用71.6%(wt)太铁粉和石墨粉为原料,若按化学计量比配制的反应物完全反应,则可得83%(V ol)TiC。
喷涂粒子在飞行过程中,钛铁和石墨发生如下反应:
TiFe + Ti + 2C——2TiC + Fe + 154 kJ/mol
喷涂粒子在飞行过程中发生上述SHS反应后,反应物熔滴在等离子弧的作用下,高速飞向基材,发生碰撞-变形-冷凝-收缩一系列过程而形成涂层。制备得到的TiC-Fe涂层是多层结构,即富TiC层和贫TiC层得交错堆叠,其显微硬度分别为1000-1800N/mm2和3000-6000N/mm2,性能优于传统等离子喷涂Fe+TiC 团聚粉而制得的涂层。调整原料的成分,可获得不同TiC含量的涂层。涂层中TiC含量、极细小的硬质相颗粒在整个涂层中的均匀分布是影响其耐磨性的最重要因素。
文献[6,7,8,9,10]中黄继华等人则采用前驱体(蔗糖)碳化复合技术利用钛铁粉为原料制备Ti–Fe–Ni–C和Ti–Fe–C系粉末,并通过反应等离子喷涂技术(RPS)原位
合成并沉积了TiC/Fe–Ni和TiC/Fe金属陶瓷复合涂层。所制备的TiC/Fe复合涂层主要由不同含量TiC颗粒分布于金属Fe基体内部而形成的复合片层叠加而成;TiC颗粒大致呈球形,粒径呈纳米级;TiC理论质量分数53%的TiC/Fe金属陶瓷涂层的耐磨粒磨损性能较好,SHV磨损实验中涂层的磨损面积为基体(45钢)的1/25左右。
文献[11]中作者采用沥青作为前躯体,太铁粉为原料制备Ti-Fe-C复合粉末,并通过反应等离子熔覆原位合成并沉积了Fe-TiC涂层,涂层结构致密,涂层具有较高的硬度和良好的耐磨损性能。
2.1.2 Fe-Al
2O
3
涂层
文献[12]中牛二武等人根据铝热反应原理制备了Fe-Al2O3-FeAl2O4复合涂层。Dong Zha[13]等人研究了Fe/FeAl2O4涂层的微波吸收特性和复介电常数。
Cagri Tekmen等人利用直流等离子喷涂制备了TiB2/Al2O3复合涂层[14],并研究了喷涂参数及飞行颗粒的特点[15]。
2.1.3 Al-Si合金涂层
AlSi合金涂层具有良好的耐磨性能,耐冲蚀性能及高温强度,常用作汽车制动器,汽缸盖,连杆等零件。
文献[16,17,18]中作者先利用机械合金化制备Al-12Si/SiO2复合粉末,然后采用APS(atmospheric plasma spraying)制备得到Al-Si/Al2O3复相涂层。反应机理为:4Al+ 3SiO2→2Al2O3+ 3Si , ΔH=−181.09kJ/mol。文献[19]中作者采用APS制备了Al–12Si/TiB2/h-BN复相涂层。两者均研究了喷涂参数对涂层性能的影响。
文献[20]中作者采用不同的反应热喷涂技术制备了Al-Si-Mg涂层,并对各种涂层的性能进行了比较。
2.2 气相反应等离子喷涂
反应器中的气体被引入高温等离子射流中后,迅速发生分解,并使分解的离子处于激活状态,和喷涂粉末反应生成理想的产物,沉积到基材表面形成涂层。由于产物在原始喷涂粉末中原位生成,因此涂层中产物和基体结合良好,分布均匀。可制备的涂层有Ti+TiC、W+WC、Mo+Mo2C、NiCr/Ti+Ti+C+CrC、FeCrAlY+CrC、FeCrAlY+CrFe+FeC等。以甲烷、丙烯等碳氢化合物作为反应气体,NiCr/Ti团聚粉末或钨粉作为喷涂粉末,形成含TiC、CrXCy或WC、W2C 的涂层,具有良好的耐磨性;将富氮的反应气氛引入高锰、高镍不锈钢粉末喷涂过程,可制备高氮不锈钢涂层,显著改善该类不锈钢涂层的耐蚀耐磨性[21]。