模型预测控制 PPT课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u(k
i)
0
ik
y(k ) giu(k i 1)
i0
无限脉冲响应模型
离散脉冲响应序列 g1, g2,…, gi…
可以直接测量 也可以从其它模型转换得到
离散脉冲响应模型
线性、定常、自衡系统的脉冲响应总是会收敛的
可以用有限脉冲响应替代
N
y(k ) giu(k i 1) i 1
即近似认为:
1970
集成电路技术;Hale Waihona Puke Baidu处理器;能源 电动仪表,标准信号:4~20mA
危机;工业现代化;微机广泛应 CAD;自动机械工具;机器人;DCS;

PLC
1980 办公自动化;数字化技术;通讯、 数字化仪表;智能化仪表;先进控制
网络技术;重视环境
软件
1990后 智能控制;工业控制高要求
现场总线;分析仪器的在线应用;优 化控制
过去 y(k-j) u(k-j)
当前
未来
y1 (k+j|k) y2 (k+j|k)
预测时域P u1 (k+j|k) u2 (k+j|k)
控制时域M
k-j
k
k+m
k+p
常用模型预测的形式
差分方程
n
m
y(k) ai y(k i) bju(k j)
i 1
j 1
状态方程
x(k 1) Ax(k) Bu(k)
动态矩阵控制(DMC,Dynamic Matrix Control ) 模型算法控制(MAC,Model Algorithm Control) 广义预测控制(GPC,Generalized Predictive Control) 预测函数控制(PFC,Predictive Functional Control) 滚动时域控制(RHC,Receding Horizon Control)
滚动优化
滚动进行有限时域在线优化
反馈校正
通过预测误差反馈,修正预测模型,提高预测精度
通过滚动优化和反馈校正弥补模型精度不高 的不足,抑制扰动,提高鲁棒性。
模型预测控制的优势
建模方便 不需要深入了解过程内部机理 有利于提高系统鲁棒性的控制器设计 滚动的优化策略 较好的动态控制效果 不增加理论困难 可推广到有约束条件、大纯 滞后、非最小相位及非线性等过程 是一种计算机优化控制算法
y(k) Cx(k)
脉冲传递函数
G(z) y(z) CzI A 1 B
u(z)
由于
(zI A) (I z1 Az 2 A2 z3 ) I
即 (zI A)1 z1I z2 A z3 A2
因而
G(z) C
A j1z j B
hj zj
j1
j 1
其中
hj CA j1B
控制理论与控制工程专题
模型预测控制 Model Predictive Control
MPC
模型预测控制
模型预测控制的发展 模型预测控制的基本特点 模型预测控制的基本原理 模型预测控制的基本算法
模型预测控制的发展
时代背景:
20世纪70年代 ➢ 工业生产规模不断扩大 ➢ 对生产过程要求不断提高:质量、性能、安全…… ➢ 复杂性:非线性、时变性、耦合、时滞…… ➢ 控制仪表获得很大发展
MAC在线优化示意图
MAC主要包括内部预测模型、反馈校正、滚动 优化和参考轨迹等几个部分。 MAC采用系统脉冲响应作为内部预测模型,是 一种非参数模型。 用过去和当前的输入输出状态,根据内部模型, 预测系统未来的输出状态。 经过用模型输出误差进行反馈校正以后,再与 参考轨迹进行比较,应用二次型性能指标进行 滚动优化,然后再计算当前时刻加于系统的控 制,完成整个动作循环。
模型预测控制正式问世 Cutler 壳牌石油公司 多变量模型预测控制软件 Richalet 专利转让 Setpoint公司 多变量控制器
模型预测控制的基本特点
➢ 首先在工程实践获得成功应用 ➢ 是经典和现代控制理论的结合
反馈控制 最优控制 (滚动优化+反馈校正); ➢ 是处理过程控制中多变量约束控制问题的最有效方法 ➢ 典型代表:MAC、DMC和GPC
一步输出预测:
yˆm (k 1) Gˆ (z 1)u(k 1) (k 1) gˆ (z 1)u(k ) (k 1)
预测误差
预测误差:
e(k 1) yˆm (k 1) y(k 1)
由于 y(k+1) 无法得到,用 y(k) 近似替代:
e(k) yˆm (k) y(k)
即在预测时域 P 内不考虑预测误差的变化
输出预测
预测模型:
y(k) Gˆ (z 1)u(k) (k) z 1gˆ (z 1)u(k ) (k )
第1步输出预测:
yˆm (k 1) Gˆ (z 1)u(k 1) (k 1) gˆ (z 1)u(k ) (k 1)
输出预测
第2步输出预测: yˆm (k 2) Gˆ (z 1)u(k 2) (k 2) gˆ (z 1)u(k 1) (k 2)
+ ym(k+j| k)
+
反馈校正
预测模型
_ y(k|k)
+
模型预测控制的基本原理
预测模型
预测模型的功能
根据被控对象的历史信息{ u(k - j), y(k -j) | j≥1 }和未来输入 { u(k + j - 1) | j =1, …, M} ,预测系统未来响应{ y(k + j) | j =1, …, P} 。
模型算法控制(MAC)
应用最早的一种模型预测控制算法 上世纪60年代末,Richalet等提出并应用 上世纪70年代,Mehra等对Richalet工作进 行总结 Mehra等提出进一步理论研究
模型算法控制-MAC
模型算法控制基本思想 单步模型算法控制算法 模型算法控制基本算法 模型算法控制参数选择
工业自动化工具的发展(仪表)
年代 1950
1960
工业发展状况
仪表技术
化工、钢铁、纺织、造纸等,规 气动仪表,标准信号:20~100kPa
模较小;电子管时代
采用真空电子管;自动平衡型
记录仪
半导体技术;石油化工;计算机; 电动仪表,标准信号:0~10mA
大型电站;过程工业大型化
仪表控制室;模拟流程图;DDC
t/T
滚动优化(P > M)
过去
当前
设定值 轨迹
y(k-j)
未来
y (k+j| k)
预测时域
u (k+j| k)
u(k-j)
控制时域
k-j
k
k+m
k+p
反馈校正
每到一个新的采样时刻,都要通过实际测到的 输出信息对基于模型的预测输出进行修正,然后再 进行新的优化。不断根据系统的实际输出对预测输 出值作出修正使滚动优化不但基于模型,而且利用 了反馈信息,构成闭环优化。
➢ 工程实际的问题: 受控过程越来越复杂,难以建模 不确定因素多 能源危机 经济效益
• 70年代
开始关注工业过程复杂性控制问题 串级控制、前馈控制等在过程控制中得到应用 现代控制理论仍很少在过程控制领域应用
• 80年代
Richalet和Cutler两人几乎同时报道研究成果 MPHC(模型预测启发式控制) DMC(动态矩阵控制)
模型预测控制的优势
对模型要求不高 鲁棒性可调 可处理约束 (操作变量 MV、被控变量CV) 可处理 “方”、“瘦”、“胖”,进行自动转换 可实现多目标优化(包括经济指标) 可处理特殊系统:非最小相位系统、伪积分系统、 零增益系统
模型预测控制的弱势
开环控制+滚动优化的实施需要闭环特性的分析, 甚至是标称稳定性的分析 在线计算量较大。目前广泛应用于慢过程对象的 控制问题上 非线性对象,需要额外的在线计算 需要辨识模型,分析干扰,确定性能指标,整个 问题集合了众多信息
gi
gi 0
iN iN
N 模型截断长度
离散脉冲响应模型
存在未建模动态(或建模误差):
~y (k ) giu(k i 1)
优点:
iN
▪ 无需知道系统的阶次等结构信息
▪ 模型长度 N 可以调整
缺点:
▪ 不适合非自衡对象
▪ 模型参数冗余
预测模型
N
y(k) giu(k i) (k) i 1 g1u(k 1) g2u(k 2) L gNu(k N ) (k ) g1z1u(k ) g2 z 2u(k ) L g N z Nu(k ) (k ) N z1 gi zi1u(k ) (k ) i 1 z1g (z1)u(k ) (k )
4─k+1时刻校正后的预测输出ym(k+1)
反馈校正
y(k) e(k)
y (k+j| k)
y(k-j)
u(k-j) k-j
ym(k )
ym(k+j| k-1)
u (k+j )
yˆ(k 1) ym(k 1) e(k 1) e(k 1) e(k) y(k) ym(k)
k
k+P
模型预测控制的基本算法
预测模型形式
➢ 参数模型:如微分方程、差分方程、状态方程、 传递函数等
➢ 非参数模型:如脉冲响应、阶跃响应、模糊模型、 智能模型等
预测模型
基于模型的预测示意图(P=M)
过去
未来
3
y
4
1
u
2
k 时刻
1—控制策略Ⅰ 2—控制策略Ⅱ 3—对应于控制 策略Ⅰ的输出 4—对应于控制策略Ⅱ的输出
预测模型(P > M)
模型预测控制的发展
理论背景:
新的控制理论得到发展
➢ 现代控制理论
状态空间分析法 最优控制理论 系统辨识与参数估计
➢ 新发展的控制理论
自适应控制 非线性控制 多变量控制
➢ 得到应用:航空、机电、军事等
模型预测控制的发展
存在问题——过程工业应用差
➢ 控制理论的问题: 依赖精确模型 适合多变量控制,但算法复杂 实现困难:计算量大、鲁棒性差….
▪ 随时间推移在线优化,每时刻反复进行 ▪ 优化目标只关心预测时域内系统的动态性能 ▪ 每周期只将u(k+1|k)或u(k+m|k)施加于被控过程
m<j ▪ 全局看是动态优化
滚动优化(P = M)
k时刻优化
yr y
2 1
3
u
k+1时刻优化
2
yr
1
y
3
u
k k+1
1─参考轨迹yr (虚线) 2─最优预测输出y(实线) 3─最优控制作用u
模型预测控制的未来发展
多变量预测控制系统的稳定性、鲁棒性 线性系统 自适应预测—理论性较强 非线性预测控制系统 内部模型用神经网络( ANN )描述 针对预测控制的特点开展研究 国内外先进控制软件包开发所采用 分布式预测控制
模型预测控制的基本原理
r(k)
+_
d(k)
u(k)
y(k)
在线优化
受控过程
反馈校正
y (k+j|k)= ym(k+j|k) +e(k+j|k) e (k+j|k)= y (k|k) - ym (k|k)
反馈校正
2 3 y
u
4
yˆ(k 1) ym (k
e(k 1) yˆ(k
1
k k+1
t/T
1─k时刻的预测输出ym(k)
2─k+1时刻实际输出y (k+1)
3─预测误差e(k+1)
模型算法控制-MAC
参考轨迹 输入
u(k)
y(k)
优化计算
受控对象
Z-1
预测输出
内部模型
e(k)
模型算法控制原理框图
离散脉冲响应模型
y
gi:脉冲响应系数
g11 g2
gN
0 12
t /T N
开环稳定系统的离散脉冲响应曲线
离散脉冲响应模型
适宜对象:线性、定常、自衡系统
在输入端加入控制量
i k
数学表达式:
第i 步输出预测:
yˆm (k i) Gˆ (z 1)u(k i) (k i) gˆ (z 1)u(k i 1) (k i)
单步MAC算法
预测时域 P = 1 控制时域 M = 1
单步输出预测
预测模型:
y(k) Gˆ (z 1)u(k) (k) z 1gˆ (z 1)u(k ) (k )
闭环预测
引入预测误差反馈,得到闭环预测: 反馈校正
yˆ(k 1) yˆm (k 1) he(k) gˆ (z1)u(k) h[ yˆm (k) y(k)]
h为反馈系数
参考轨迹
参考轨迹:
w(k 1) (1 ) ysp y(k )
ysp: 设定值 y(k):系统输出
: 柔化系数
0 1
现代典型过程对象的控制系统层次图
Unit1 为 传 统 结构 Unit2 为 MPC 结构
模型预测控制的基本特点
预测控制算法的核心内容:
建立内部模型 确定参考轨迹 设计控制算法 实行在线优化
预测控制算法的三要素为:
预测模型 滚动优化 反馈校正
模型预测控制的三要素
预测模型
对未来一段时间内的输出进行预测
Markov矩阵
对输出的预测
利用预测模型得到输出预测 ym(k+j|k) ym(k+j|k)=f [u(k-i), y(k-i)]
i =1, 2, 3, …, j
滚动优化
控制目的
▪ 通过某一性能指标J 的最优, 确定未来的控制作用
u(k+j|k)。指标J希望模型预测输出尽可能趋近于
参考轨迹。
优化过程
相关文档
最新文档