质谱分析图谱解析_图文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CnH2n m/z 42, 56, 70, 84等 CnH2n-1 m/z 41, 55, 69, 83等
m/z 43 (CH3)2CH+, 57 (CH3)3C+ 基峰或强峰
碎裂符合偶电子规律
n-十六烷的质谱图如下
烷烃-支链烷烃
M+·弱或不见。 M-15 (·CH3), 带侧链CH3 M-R (·R) 优先失去大基团,此处 碎片离子峰的 RI 大。
※ 查表法 Beynon and Lederbey 制作了高分辨质谱法数据表, 可查出对应于某精确质量的分子式。
※ 计算机处理
3.3 有机质谱中的反应及其机理
M+ e
50-70 eV
+. M
+
2e
-. M
+
小于1%
+.
A +. + 中性分子或碎片
M
B + + R
A +.
B+
M+·→ A+·, B+, C +·, D+ ……
1-十二烯的质谱图如下:
环烯: RDA反应
芳烃
烷基苯M+·强或中等强度。 β-键的断裂,产生m/z 91的基峰或强峰; γ-H的重排,产生m/z 92的奇电子离子峰, 进一步裂解,产生m/z 77,65,51,39的峰或 者m/z 78, 66,52,40的峰。
例如,正己基苯的MS如下:
醇、酚、醚
质谱分析图谱解析_图文.ppt
3.1 确定分子量与分子式
质谱中分子离子峰的识别及分子式的确定是至关重要的
3.1.1 分子离子峰的识别
■ 假定分子离子峰:
高质荷比区,RI 较大的峰(注意:同位素峰)
■ 判断其是否合理:
与相邻碎片离子(m/z 较小者)之间关系是否合理
1
2
3
15
16
17 18 20
丢失 H.
3.1.2 分子离子峰的相对强度(RI )
不同的电离方式, 其分子离子的RI不等。 不稳定的分子, 大分子, 其分子离子的RI较弱。 稳定的分子, 大共轭分子, 其分子离子的RI较强。
采用EI:
大约20%的分子离子峰弱或不出现. 其大致规律如下:
芳香族化合物>共轭多烯>脂环化合物> 低分子链烃,
DBE: Double Bond Equivalents UN: Unsaturated Number
计算式为:
=C+1-HX)时,它的作用等价于氢原子;
ii) 二价原子数目不直接进入计算式;
iii) 化合物中若含有一个三价N原子,它相应的化合物比链状烷烃多3个H.
设x = 5, w=1,
则 y =9, 可能的分子式 C5H9OBr, Ω =1 也合理
由碎片离子 可判断其为
C6H13Br
例 设 m/z 154为分子离子峰, 154-139=15, 合理 m/z 154 155 156 157 RI 100 9.8 5.1 0.5
分子中含有1个s x = (9.80.8)/1.18
烃类化合物的质谱
※ 醇、酚、醚 ※ 硫醇,硫醚 ※ 胺类化合物 ※ 卤代烃 ※ 醛,酮,羧酸,酯,酰胺
烃类化合物的质谱
烷烃- 直链烷烃:
M+· 峰弱,可见。 m/z CnH2n+2 M-29(·C2H5) CnH2n+1 (主),m/z 43, 57, 71, 85,
99,113等; Δm = 14
羰基化合物的裂解:
逆Diels-Alder反应 (RDA):
氢的重排反应:
McLafferty重排
例:4-辛酮:
- 氢重排的证明:
用D取代 -H: 用D取代β-H: 用D取代 -H:
例:① 烯: ② 酯: ③ 烷基苯:
④ 腙: ⑤ 环氧化合物: ⑥ 不饱和醇:
⑦ 羧酸: ⑧ 酰胺:
γ-H重排常见离子
3.3.1 研究有机质谱裂解反应的实验方法
● 亚稳离子法 ● 同位素标记法
● 亚稳离子法
m1 –Δm → m2
Δm = 15 (CH3), 18 (H2O), 28 (CH2CH2 , CO) ……
● 同位素标记法
2H标记,其质荷比大于未标记的分子离子或碎片离子。 例如: 醇失水, MS证明是1,4-失水为主 氯代烃脱HCl, 是1,3-失HCl为主
■ 含硫的样品 32S : 33S : 34S = 100 : 0.8 :4.4
RI(M+1) / RI(M) ×100 = 1.1x + 0.37z+ 0.8S RI(M+2) / RI(M) ×100 = (1.1x)2 / 200 + 0.2w +4.4S
■ 含Si的化合物 28 Si : 29Si : 30Si = 100 : 5.1 : 3.4
同位素峰簇及其相对丰度
■ 对于C, H, N, O组成的化合物, 其通式:CxHyNzOw RI(M+1) / RI(M) ×100 = 1.1x + 0.37z ( 2H 0.016, 17O 0.04忽略 ) RI(M+2) / RI(M) ×100 = (1.1x)2 / 200 + 0.2w
■ 含重同位素(如 Cl, Br)的样品
35Cl : 37Cl = 100 : 32.5 ≈3 : 1; 79Br : 81Br = 100 : 98≈1 : 1
◎分子中含1 Cl, ◎分子中含2 Cl, ◎分子中含1 Br,
(a+b)1, M : M+2≈3 : 1 (a+b)2, M : M+2 : M+4≈9 : 6 :1 (a+b)1, M : M+2≈1 : 1
单电子或正电荷带在何位?
• 分子中n电子比π电子易丢失,π电子比σ电子易丢失 • 离子的正电荷愈分散,离子的稳定性愈大
自由基位置引发的裂解反应
自由基位置引发的重排反应
电荷位置引发的裂解反应
3.3.3 有机化合物的一般裂解规律
偶电子规律
OE+ ·→ OE+ ·, OE+ ·→ EE+
EE+ → EE+ , EE+ → OE+ · ?
9 24 22 8 1
即 M: (M+2): (M+4): (M+6): (M+8)=9: 24: 22: 8: 1
如果两个离子分别含有1个溴和3个氯,虽然(M+2)峰的相对强 度差不多,但是(M+4)峰却有差别。在考虑(M+2)峰的相对强 度时,还必须考虑(M+1)峰对它的贡献。
DBE(或UN)的计算
自由基引发或正电荷诱导,经过四、 五、六元环过渡态氢的重排
偶电子离子氢的重排
芳环的邻位效应
杂芳环的邻位效应
长链酯基的双氢重排
饱和分子的重排分裂
很多不含双键的分子也可发生重排分裂。如,醇失去水的 碎片离子峰的生成:
可由氘标记实验证实。通过六员环转移,1,4-消去。
例:
腈化物:失HCN 硫醇:失H2S 还可失CH3CO2H,CH3OH,CH2=C=O等
例:化合物中含有2个氯和2个溴原子
Cl2: (a + b) n = (3 +1) 2 =9: 6: 1
Br2: (c + d) m =(1 + 1) 2 =1: 2: 1
(9 6 1) ×1= 9 6 1
( 9 6 1) ×2= 18 12 2
( 9 6 1) ×1 =
96 1
—————————————
质谱中的非氢重排
环化取代重排 消去重排
环化取代重排 (cyclization displacement rearrangement)
m/z 91(100)
消去重排(elimination rearrangement) 烷基迁移
苯基迁移
烷氧基迁移
氨基迁移
3.4 各类有机化合物的质谱
某些含硫化合物
羰基化合物(醛, 酮, 酸, 酯, 酰氯, 酰胺) 分子离子峰通常可见
脂肪族醇类, 胺类, 硝基化合物,多支链化合物等 分子离子峰通常弱或不出现
分子离子峰不出现怎么办?
改用其它离解方式, 如: CI, FAB, ESI 等
3.1.3 分子式的推导 利用低分辨质谱数据,推导分子式
3.3.2 有机质谱裂解反应机理
裂解反应瞬间进行,机理研究困难 McLaferty 提出“电荷自由基定位理论” 自由基引发(断裂)自由基有强烈的电子配对倾向
正电荷吸引或极化相邻成键电子引起裂解(i 断裂)
σ 断裂(化合物不含杂原子,也没有π键)
均裂-单电子转移
异裂-双电子转移
分子失去一个电子,生成带单电子的正电荷的离子
(1.9/31) 100 = 1.1x+0.37z, z=1, x=5, y=73–14–60= –1 ? z=1, x=4, y=73–14–48=11 合理
分子式 C4H11N, Ω =0
例3:化合物的质谱图如下,推导其分子式
164:166=1:1, 164-85 = 79 (Br) 分子中含有1个Br, 不含氮或含偶数氮 m/z: 85(49), 86(3.2), 87(0.11) x = 3.2/49×100/1.1≈6 设x = 6, 则 y =13, 可能的分子式 C6H13Br, Ω =0 合理
ii) 断裂前有氢原子的转移. 2. 实例:甲基环己醇三种异构体的裂解
1) 2-甲基环己醇: A
B
∵ 稳定性:叔碳自由基>仲碳自由基
∴ m/z 57>m/z 71(强度)
2) 3-甲基环己醇:
∵ 甲基有超共轭效应,∴ m/z 71>m/z 57(RI) 3) 4-甲基环己醇:
另例:
烯烃
M+· 峰较弱,但比相应的烷烃强。m/z CnH2n β-键断裂(末端烯),m/z 41 CH2=CH-CH2 + 基峰或强峰。 γ-氢重排 m/z 42 CH2=CH-CH3 +·, 基峰或强峰 CnH2n -1 (主) , 如 m/z 41, 55, 69, 83, ···等。 CnH2n +1 m/z 43, 57, 71, 85, 99, 113···等; Δm = 14 CnH2n m/z 42, 56, 70, 84,···等42 +14n。 注意:重排时,双键可能发生移动,其位置难以确定 。
醇 ■ M+·弱或不出现
H2 H2+ H. .CH3 O. or NH2
OH. H2O HF
= 4~14, 21~24, 37~38……通常认为是不合理丢失
■ 判断其是否符合氮律
不含N或含偶数N的有机分子, 其分子离子峰的m/z
(即分子量)为偶数。含奇数N的有机分子, 其分子离
子峰的m/z (即分子量)为奇数。
◎ 使用CI电离时,可能出现 M+H, MH, M+C2H5, M+C3H5… ◎ 使用FAB时,可出现 M+H, MH, M+Na, M+K… ◎ 较高分子量的化合物,可能同时生成 M+H, M+2H, M+3H等
y = 154 32 12×8=26 不合理 设w=1 则 y = 154 321612×8=10
分子式为C8H10OS
查Beynon表法
C H N O m/z M+1 M+2 理论计算值,会出现不符合N律和不符合DBE的一般规律。
高分辨质谱法
精确质量,与分辨率有关 ※ 试误法
精确质量的尾数=0.007825y+0.003074z-0.005085w
烷烃- 环烷烃
以环己烷为例: M+·较强, 因裂解丢失基团需断裂两个键。
m/z 41, 55, 69峰。自由基引发,经过四,五, 六元环过渡态氢转移,裂解如下:
(环上烷基取代,优先失去大基团,正电荷带 在环上。)
甲基环己烷的质谱图如下
脂环化合物的复杂断裂: 1. 特点:i) 需经两次开裂;
如何识别质谱图中的的OE+·?
不含氮的化合物, m/z 为偶数的离子是奇电子离子 在质谱图中, 奇电子离子并不多见, 但重要.
烃类化合物的裂解规律:
烃类化合物的裂解优先生成稳定的正碳离子
CH3(CH2)nCH3
m/z 43或57 是基峰
C6H5CH2(CH2)n CH3 m/z 91是基峰
含杂原子化合物的裂解(羰基化合物除外):
故有: N为三价: =C+1-H/2-X/2+N/2 N为五价: =C+1-H/2-X/2+3N/2
例如: C7H3ClN2O2
Ω = (7+1) –3/2 –1/2 +2/2 =7 Ω = (7+1) –3/2 –1/2 +1/2 +3/2=8
例:化合物的质谱图如下,推导其分子式
设: 分子离子峰:73 73–58 = 15 合理
◎分子中含2 Br, (a+b)2, M : M+2 : M+4≈1 : 2 :1 ◎分子中含1Cl 和1Br (a+b) (c+d), M : M+2 : M+4≈3 : 4 : 1
……
当分子中含有两种或两种以上的不同的具有同位素的元素时,可 以用二项式展开的乘积来计算,即(a + b)n × (c +d)m
相关文档
最新文档